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Abstract

Earth science high-performance applications often require extensive analysis of their output in order to complete the scien-

tific goals or produce a visual image or animation. Often this analysis cannot be done in situ because it requires calculating

time-series statistics from state sampled over the entire length of the run or analyzing the relationship between similar time

series from previous simulations or observations. Many of the tools used for this postprocessing are not themselves high-

performance applications, but the new Parallel Gridded Analysis Library (ParGAL) provides high-performance data-parallel

versions of several common analysis algorithms for data from a structured or unstructured grid simulation. The library builds

on several scalable systems, including the Mesh Oriented DataBase (MOAB), a library for representing mesh data that sup-

ports structured, unstructured finite element, and polyhedral grids; the Parallel-NetCDF (PNetCDF) library; and Intrepid, an

extensible library for computing operators (such as gradient, curl, and divergence) acting on discretized fields. We have used

ParGAL to implement a parallel version of the NCAR Command Language (NCL) a scripting language widely used in the

climate community for analysis and visualization. The data-parallel algorithms in ParGAL/ParNCL are both higher performing

and more flexible than their serial counterparts.
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1. Introduction

Today’s petascale systems, such as those operated by the DOE Leadership Computing Facilities at Argonne

(ALCF) and Oak Ridge National Laboratories (OLCF), are being used extensively by the earth sciences [1]. In

most high performance computing applications, new knowledge is only gained after significant analysis is done

on the output of the petascale simulation, often referred to as “post-processing”. In the case of climate modeling,

the direct output which may measure in the terabytes for a single multi-million core-hour simulation tells little

about the climate. It is only after multivariate time-series analysis (post-processing) is performed on that data and

comparisons with other runs and observations that something new can be learned.
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The programs currently used to perform this analysis in the earth sciences are often not nearly as flexible

or high-performing as the primary applications. They are often single threaded and/or 32-bit and may assume

structured grids are being used. In many cases, they either break or require workarounds for the ultra-large

unstructured-grid data that is becoming the norm in computational earth sciences. In climate science, they are

already a bottleneck [2]. Post-processing of ultra-large data sets present not just a complexity and performance

challenge to current tools, but also a memory challenge. The single threaded programs will typically assume that

they can read all the data in to memory. This requires further workarounds where the researcher uses command

line tools to reduce the size of the data to something that can be held in the memory of a single node.

The hardware to X analyze multi-terabyte gridded output data is available. Both the ALCF and OLCF have

dedicated “Data Analysis and Visualization” (DAV) clusters attached to the same disk as the primary compute

platform and containing hundreds of “fat” nodes with powerful CPU’s, parallel file systems and large amounts

of memory (lens at OLCF and eureka at ALCF). But there is a distinct lack of analysis software that can take

advantage of those platforms. The President’s Council of Advisors on Science and Technology (PCAST) 2010

review of Networking Information Technology Research and Development (NITRD) [3] said that one of the

major challenges in data analysis was “computational models and languages suited for expressing data analysis

algorithms that map onto large-scale, parallel systems.”

Programs such as Parallel-R [4] provide data-parallel versions of some of its statistical analysis functions.

However it does not support operations on a grid. To accurately calculate gradients and other features from output

data, it is necessary for the tool to have a representation of the discretization used in the original model. Tools

such as GLEAN [5] or DIY [6] provide facilities for data staging and movement in an HPC environment but not

the grid-aware data model or domain-specific algorithms we need.

In this paper, we describe a new Parallel Gridded Analysis Library (ParGAL,§4) that is built on a compu-

tational model that can map onto large analysis clusters (or petascale systems) and explicitly represent the dis-

cretizations used in earth science models. We have focused our initial development on supporting analysis of

climate model output. ParGAL provides high-level parallel algorithms that can operate on structured or unstruc-

tured grid data in parallel. The library builds on several existing scalable systems (§2) for its data model, algorithm

expression and I/O and some modifications were required to these systems(§3). We are using ParGAL to build

a data-parallel version of a popular domain-specific analysis and visualization scripting language, the Parallel

NCAR Command Language (ParNCL), which will both allow it to scale and operate on multiple grid types. (§5).

2. Components of ParGAL

Many of the features we wanted ParGAL to have, such as a data model for structured and unstructured grids

and a way to define operations within and across grids, were already implemented in other systems. Although all

the ParGAL code is new, it has been built on several existing pieces of software.

2.1. The Mesh-Oriented Database: MOAB

MOAB is a library for query and modification of structured and unstructured mesh and field data associated

with the mesh [7]. MOAB can represent all entities typically found in the finite-element zoo, as well as poly-

gons and polyhedra. Structured mesh is supported as well, with a special interface providing parametric block

information [8]. The data model implemented by MOAB references four distinct data types:

• Entity: vertices, triangles, quads, etc.

• Entity Set: arbitrary collection of entities and other sets

• Interface: object through which all other functions are called (i.e., the database)

• Tag: information stored on Entity, Entity Set, and Interface objects

This data model has proven remarkably versatile, able to represent most semantic information associated with

typical meshes, including boundary conditions, solution fields, geometric associativity, and parallel partitions.

Internally, MOAB uses an array-based storage model; this allows efficient access to and iteration over fields

associated with mesh entities, including vertex- and element-based variables. MOAB uses the HDF5 library for

its native save/restore format [9].
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For parallel access, a mesh is represented and queried in MOAB as a serial mesh local to a processor, with

information about the parallel nature of the model accessed (and stored) in the form of sets and tags. For con-

venience, MOABs ParallelComm class also has functions that provide this data and functions for performing

commonly needed parallel functions. For any entity shared with other processors, MOAB stores both the remote

processor rank(s) and the handle(s) of the entity on those processors, on all processors sharing the entity [10].

Mesh models are initialized in parallel by reading mesh from a single file in parallel, using a partition stored

as entity sets in the file. A partitioning tool has been implemented by interfacing with the Zoltan partitioning

library [11].

The underlying structured grid representation in MOAB stores connectivity information implicitly, for memory

efficiency, while storing vertex locations explicitly, for generality.

2.2. Intrepid
Intrepid is a Trilinos [12] package for advanced discretizations of partial differential equations (PDEs) [13].

the abstract framework for compatible discretizations [14] provides the mathematical foundation of Intrepid. This

framework prompted reevaluation of conventional software design for PDEs, which usually focuses on a single

discretization paradigm. In contrast, Intrepid aims to translate mathematical similarities between finite-element,

finite-volume, and finite-difference methods, identified in [14] into software-based similarities. Intrepid has been

used to implement numerical methods for PDEs ranging from mimetic least squares for magnetostatics [15] to

control volume finite-element methods for semiconductor equations [16].

Intrepid offers a wide range of cell-based tools for the implementation of finite-element, finite-volume, and

finite-difference methods for PDEs. The package represents a middleware between higher-level software infras-

tructures and lower-level cell-based numerics, for example, for evaluation of basis functions, coordinate trans-

formations, surface parameterizations, and integration of fields over cells, cell faces, and cell edges. Intrepid is

designed to operate locally on batches of cells having the same topology and data type. A key aspect of the design

is that Intrepid separates cell topology from the reconstruction (i.e., the field evaluation process). In other words,

a reconstruction “basis” and its evaluation points are not tied to a particular cell topology. This design approach

allows Intrepid users to “mix and match” cell topologies with reconstruction operators (“bases”) and evaluation

points, thereby enabling a virtually unlimited generation of new discretization methods from a small number of

basic components.

The ability to “mix and match” an extensive range of fields, cells, and evaluation points enables Intrepid to

interpret and evaluate virtually any kind of numerical data generated by computer simulations. This makes the

package a powerful and flexible tool for data analysis and processing. The ParGAL effort is the first utilization of

Intrepid in this application context. ParGAL uses Intrepid to implement forward data operations such as computa-

tion of divergence and vorticity from a given velocity field and interpolation between different grids. In addition,

ParGAL takes advantage of the discretization capabilities of Intrepid to implement operations such as computation

of a stream function and a velocity potential from a given velocity field.

Traditional spherical harmonics approaches for these tasks (often used in other climate analysis tools) require

global data. In contrast, because Intrepid is rooted in local cell-based operations, it does not require global data

and can compute the stream function and the potential on any limited domain. When combined with MOAB

support for parallel mesh-based communication, the local nature of Intrepid operations makes the combination

particularly well-suited for parallel analysis of simulation data.

2.3. PNetCDF
The climate community makes heavy use of the NetCDF self-describing portable file format and its associated

programming interface [17]. Portable in this context means the dataset can be moved from machines with different

byte-endianness or datatype sizes without needing to change the client code reading or writing those files. Self-

describing means the dataset has enough internal structure that client code can use the associated APIs to determine

the kind and quantity of variables contained in the dataset. Further, the NetCDF library provides a means for

assigning “attributes” (metadata) to variables, dimensions, and datasets, offering yet more documentation for the

data contained therein. Collaborators at different institutions running on different computing resources rely on

both the self-describing and portability features of NetCDF in order to understand colleagues’ work now and in

the future.
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For parallel I/O needs, the Parallel-NetCDF project [18] provides a parallel programming interface. Parallel-

NetCDF maintains the same NetCDF file format and same concepts of attributes, dimensions, and variables but

provides an alternative (though similar) API for parallel programming. This alternative API introduces MPI con-

cepts such as communicators and “info” tuning parameters but retains the spirit of the serial API. Parallel I/O

happens through the MPI-IO [19] interface, but the library can abstract away details such as file views and MPI

datatypes. Parallel-NetCDF emphasizes “collective I/O,” where all processes participate in an I/O operation. Typi-

cally, the MPI-IO library can apply several powerful optimizations to a collective I/O workload. Particularly useful

are so-called deferred-mode parallel operations, where the application specifies a series of data read operations,

then frees Parallel-NetCDF to execute them all asynchronously. This approach allows the library to combine both

I/O and communication operations for maximum efficiency.

While Parallel-NetCDF (and serial NetCDF) provide a good interface for regular array access, climate analysis

models have grown more sophisticated in the years since these I/O libraries were first designed. Integrating

Parallel-NetCDF into MOAB, discussed in Section 2.1, allows us to support these more sophisticated analysis

models for more than just structured grids. MOAB provides the richer description of the grids used in climate

analysis, and Parallel-NetCDF provides the optimized parallel I/O for that analysis.

3. Modifications to Components

Our building blocks for ParGAL required some modifications to meet the needs of a data-parallel analysis

suite for climate model output.

3.1. MOAB

Although MOAB supported structured grids before the development of ParGAL, it did not have support for

reading climate-specific data models, nor was the structured grid capability versatile enough to support the full

range of climate data analysis algorithms. Enhancements to MOAB were in three primary areas: the representation

and initialization of structured grids in parallel; reading data from climate-specific netcdf-format data files; and

the representation of spectral element-based mesh and data. Each of these areas is described below.

3.1.1. Representation and Initialization of Structured Mesh
Structured meshes have been used extensively to model the globe. Often, a single 2D structured mesh is used,

with periodicity in the horizontal (longitudinal) direction and singularities at the two poles. For parallel repre-

sentations, the global grid is typically partitioned over processors, with each processor representing a contiguous,

rectangular portion of the global ij space.

Partitioning a mesh over processors seeks to balance the relative work for each processor, while also mini-

mizing communication between processors. In practice, the ideal method for partitioning a structured mesh over

processors depends on the dimensions of the grid in each parametric direction. This can be more challenging when

seeking rectangular subdomains, since the number of processors is often not an integral divisor of the number of

cells in either parametric direction. Various partitioning strategies were developed, including “alljorkori” (first j
or k or i larger than the number of processors partitioned over processors); “alljkbal” (partition j, and possibly k,

seeking square subdomains); and “sqij” / “sqik” (mostly-square subdomains in i and j/k, with extra rows/columns

towards bottom and left/front). By default, we chose the “alljorkori” method, since this method resulted in the

largest contiguous reads of data off the disk (data is laid out such that i varies fastest). However, this issue will

need revisiting after parallel I/O performance is improved.

Depending on the partitioning method used, in parallel the local mesh may or may not be locally-periodic in the

horizontal direction. For example, if the “alljorkori” method is used and the j direction is chosen for partitioning,

each processor will contain a complete horizontal strip of the grid, and therefore the grid will be “locally-periodic”

in the i direction, i.e. cells on the “right” side of the local subdomain will be connected to vertices on the “left”

side of the local subdomain. On the other hand, if the “sqij” partitioning strategy is used, then the grid will be

non-locally-periodic, with cells on the “right” side of the subdomain sharing vertices with another processor (even

though those vertices may be on the “left” side of the global grid). Initializing structured periodic grids to support
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the partitioning strategies described while getting the correct inter-processor grid sharing was crucial to getting

the correct results for climate data analysis.

To discover vertex sharing between processors, MOAB has an algorithm based on the assumption of unstruc-

tured mesh [10]; this method requires more global communication than is strictly necessary for a structured mesh.

MOAB was also modified to compute vertex sharing based only on knowledge of the partitioning method, the

global parametric dimensions of the mesh, and information about the starting vertex handle for neighboring pro-

cessors. Figure 1 shows the impact of this improvement, where the vertex sharing computation time is reduced by

an order of magnitude.

Fig. 1. Timing results showing improvement from deterministic shared

vertex resolution.

Finally, although climate data simulations

are performed in 3D, in practice the data is

saved to disk, and many of the discrete operators

are applied, based on a 2D x 1D arrangement

of the data. That is, the grid representation is

2D, with a vector of data on grid vertices repre-

senting levels of the third dimension. MOAB’s

netcdf reader was written to reflect this same ar-

rangement of data in MOAB, where the grid is

2D, with 1D tags representing the level-based

data.

3.1.2. Efficient Reading of Structured and Un-
structured NetCDF Files

Although only 2D structured and unstruc-

tured mesh is used to support climate data simu-

lations, the different discretization methods can

associated the discrete variables with different

mesh entities. For example, Finite Volume-

based simulations place variables on cell edges

and faces, while Finite Element- and Spectral

Element-based methods place variables mostly

on cell vertices. MOAB’s climate data reader

was written to recognize the variations in placement of data, based on the dimension names used in the NetCDF

file 1

3.1.3. Spectral Mesh Representation
The High-Order Method Modeling Environment (HOMME) spectral element (SE) code uses an unstructured

quadrilateral grid, with each quadrilateral containing an NxN grid of “Gauss-Lobatto” points for degrees of free-

dom [1]. There are two options typically used to represent SE meshes for data analysis, one which translates each

quadrilateral into an NxN grid of bilinear quadrilaterals, and one where the true spectral element (and its square

grid of data) are represented and analyzed using a true SE discretization. MOAB has been modified to provide

both representations, controlled by a read-time option, along with functions for changing between the two at run-

time. Options for controlling SE mesh representations have been documented in the MOAB User’s Guide. This

is a relatively new capability, though, and so the corresponding changes have not been made in the Intrepid-based

evaluation of the true SE-based data.

3.2. Intrepid
The Intrepid library is designed to perform operations on batches of cells without reference to the global

mesh connectivity. Therefore, the bulk of the work for the Intrepid-dependent algorithms has been to create an

intermediate computational layer that takes results from cell-based derivative or evaluation operations and scatters

1Conventions for dimension naming in climate NetCDF files are governed by the “CF metadata conventions”[20].
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them to arrays based on the mesh connectivity. In the case of the vorticity computation discussed in (§5) additional

Trilinos components have also been incorporated to solve the resulting linear system.

Modifications to the MOAB reader that allow variables to be associated with different mesh entities (i.e. vertex,

face, cell center) have led to different algorithm formulations for the intermediate computational layer. Currently,

cell centered and vertex variable computations are supported, where computations for vertex quantities use the

primal mesh defined in MOAB and computations for cell-centered quantities use a dual mesh, which must be

inferred from the primal mesh representation.

In addition, the geometry of the native geophysical grid has been taken into account in the metric terms

required to compute derivatives. The Intrepid library provides mappings from reference to physical cells given

a physical cell in Cartesian coordinates, but for a physical cell in curvilinear coordinates the mapping requires

modification. At this time spherical metric terms have been included in the intermediate computational layer for

structured latitude-longitude grids and for the cubed-sphere grid used by the HOMME spectral element code.

4. ParGAL Architecture

ParGAL leverages the capabilities of MOAB, PNetCDF, and Intrepid libraries to accomplish efficient, parallel,

discretization-accurate data analysis. ParGAL uses a modular design based strictly on the C++ standard [21] for

portability. ParGAL is designed to simplify implementation and evaluation of a wide variety of discretization-

specific algorithms on a wide range of grid types and very large data sizes.

ParGAL’s interfaces encapsulate details about file reading, parallel partitioning, and mesh-based parallel com-

munication, so that the algorithm designer can focus on analysis. ParGAL comprises four main components:

Fig. 2. ParGAL Architecture.

Fileinfo, PcVAR, Analysis, and Support. Figure 2 illustrates the architecture of ParGAL and the interaction

among the components. The details of each component are given below.

The Fileinfo class provides an abstraction of a single file or multiple files and a higher-level interface to hide

lower-level details of file management, including opening and closing a file, looking up which file contains a user-

specified time step, and retrieving information about file metadata. It also expands the capability of the lower-level

libraries used. The current MOAB NetCDF/Parallel-NetCDF reader stores file metadata for a single series of files.

With Fileinfo, multiple instances of the class can be used to store file metadata for multiple different file series.

ParGAL is designed to work with various large-scale structured and unstructured numerical grids. A MOAB

mesh instance serves as the database or container for most of the “heavy” data, while ParGAL provides a higher-

level index and summary of that data. PcVAR is built on top of MOAB to encapsulate the details of variable data

access. For instance, it keeps track of whether a specific time step is loaded. If not, MOAB will be used to load

data into the memory, and a marker will be set to facilitate later access. Otherwise, the marker will be returned.

The distinction between variables from a file and variables created by a user is necessary because the results of

some analysis routines need to be stored and the lower-level implementation needs to know whether to go to disk

for the data or just allocate the space in memory if it is the first time the data is accessed.

The Analysis module contains the analysis routines implemented in ParGAL. Most of them will take Pc-

VAR’s as input arguments and output results either into a scalar or another PcVAR, similar to how C++ STL’s
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Table 1. ParGAL Function Table

Algorithm Description
max element return the maximum element of a variable.

min element return the minimum element of a variable.

dim avg n computes the average of a variable’s given dimension at all
other dimensions.

dim max n computes the maximum of a variable’s given dimension at all
other dimensions.

dim min n computes the minimum of a variable’s given dimension at all
other dimensions.

dim median n computes the median of a variable’s given dimension at all
other dimensions.

vorticity calculates vorticity from a velocity field on a rectilinear or
cubed-sphere grid. Intrepid is used to calculate the partial
derivatives assuming a bilinear approximation of velocity on
a grid cell.

divergence calculates divergence from a velocity field on a rectilinear or
cubed-sphere grid. Intrepid is used to calculate the partial
derivatives assuming a bilinear approximation of velocity on
a grid cell.

gather gather the value of a variable to root 0.

generic algorithm works. The analysis functionality is divided into two categories, native and Intrepid-based. Na-

tive algorithms, implemented with functionality provided by ParGAL or MOAB, involve mostly straightforward

data-parallel arithmetic operations on mesh-based fields, while Intrepid algorithms are used for more complex

discretization-based algorithms. Table 1 shows the algorithms that we have implemented so far and their func-

tionality. With the current ParGAL design, the various native and Intrepid-based algorithms can be implemented

succinctly.

Four support modules provide basic library functions. ERR is for program errors. We are using C++ exception

handling mechanisms, and the exception thrown also contains the file name and source line number where the

exception is thrown. The LOG module provides logging functionality, the PROF module is for performance

profiling, and the MEM module is for memory-specific operations.

5. Application of ParGAL: ParNCL

ParGAL and its components provide powerful tools to build data-parallel analysis algorithms for many types

of gridded data. A developer must have some knowledge of both C++ and parallel programming. To make

the powerful features of ParGAL more accessible to Earth scientists, we have used ParGAL to create a data-

parallel version of the NCAR Command Language (NCL). NCL [22] is a free interpreted language that is widely

used for data analysis and visualization, especially in the climate community. NCL offers a wide array of data

analysis operations ranging from simple math operations such as finding the minimum element in an array to

sophisticated domain-specific operations. The two-dimensional plots rendered by NCL are publication quality and

highly customizable (climate scientists use two-dimensional figures instead of three-dimensional visualizations

because the aspect ratio of their system is very small). Earth scientists collectively have developed thousands of

lines of NCL scripts to perform postprocessing on the output from models and to analyze and visualize data. We

have developed a parallel version of the NCL interpreter, ParNCL, that performs data analysis in parallel using

ParGAL and MOAB.

Several data structures in the NCL interpreter were extended to parallelize the interpreter. A new parallel file

reader was added to the interpreter to read data in parallel. We also added an interface layer to facilitate access to

the ParGAL and MOAB libraries. ParNCL interacts with MOAB to access data stored in NetCDF files and create

new data corresponding to user variables specified in an NCL script. The interpreter uses the ParGAL functions

to perform data analysis on the data stored in the parallel database provided by MOAB.

ParNCL supports all the data analysis operations implemented in ParGAL. Apart from these operations the

interpreter supports simple math operations such as adding, subtracting, and scaling multidimensional NCL vari-

ables and global operations such as calculating the sine of all the values in a multidimensional NCL variable. The
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interpreter also supports subscripting arrays of data using the NCL variable subscripting rules. So far, we have

not modified any visualization algorithms in the NCL interpreter. Once the data analysis is complete, the single

threaded visualization algorithms are used to plot the results.

The multidimensional variables read from the NetCDF files are stored in a parallel mesh database provided by

MOAB. A PcVAR variable is created for each of these multidimensional variables and stored with it. This PcVAR

variable is used for all data analysis operations that use ParGAL.

5.1. Comparison of ParNCL Vorticity Calculation

In this section we compare the performance of ParNCL with NCL on a typical analysis function. As discussed

above, ParNCL uses ParGAL and performs data analysis in parallel while NCL performs the data analysis using

a single thread. We compare the performance of the single-threaded NCL interpreter with ParNCL using the

NCL function uv2vrF(), a function that computes the vorticity given the U and V wind components on a fixed

rectangular grid.

(a) (b)

Fig. 3. NCL visualization of vorticity calculated from the same U and V field by (a) the original NCL routine and (b) the ParGAL routine

The native NCL vorticity function uses spherical harmonic analysis [23], which requires global data on a

structured spherical grid and provides an accurate representation of vorticity. However, it is not applicable to

data on limited domains or on unstructured grids and is not easily parallelizable. In contrast, the algorithm in

ParGAL has been developed by using a finite-element approach that is highly parallelizable, works equally well

on global and limited domains, and is easily extensible to unstructured grids. In the ParGAL approach a formal

L2 projection is used to approximate the vorticity from a nodal velocity field. This method generates a simple

linear system whose components are obtained by integrating over cells, thereby eliminating the pole singularity in

the case when nodes are located at the poles. The implementation of the algorithm uses Intrepid to provide basis

function definitions, numerical quadrature rules, and cell-based numerical operations. The linear system is solved

by using an iterative solver from the AztecOO package [24] and a multilevel preconditioner from the ML package

[25], both part of the Trilinos framework [12].

Figure 3 shows that the two algorithms produce nearly identical results visually. To compare performance,

we measured the time taken to compute vorticity with both the original spherical harmonic NCL function and

the ParGAL function as called by our parallel version of NCL, ParNCL. We used a four time-steps from an

atmospheric general circulation model with a horizontal grid of 768x1152 points and 26 vertical levels. The

two-dimensional vorticity field is calculated separately on each level with one call to the function.

Performance results were obtained from the Fusion cluster at Argonne National Laboratory. Each com-

pute node in the cluster has two Nehalem 2.6 GHz Pentium Xeon processors (8 cores) and 36 GB of mem-

ory and uses the InfiniBand QDR network for communication. We compared NCL version 6.0.0 Beta with

ParNCL’s beta release. Figure 4 shows that the ParGAL/ParNCL vorticity algorithm is already faster than NCL

even at one processor. This timing includes all file I/O. The flattening of the curve after 32 processors comes

from the parallel I/O, which we have not optimized. The algorithm without I/O scales nearly perfectly (not
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shown). While 32 processors is small in the petascale age, introducing distributed-memory algorithms for regu-

lar use on any number of processors will be a paradigm shift for most Earth science analysis workflows. Even
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Fig. 4. Total Execution time for reading 4 timesteps of data and calculating

the vorticity field on each level of a 768x1152x26 grid vs. number of cores

at only 16 processors, however, the total time is

already reduced by over an order of magnitude

to a time that is no longer prohibitive for ex-

ploratory analysis. The Intrepid-based compu-

tation of vorticity in ParNCL is more efficient

than the algorithm called by NCL because it

does not require projection into global spheri-

cal harmonics; even though the Intrepid-based

method requires solution of a global system, it

is still efficient, and parallelizable, because of

the use of modern solvers with multigrid capa-

bility.

6. Conclusion

Postprocessing analysis of petascale model

output is a crucial component of the scientific

process in the Earth sciences. ParGAL is a li-

brary for performing many analysis functions

that introduces both the ability to employ data

parallelism and operate on both structured and

unstructured grids. To build ParGAL, we have leveraged several well-engineered software libraries that provide

key capabilities in the area of parallel mesh and mesh-based data, parallel I/O, and mesh-based discretizations.

Using libraries for this purpose not only simplifies construction of an integrated data analysis capability but also

makes the postprocessing operations similar (both mathematically and algorithmically) to the operations in the

original simulation. Our early results comparing performance with that of a well-established visualization and

analysis package are encouraging. ParGAL provides high-level functions that hide the details of the distributed-

memory parallelism from the end user, potentially allowing the familiar script-based analysis approach to scale

in parallel. NCL has over 300 built-in functions, and our plan is to implement data-parallel versions of the most

widely used ones in ParNCL. We will also add the ability to work with additional file formats and grid types. We

believe ParGAL/ParNCL and its core set of functions will significantly improve the ability of Earth scientists to

gain knowledge from their large datasets.
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