
Available online at www.sciencedirect.com
www.elsevier.com/locate/actamat

ScienceDirect

Acta Materialia 68 (2014) 42–51
Influence of Fe-rich intermetallics on solidification defects in
Al–Si–Cu alloys

C. Puncreobutr a,b, P.D. Lee b,⇑, K.M. Kareh a, T. Connolley c, J.L. Fife d, A.B. Phillion e

a Department of Materials, Imperial College London, Prince Consort Road, London, UK
b School of Materials, The University of Manchester, Oxford Road, Manchester, UK

c Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, UK
d Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

e School of Engineering, The University of British Columbia, Kelowna, Canada

Received 27 October 2013; received in revised form 9 December 2013; accepted 3 January 2014
Available online 12 February 2014
Abstract

To better understand the influence of Fe-rich intermetallics on solidification defect formation, fast in situ synchrotron X-ray tomo-
graphic microscopy experiments were performed on a commercial A319 alloy (Al–7.5Si–3.5Cu, wt.%) with 0.2 and 0.6 wt.% Fe. Real-
time observations during solidification and semi-solid deformation experiments reveal that b-intermetallics contribute via several differ-
ent mechanisms to porosity formation and hot tearing susceptibility. While b-intermetallics were not observed to nucleate porosity
directly, they do block interdendritic channels, thereby reducing the shrinkage feeding, and increasing pore tortuosity. Pores also grow
preferentially along the surface of the b-intermetallics, suggesting that the b-phase has a lower gas–solid interfacial energy than a-Al, thus
assisting in increasing pore volume. During uniaxial tension experiments, the ductile failure of the semi-solid, intermetallic-poor, base
alloy transitions to a brittle-like failure when a large amount of b-intermetallics are present. In all post-failure microstructures, internal
damage was preferentially orientated perpendicular to the loading direction, agreeing with prior experimental and numerical studies.
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1. Introduction

The excellent mechanical properties of Al–Si–Cu casting
alloys have enabled this alloy family to find usage in many
automotive applications, such as engine blocks and cylin-
der heads [1]. However, using recycled-grade Al–Si–Cu
alloys as the base material for structural components
remains a major challenge, especially when fatigue life is
critical [2], because iron is easily picked up during the
recycling process. The increased Fe content can be
sufficient to promote the formation of coarse Fe-rich inter-
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metallic compounds, including plate-like b-Al5FeSi inter-
metallics, which have been shown to act as crack
initiators and are thus detrimental to in-service mechanical
properties [2–6]. In addition to their negative effects on the
mechanical properties of the final product, b-Al5FeSi inter-
metallics are also reported to be deleterious to castability,
increasing the as-cast porosity content [7–10]. Many mech-
anisms by which b-Al5FeSi intermetallics affect pore for-
mation have been suggested, including blocking of
interdendritic flow [10,11], acting as nucleation sites [12]
and aiding pore growth [13]. They may also influence pore
growth indirectly, e.g. inducing larger Al–Si eutectic grains
that reduce feeding and thus increase porosity [14].
However, there has been no consensus on the choice of a
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Fig. 1. Calculated fraction of the b-intermetallics in Al-A319 alloys at two
Fe levels of (I) 0.2 wt.% Fe and (II) 0.6 wt.% Fe, assuming the Scheil
solidification model. (I) and (II) show high-resolution longitudinal
sections of typical as-cast solidified microstructures.
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dominant mechanism due to most studies providing only
post-mortem analyses.

One important Al–Si–Cu casting alloy is A319, which
exhibits a propensity to form plate-like b-Al5FeSi interme-
tallics. In addition to as-cast porosity, A319 alloy castings
are susceptible to hot tearing [15,16], another solidification
defect that limits production yield during the casting of
recycled aluminium. The formation of hot tears is a com-
plex phenomenon caused by insufficient liquid feeding
compensating for solidification shrinkage in the presence
of thermal stresses and strains [17]. While an extensive
number of experimental and numerical investigations have
been conducted on binary alloys to relate various alloying
and processing parameters to hot-tearing susceptibility
[17–20], little is known about hot tearing in commercial
Al–Si–Cu casting alloys, and even less about the influence
of b-intermetallics. At the scale of the process, it has been
shown that the addition of Sr and/or TiB2 can have a
beneficial effect in reducing the hot-tearing susceptibility
of A319 alloys [15,16]. In parallel, Sr modifications [9] and
TiB2 grain-refiner additions [21] have been found to greatly
alter microstructure, i.e. the size and morphology of plate-
like b-intermetallics. However, the role of b-intermetallics
on hot-tear formation has not been directly examined, and
the correlation between elements that modify microstruc-
ture and reduction in hot tearing is still unclear.

Direct observation of defect formation during solidifica-
tion has recently been made possible both in two dimen-
sions, via X-ray radiography, and in three dimensions,
via X-ray tomographic microscopy, yielding better insights
into real-time pore formation [22–25] and hot-tearing
processes [26–30] in binary Al–Cu alloys. Over the past
two decades real-time observation has also enabled quanti-
tative studies of microstructure evolution and secondary
phase formation during solidification [31–33] and coarsen-
ing [34,35], as reviewed by Maire and Withers [36]. In the
present study, fast in situ synchrotron X-ray tomographic
microscopy experiments were performed on commercial
A319 alloys (Al–7.5Si–3.5Cu, wt.%) with differing Fe-levels
(0.2–0.6 wt.% Fe). Real-time 3-D observations of porosity
and hot-tear formation were made during both in situ
solidification and semi-solid uniaxial tension experiments
to provide a greater understanding of the influence of
b-intermetallics on defect formation in the semi-solid state.

2. Experimental methodology

2.1. Materials

To perform the solidification and semi-solid deforma-
tion experiments, A319 alloys (Al–7.5Si–3.5Cu, wt.%) with
two different levels of Fe (0.2–0.6Fe, wt.%) were prepared
from a commercial A319 ingot (as-received from Ford
Motor Company) and a commercially pure Al–10Fe
(wt.%) master alloy. These metals were melted using an
electric-resistance furnace in a clay-bonded graphite cruci-
ble at 730 �C and were then cast into a pre-heated well-fed
permanent mould [37] to form a wedge-shaped specimen.
The resulting microstructure was equiaxed with an as-cast
secondary dendrite arm spacing of �30 lm. The chemical
compositions obtained using X-ray fluorescence were
found to be Al–7.49Si–3.4Cu–0.15Fe (wt.%) and Al–
7.52Si–3.53Cu–0.59Fe (wt.%) for alloys with 0.2 wt.% Fe
and 0.6 wt.% Fe, respectively.

The fraction of intermetallics, fI, for these two alloy
compositions is plotted in Fig. 1 using a Scheil approxima-
tion within the Thermo-Calc software (Thermo-Calc, Swe-
den) and the database from Ref. [38]. The thermodynamic
calculation predicts a 3-fold increase in b-intermetallic
phase fraction, from �0.65% to nearly 2.1% as the Fe
content is increased from 0.2 to 0.6 wt.%. Longitudinal sec-
tions of the as-cast microstructure from the high-resolution
tomography images (0.9 lm), described in Section 2.3, for
both wedge castings are also shown in Fig. 1. Fig. 1 shows
that the plate-like b-intermetallics can only be resolved in
the specimen with 0.6 wt.% Fe. The b-intermetallic phase
cannot be resolved with the given spatial resolution in
the specimen with 0.2 wt.% Fe and cooled at the rates
given by the wedge casting setup. Thus, the 0.2 wt.% Fe
alloy corresponds to a primary-grade material while the
0.6 wt.% Fe alloy corresponds to a recycled-grade product.

Subsequent to the wedge-casting, a tensile specimen
was extracted from the 0.2 wt.% Fe wedge for the in situ



Fig. 2. (a and b) Schematics of experimental setups for solidification and semi-solid uniaxial tension studies, respectively. (c) Photograph of the
thermomechanical testing rig with the furnace in place.
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semi-solid deformation experiment, and both a cylindrical
specimen and a tensile specimen were machined from the
0.6 wt.% Fe wedge for the in situ solidification and
semi-solid deformation experiments. The dimensions of
the tensile specimens were 3 mm in diameter and 60 mm
in length, both with a small central gauge notched section
of 2.5 mm in diameter and 5.5 mm in length. The cylindri-
cal specimen was 2.5 mm in diameter and 4 mm in length.

2.2. Solidification experiment

To investigate the interaction between b-intermetallics
and porosity formation, one in situ solidification experi-
ment was performed at the TOMCAT beamline of the
Swiss Light Source (SLS, Paul Scherrer Institut, Switzer-
land) using a bespoke resistance furnace (shown in
Fig. 2a). A further description of the setup on the TOM-
CAT beamline can be found in Refs. [39–41] and of the
bespoke furnace in Ref. [42]. In this test, the 0.6 wt.% Fe
specimen was heated to 650 �C (as measured by a K-type
thermocouple located underneath the specimen holder)
and held for 5 min to ensure it was completely molten.
The specimen was then cooled at a rate of 0.05 �C s�1 until
completely solid. During solidification, the specimen was
continuously rotated and polychromatic X-rays1 were used
to acquire a series of 2-D radiographic projections at differ-
ent angles. The projections were then processed to recon-
struct 3-D tomographic volumes with a pixel size of
2.75 lm. Each complete 3-D volume consisted of 1001 pro-
jections captured in a total time of 2 s, minimizing the
dynamic change in the solidifying microstructure during
each scan. There was a delay of 70 s to download the
images from the camera memory, resulting in a total scan
time of 72 s between consecutive 3-D volumes.
1 Polychromatic X-rays filtered to 5% power (an average energy of
�30 keV) were used in this work to achieve the high flux needed to acquire
a complete 3-D volume in 2 s.
2.3. Semi-solid deformation experiment

To study the behaviour of semi-solid A319 alloys during
tensile deformation, the resistance furnace used for the
solidification experiment was integrated with a bespoke
mechanical tester rig, called the P2R, shown in Fig. 2b
and c. Full details about this apparatus can be found in
Ref. [27]. The two in situ tensile deformation experiments
were then performed on the 0.2 and 0.6 wt.% Fe specimens
at the I12 beamline of the Diamond Light Source (Harwell
Science and Innovation Campus, UK). In these tests, each
specimen was heated to 515 �C and held for 5 min to
achieve thermal equilibrium. This temperature is just above
the eutectic temperature (510 �C [31]) and corresponds to a
solid fraction (fs) of > 0.9 in the notched region. Then, each
specimen was deformed until failure under uniaxial tension
at a constant crosshead displacement rate of 10 lm s�1,
corresponding to an average axial strain rate of
�5 � 10�3 s�1. During deformation, the specimen was con-
tinuously rotated and a monochromatic X-ray energy of
53 keV was used to acquire a series of 2-D radiographic
projections at different angles. The projections were then
processed to reconstruct a series of 3-D tomographic vol-
umes with a pixel size of 12.22 lm. Each 3-D volume was
captured using 720 projections in a total time of 4 s. 24 vol-
umes were acquired for each deformation test specimen
from the undeformed to the final failure stages with a 4 s
downtime between consecutive 3-D volumes. After final
failure, a high-resolution synchrotron X-ray tomographic
microscopy scan with a pixel size of 0.9 lm was performed
on the upper half of each failed specimen (which was
clamped in the moving jaw (Fig. 2b)) to further investigate
the fracture surface in three dimensions.

2.4. Quantitative characterization

A fast reconstruction algorithm based on the Fourier
transform method (gridrec) [43,44] was used to obtain the
3-D solidification datasets, while an algorithm based on



Fig. 3. (a) 3-D evolution of a pore during solidification (I–V represent
temperatures of 565, 561, 550, 540 and 502 �C, respectively). (b)
Quantified volume (black dots) and sphericity (red circles) of the pore
shown in (a). The quantified fraction of intermetallics is also illustrated in
blue. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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the filtered back projection (FBP) method [45–47] was used
to obtain the 3-D semi-solid deformation datasets. Differ-
ent algorithms were used as each beamline has its own pro-
cess for reconstructing the tomographic images. Although
significant differences in computational performance can
be found, the reconstructed 3-D results obtained from grid-
rec and FBP are almost equivalent [43]. In both cases, a
flat-field correction, a dark-field correction and ring-arte-
fact removal algorithm [45,48] were performed prior to
reconstruction. For each experiment, the series of 3-D
volumes was then spatially aligned using a 3-D affine regis-
tration method [49], and then a 3-D non-linear diffusion
filter [50] was applied to reduce noise. Finally, region
growing segmentation [51] was used to obtain pores and
hot tears whereas manual segmentation was performed to
obtain the b-intermetallic phase.

For the solidification experiment, the quantification of
pore and intermetallic phases was made in a sub-volume
of 400 � 400 � 400 voxels3 (equivalent to �1 mm3)
extracted from a region near the specimen surface to focus
on the evolution of a single pore and its interaction with
the surrounding b-intermetallics. For the semi-solid defor-
mation experiments, the quantification was made in the
gauge region of the specimens. The volume analyzed in
the gauge was kept constant and hence was elongated pro-
portional to the strain undertaken by the specimen from
the undeformed state to failure. Note that in this paper
the term “pores” is used when the region is formed due
to solidification shrinkage/feeding, the term “voids” is used
when the region is formed during straining, and “damage”
is used for the combination of the two regions. Two types
of pores/voids were defined in the gauge: internal (if the
pore/void had no connectivity to the specimen surface)
and surface-connected (if the pore connected to the sur-
face). The volume and orientation of each pore/void and
each intermetallic was calculated using a marching-cube
triangulation method and principle component analysis
(PCA), respectively [52,53]. These calculations were
performed using MATLAB (MathWorks, MA). An
advanced rendering package (Avizo, VSG, France) was
used to produce the visualizations of all 3-D structures.

3. Results and discussion

3.1. Effect of intermetallics on porosity formation during

solidification

The evolution of a selected (typical) pore in the Al–
Si–Cu alloy with 0.6 wt.% Fe during the solidification
experiment is examined in Fig. 3. The 3-D rendering of
the pore with decreasing temperature is shown in Fig. 3a,
and the corresponding evolution in pore volume and
sphericity is quantified in Fig. 3b. The pore first appears
at 565 ± 1 �C, and is small and round (Fig. 3a-I). As the
temperature decreases to 561 ± 1 �C (Fig. 3a-II), the
pore grows very rapidly, tripling its initial volume of
5 � 103 mm3 (black dots in Fig. 3b). This trend continues
with subsequent solidification (Fig. 3a-III, IV), where both
pore size and tortuosity increase. Pore formation is almost
complete at 540 ± 1 �C when the pore reaches a volume of
�26 � 103 mm3 (Fig. 3a-V). At lower temperatures, the
pore volume remains constant, as shown by the plateau
of black dots in Fig. 3b. The quantified sphericity of the
pore, which is a measure of its roundness (where the sphe-
ricity of a sphere equals 1), decreases dramatically from
�0.7 when it first forms to <0.2 after 540 ± 1 �C, and
remains unchanged thereafter (red circles in Fig. 3b).

The observed evolution in b-intermetallics is also plotted
in Fig. 3b (blue curve) for comparison purposes. b-interme-
tallics are observed to form between 578 ± 1 and
565 ± 1 �C, i.e. their formation is mostly complete when
the observed pore nucleates at 565 ± 1 �C. Plate-like
b-intermetallics are thus already present at the moment
of pore nucleation. Note that the observed nucleation tem-
perature of b-intermetallics is in good agreement with prior
in situ solidification studies [31,54].

To clarify the role of b-intermetallics on pore nucleation
and growth, the interaction between the selected pore and
its surrounding intermetallics during solidification is
rendered in three dimensions in Fig. 4. The pore (blue) first
forms inside a liquid channel that is surrounded by
b-intermetallics (red). These intermetallics have been
reported to block interdendritic flow, reducing permeabil-
ity [55]. It has also been hypothesized that they block



Fig. 4. 3-D rendering of pore evolution (blue) in the presence of
intermetallics (red) at: (a) 565 �C, (b) 561 �C, (c) 555 �C and (d) 550 �C.
Examples of pore growth along the solid surface of intermetallics are
shown in dashed black and white circles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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hydrogen diffusion paths in the interdendritic liquid by act-
ing as diffusion barriers, which imposes hydrogen supersat-
uration in local, subdivided domains and induces pore
nucleation [13]. These hypotheses agree well with Fig. 4,
where the liquid channel will be supersaturated with hydro-
gen and will exhibit a lower permeability due to the number
of b-intermetallics surrounding it. After nucleation, the
pore grows very rapidly into the interdendritic regions with
an increasing tortuosity as shown in Fig. 4b and d. The
growth of the pore is physically constrained by both b-
intermetallics and other solid phases, i.e. the primary den-
drites and the Al–Si eutectic (which starts nucleating at
561 ± 1 �C). Similar behaviour of pore growth constrained
by the solid phases was previously observed radiographi-
cally [22] and tomographically [56]. The pore also appears
to grow preferentially along the solid surfaces of the
b-intermetallic plates, wicking along the intermetallic in
preference to either growing into the interdendritic liquid
or along the a-Al dendrites (shown in the dashed black
and white circles in Fig. 4b and c). One hypothesis to
explain the accelerated pore growth along the surface of
the intermetallics is that the Fe-rich intermetallic–gas inter-
facial energy could be less than those of the gas–liquid or
gas–a-Al interfaces [13]. Although not shown here, similar
behaviour was also observed in other pores presented in the
specimen, but a statistical analysis was not possible due to
the limited number of pores present in the analyzed
volume.

Unlike prior work involving quenched microstructure
observations (e.g. [12]), there was no evidence of pore
nucleation on b-intermetallics in the tomographic images
shown in Fig. 4. The results of this in situ solidification
experiment instead suggest that b-intermetallics induce
pore nucleation by blocking the feeding of liquid, thus
reducing permeability and accelerating pore growth along
the surfaces of intermetallics. The quantitative character-
ization is, however, limited to one example under specific
cooling conditions, and further investigations are needed
to confirm the predominance of this mechanism. The
in situ observation of preferential pore growth along the
planar surfaces of b-intermetallics shown in Fig. 4d may
also explain why other authors have frequently found pores
in contact with b-intermetallics in classical quenched
microstructures (e.g. [9,12,57]); pores appear to nucleate
in the interdendritic liquid and/or off the aluminium
dendrites and then later grow towards and make contact
with surrounding intermetallics.

3.2. Effect of intermetallics on hot-tear formation

3.2.1. In situ observation

The longitudinal sections in Fig. 5 show the evolution of
damage with increasing strain for both 0.2 and 0.6 wt.% Fe
Al–Si–Cu specimens in semi-solid uniaxial tension. Fig 5a–
d (e–h) shows the evolving structure of the 0.2 wt.% Fe
(0.6 wt.% Fe) specimen undergoing 0–19% (0–7%) strain.
The images show that the attenuation contrast is sufficient
for the quantification of damage formation in the complex
dendritic microstructure—where the damage appears as
dark regions, equiaxed aluminium grains appear as grey
regions, and the liquid and intermetallic phases (including
b-Al5FeSi and Al2Cu) appear as white regions. Although
the pixel size of 12.22 lm used in this in situ study is suffi-
cient to quantify damage formation over the entire speci-
men gauge length, the b-intermetallics are too fine for
quantitative analysis. By segmenting the pores, voids and
developing damage, the in situ damage evolution during
hot tearing can be rendered as shown in Fig. 6a and b.
The true strains in all 3-D renderings are identical to those
shown in the longitudinal sections of Fig. 5, and the inter-
nal and surface-connected damage are shown in blue and
red, respectively. The corresponding development of the
volume of total damage is quantified and plotted in Fig. 6c.

Before deformation is applied, it is observed that only
small as-cast pores are present in the semi-solid microstruc-
ture of both specimens (Fig. 6a-I and b-I). Also, as shown
in the high-resolution scans of Fig. 1, the specimen at
0.2 wt.% Fe does not appear to contain b-intermetallics,
while the specimen at 0.6 wt.% Fe exhibits large plate-like
structures. Beginning with the specimen at 0.2 wt.% Fe
(Fig. 6a), it can be seen that new voids nucleate in the
middle of the specimen gauge only after a large amount
of true strain (�14%) has been applied (Fig. 6a-II), and



Fig. 5. Typical evolution of damage during simulated hot tearing in Al–7.5Si–3.5Cu with (a–d) 0.2 wt.% Fe and (e–h) 0.6 wt.% Fe. Note that (a–d)
represent true strains (%) of 0, 14, 17, 19, respectively, and (e–h) represent true strains (%) of 0, 4, 5, 7, respectively. Dashed yellow circles indicate locations
where critical damage initiated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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there is a steady increase in the internal damage (Fig. 6c).
There is also considerable deformation and necking in
the gauge region. Note that the true strain was measured
by the equation e = ln(L/L0), where L0 is the initial length
of the analyzed central gauge region (4 mm). A further
increase in strain, to a true strain of 17%, leads to addi-
tional void nucleation, existing damage growth and the
commencement of damage coalescence (Fig. 6a-III). This
is characterized by a sharp increase in the internal damage
of the specimen (Fig. 6c). Final failure occurs when the
majority of internal damage joins and then connects to
the specimen surface (Fig. 6a-IV) at a true strain of 19%.
This is characterized by a sharp drop in the internal dam-
age volume mirrored by an increase in the total volume
of surface-connected damage, both shown in Fig. 6c, and
this corresponds to the moment when the interconnected
network of internal damage reaches the specimen surface.

In comparison, the 0.6 wt.% Fe specimen displays a
much more brittle-like failure mechanism (Fig. 6). Voids
form initially near the middle of specimen gauge (Fig. 6b-
II) where triaxiality is the greatest [59] (see Supplementary
Fig. F1 for triaxiality evolution calculated via a method
given in Ref. [58]), but this occurs at a much lower true
strain of �4%, when compared to the 0.2 wt.% Fe specimen
(Fig. 6a-II) (e � 14%). Rapid void growth and coalescence
are then observed between true strains of 4% and 5%
(qualitatively observed in Fig. 6b-III and quantitatively
shown in Fig. 6c), but there is only a limited amount of
necking in the gauge region. Final failure occurs at a true
strain of �7% when most of the damage coalesces across
the gauge and reaches the specimen surface (Fig. 6b-IV).
This moment is quantified in Fig. 6c, where a sharp
increase in the total volume of surface-connected damage
is observed.
It is known from prior in situ studies with finer resolu-
tion but smaller volumes [26,28,29] that semi-solid tensile
deformation promotes the flow of liquid metal to strain-
localized regions, leading to regional liquid accumulation
that can accommodate the applied strains. If liquid feeding
is insufficient, strain cannot be accommodated and hot
tears may form. In the specimen with 0.2 wt.% Fe, there
are small, unresolved intermetallics, and liquid flow occurs
with ease and can thus accommodate a large amount of
strain (e � 14%). With increasing strain, the liquid supply
becomes insufficient and voids first form internally over a
large portion of the core where strain and triaxiality are
the greatest [27,59,60]. They then grow outwards toward
the surface (Fig. 6a), which occurs through a combination
of void nucleation, growth and coalescence. Similar phe-
nomena were previously observed in binary Al–Cu [26,27]
and other commercial alloys [61]. Terzi et al. [28], in con-
trast, qualitatively observed that the damage appears to
grow in from the surface of the specimen starting from
existing pores located near the specimen surface. This
difference has previously been discussed elsewhere [27]. In
contrast, the 0.6 wt.% Fe specimen has large b-intermetallic
particles that can severely reduce the permeability of the
mush by blocking the interdendritic flow paths [10,11,55],
and thus, liquid feeding of the strained regions is much
more difficult. Since b-intermetallics also act as stress con-
centrators, larger intermetallics weaken the mush [62] and
therefore largely contribute to hot-tearing failure at very
low true strains (Fig. 6b).

3.2.2. Post-failure observation

Longitudinal sections of the post-failure high-resolution
(0.9 lm) tomographic images showing the fracture surfaces
for both the 0.2 and the 0.6 wt.% Fe tensile specimens are



Fig. 6. 3-D rendering of hot tearing in Al–7.5Si–3.5Cu with (a) 0.2 wt.%
Fe and (b) 0.6 wt.% Fe as well as the quantified evolution of: (c) the
internal damage volume (int) and surface-connected damage volume
(surf). I–IV represent true strains (%) of 0, 14, 17, 19 and 0, 4, 5, 7 for
specimens with 0.2 and 0.6 wt.% Fe, respectively. Note that internal
damage is coloured in blue and surface-connected damage coloured in red
in (a) and (b). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. (a and b) Longitudinal sections of post-failure microstructures in
Al–7.5Si–3.5Cu with 0.2 and 0.6 wt.% Fe, respectively. (c) Quantified
number density and volume of internal voids in both post-failure
microstructures.
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displayed in Fig. 7a and b, respectively. The damage voids
appear dark, the aluminium grains appear grey and the
b-intermetallics appear white. The magnified microstruc-
ture in Fig. 7a reveals a large number of internal voids near
the fracture surface of the specimen with 0.2 wt.% Fe. Most
of these internal voids appear round or elongated perpen-
dicular to the loading direction. In contrast, the post-
failure microstructure of the 0.6 wt.% Fe specimen in
Fig. 7b exhibits significantly fewer internal voids near the
fracture surface. There are a few voids that appear almost
planar, and many of them are in contact with b-intermetal-
lics. The number density distributions of post-failure inter-
nal voids for both specimens are given in Fig. 7c. Although
the shape of the curves is similar, there is 5-fold increase in
mode for the 0.2 wt.% Fe specimen. This clearly indicates
that a different failure mechanism is operative.

By using two pores chosen at random near the fracture
surfaces, the difference in internal void morphology in the
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two specimens after hot-tearing failure is illustrated in
Fig. 8. In the 0.2 wt.% Fe specimen, the void is clearly tor-
tuous, branching and twisting along the complex interden-
dritic spaces (Fig. 8a). The void is coloured by local mean
curvature to aid in visualizing its convexity and concavity.
In contrast, the presence of large b-intermetallics, rendered
in grey in the 0.6 wt.% Fe specimen (Fig. 8b), introduces an
additional physical constraint and alters void morphology,
creating a flatter and less branched void that is preferen-
tially aligned along the planar surface of the b-intermetallic.

3.3. Discussion

The in situ observations of solidification and semi-solid
deformation provide new insights into the role that b-inter-
metallics play in assisting the formation of casting defects.
By comparing Figs. 8b with 4, it can be seen that the flat
void morphology along the surface of b-intermetallics
resulting from hot tearing is similar to the in situ observa-
tion of pore growth during solidification, where pores were
seen to grow preferentially along b-intermetallics. Roy
et al. [12] previously found that pores were always in con-
tact with b-intermetallics in 2-D quenched Al–Si–Cu
microstructures and implied that b-intermetallics are active
nucleation sites for pores. These observations are not sup-
ported by the current work. First, there is no evidence of
pore nucleation on b-intermetallics (as reported in prior
quenched solidification [12]) in the tomographic images
of in situ solidification. Second, if b-intermetallics were a
potent pore nucleation site, there would have been a nota-
ble increase in pore density in the 0.6 wt.% Fe specimens
when compared to the 0.2 wt.% Fe specimen, which was
not observed. During isothermal semi-solid deformation,
b-intermetallics do not appear as sites for void nucleation;
instead, they enhance growth, potentially due to lower
gas–intermetallic interfacial energy [13] or strain localiza-
tion [63]. It is worth noting that the lower permeability
caused by the presence of the large intermetallics also plays
a significant role in the increase in damage at equivalent
Fig. 8. (a and b) 3-D rendering of internal voids (coloured by local mean
curvature) near the fracture surface of Al–7.5Si–3.5Cu with 0.2 and
0.6 wt.% Fe, respectively. Intermetallics in (b) are shown in grey. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
strain. This is shown in Fig. 6c where the 0.6 wt.% Fe spec-
imen exhibits much more damage as compared to the
0.2 wt.% Fe specimen at the same amount of deformation.
The resulting quasi-planar pore morphology may addition-
ally impose strain localization at the tip of the pores com-
bined with the stress concentration promoted by the b-
intermetallics themselves. Phillion et al. [61] previously
found that as-cast pores and newly formed voids acted as
precursors to hot tearing. The influence of b-intermetallics
on facilitating pore/void growth as well as altering pore/
void morphology may also promote the initiation of hot
tears.

Correlating the orientation of internal voids to loading
direction is also of great interest. The orientation of each
internal void in the post-failure microstructures was deter-
mined using PCA and compared to the tensile direction in
order to quantify final void direction under uniaxial ten-
sion. A pole figure was obtained for each void, and sche-
matics I–IV at the top of Fig. 9 illustrate the orientations
of the voids. For example, a pole at the center of the plot
corresponds to a void having a major axis (orientation)
parallel to the tensile direction (Fig. 9-I), whereas a pole
on the circumference of the plot corresponds to a void with
a major axis perpendicular to the tensile direction (Fig. 9-
IV). By integrating all pole figures, an orientation contour
plot is obtained (Fig. 9a and b), where higher concentra-
tions of orientations are shown in red and each calculated
pole figure is shown as a white dot. In both specimens, the
highest concentrations are found lying near the circumfer-
ence of the image, indicating that internal voids in both
specimens are preferentially oriented perpendicular to the
loading direction. This is consistent with both Phillion
et al. [61], who has shown through post-mortem tomo-
graphic imaging that crack propagation in semi-solids
occurs in the direction perpendicular to loading to utilize
the maximum strain energy for new crack surface creation,
and also Sistaninia et al. [64–66], who performed combined
Fig. 9. Orientation contour plot of all internal voids in post-failure
microstructures of Al–7.5Si–3.5Cu with (a) 0.2 wt.% Fe and (b) 0.6 wt.%
Fe. Insets I–IV show a schematic orientation plot (each dot in circle) of an
object with four different orientations.
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discrete/finite-element simulations to demonstrate that
strain development in high-fraction solid is concentrated
only along a few preferential liquid paths perpendicular
to the loading direction.

Finally, these in situ observations may help explain the
industrially observed reduction in hot tearing that occurs
through TiB2 grain refinement and Sr modifications in
Al–Si–Cu alloys [15,16]. These additions result in finer
and shorter b-intermetallics [9,21], and in conjunction with
the results presented here, it can be hypothesized that such
changes in intermetallic size and shape would greatly
reduce the impact of b-intermetallics on flow blockage
and stress concentration, which in turn leads to a reduction
in hot-tearing tendency. It is worth noting that the smaller
grain size resulting from the addition of TiB2 also contrib-
utes to reducing hot tearing by postponing the coherency
solid fraction [67] and shrinking porosity albeit with a
higher number density [22].

4. Conclusions

The influence of Fe-rich b-intermetallics on solidifica-
tion defect formation has been quantitatively investigated
using 4-D (three spatial dimensions evolving with time)
synchrotron X-ray tomographic microscopy. Two experi-
ments were conducted in this work: an in situ solidification
study of porosity formation and an in situ isothermal semi-
solid deformation experiment simulating hot tearing. The
experiments were performed on a commercial A319 alloy
(Al–7.5Si–3.5Cu, wt.%) with 0.2 and 0.6 wt.% Fe, provid-
ing complex commercial-like casting microstructures with
b-intermetallic particles equivalent to primary and recycled
aluminium alloy products.

From the in situ solidification experiment, the results
indicate that the presence of a large fraction of b-interme-
tallics strongly blocks the interdendritic channels and
induces porosity formation as a result of permeability
reduction and hydrogen supersaturation in the local subdi-
vided domain. No b-intermetallics are seen directly nucle-
ating a pore during solidification; instead they appear to
physically block and constrain pore growth and contribute
to an increase in pore tortuosity. In addition, b-intermetal-
lics are found to facilitate pore growth, which may be due
to a low interfacial energy between the gas and the interme-
tallic plates.

The in situ semi-solid deformation experiments show
that b-intermetallics increase hot-tearing susceptibility.
The 0.6 wt.% Fe specimen sustained a relatively small
amount of strain (e � 7%) prior to failure, and the failure
event was brittle-like. In comparison, the 0.2 wt.% Fe
specimen sustained triple the true strain upon failure, and
the failure event was more ductile. High-resolution images
of the b-intermetallic-rich post-failure microstructures also
show that the internal pores near the fracture surface of the
0.6 wt.% Fe specimen were flatter, less branched and pref-
erentially aligned to existing b-intermetallics in comparison
to the 0.2 wt.% Fe sample, which exhibited highly tortuous
and branched pores. Such a change in the pore shape could
concentrate strain and weaken the mush. These advance-
ments in observing and quantifying intermetallics and
defect formation highlight the very complex effect of sec-
ondary phase formation on the rheology and mechanical
behaviour of semi-solid microstructures.
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