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The set sysiems determined by intersections are studied and a sufficient cond:tion for this
property is given. For case of graphs a necessary and sufficient condition is estab:ished. Some
connections to other results are discussed.

In this paper we study the quesnon when a given set system is determned by its
intersection graph. We say that a system Al, A,,..., A, of subsets of & gmven set
X is determined by intersections if for every other system A, A}, .. A’ of
subsets of X such that

ANA#Qiff AANA/#0 foreveryi and j
there exists a permutation 7 of elements of X such that
w[A;]]=A! foralli=1,2,...,n

A set system ¥=(X: A, A,,...,A,) is determined by intersections if and
only if V ,

(a) & is the caly minimal set representation of the intersection graph (%),
and

(b) every. automorphlsm of the glraph Q(.SP) is mduced by an automorp.usm of
the set system &.

These two properties has becn studled separately In [1] the uniquely intersect-
able graphs were introduced as those which have (up to isomorphism) the unique
minimal set representation. Thus, a set svstem & has ‘the property (a) iff (%) is
uniquely intersectable. An example of property (b) is given by the Theorem of
Whitney [10] which states that for arbitrary graph G with more than 5 vertices
every automorphism of the line graph L((G) is induced by an automorphism cof the
graph G.

Our paper is divided into three sections. In Section 1, which has an introductory
character, some propositions com,emmg the set systems determined by intersec-
tions are established. In Section 2 we give a sufficient condition for a set system tc
be determmed by intersections. This strengthens a result of Wang [9] who proved
that the mtersectxon graph of a set system formed by all k-siubsets of a given
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n-set (k=<1n) is uniquely intersectable. From our result follows e.g. that almost
all systems of k-subsets of #-set are determined by intersections. In [5] and [2]
those set systems & =(X; A,, A,,...,A,) are investigated that every mapping
¢:{A;; 1<isn}—{A;; 1is<n} preserving cardinality of intersections is in-
duced by an automorphism of &. in 2.5 we mention some connections to our
results. In Section 3 a characterization of graphs determined by intersections is
given. This extends the result of Alter and Wang [1] who proved that line graphs
of complete zraphs are uniquely intersectable.

1. Preliminsries

1.1. Let X be a finite set and let a =(A,, i € I) be a family of subsets of X. By a
set system we understand a couple (X, a). A set system is called simple if a is a
family of distinct sets. (We wili use the notation A € a also in the case that a is
not simple.)

1.2. Let (X, @) be a set system, a =(A,, i € I). We define the graph G = 2(X, a)
as follows: V(G)=1I and for i#j (i,j)e E(G) iff A,NA;#¢. The graph G ==
(X, a) is called the intersection graph of (X, &) and, conversely, (X, a) is called a
set representation of G. It is well known that every zraph has a set representation
[6].

If (X, «) is a simple set system then we identify the vertices of (2(X, a) with
subsets of X. For an arbitrary family a of subsets of X denote by ag the simple
family which consists of all sets appearing in a.

1.3. A set representation (X, a) of a graph G is called minimal if there is no
representation (X', a') of G with |X'|<|X]. The cardinality of a minimal set
representation of G is usually denoted by w(G).

1.4. A set system H = (X, a) is a graph if it is simple and « =(A,, i € I) is a family
of pairs. In this case £2(H) is called the line graph of H and usually is denoted by
L(H).

1.5. To illustrate the definitior. of the set representation consider the followirg
exampl:s. If K, is the complete graph with n vertices then the minimal set
representation (X, ) is a couple where | X|=1 and « is a family of n one-poiats
sets. Notice also that isolated vertices may be always represented by empty
subsets.

1.6. We say that two vertices x,y of a graph G are equivalent (x~y) if
(x, y)e E(G) and (u, x)e E(G) iff (u, y)e E(G) for every vertex u# x, y. Obvi-
ously, the relation ~ is an equivalence on the set V(G). If we identify all
equivalent vertices of G we obtain a2 graph which will be denoted by G/~.
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Clearly G/~ is an induced subgraph of G. Let (X, «a) be a set system. I
A, A ., «#]j and A; = A, then i ~j in the intersection graph .Q(X a) Thus if
G = (' ~, then every set repres«entatlon of G 1s sxmple :

1.7. Let (X, @) and (Y, B) be two set systems with a =(A,, iel) B= (BpjelJ). A
couple (f, ¢) wiiere f is a bijection between X and Y and ¢ is a bijeétibn'between
I and J is called isomorphism if f{A,]1=B,, for every i€l Clearly if (X, ) is a
simple set system then every set system isomorphic to (X, a) is simple, too. In this
case every isomorphism p = (f, ¢) is uniquely determined by the vertex mapping f
and thercfore we may identify p with £,

If p=(f,9) is an isomorphism be:ween (X, «) and (Y, B), then ¢ is an
isomorphism between corresponcing intersection graphs 2(X, a) and (Y, 8). In
this case we say that ¢ is induced by p and we put ¢ ={)(p). An isomorphism
(X, a) = (X, a) is called automorphism. The group of automorphisms of (X, a) is
denoted by Aut(X, a).

1.8. Definition. We say that a set system (X, a) is determined by intersections if
every isomorphism ¢ t >tween 2(X, a) and 2(X, B) is induced by an isomorphism
p between (X, @) and (X, 8) for an arbitrary set system (X, B).

1.9. In [1] the uniquely intersectable graphs were introduced as those which have
(up to isomorphism) only one minimal representation where the minimum is
taken over all simple representations. For example, the complete graphs are not
uniquely intersectable in this sense (see [1, Theorem 2.1]). It will be convenient
for our purpose to change slightly this definition.

1.10. Definition. We say that a graph G is uniquely intersectable (u.i. graph) if G
has (up to isomorphism) only one minimal representation where the minimum i3
taken over all set representations of G.

1.11. The both above definitions clearly coincide in case of graphs without
equivalent vertices (cf. 1.6). They differ e.g. for the complete graphs as those are
in our sense uniquely intersectable (cf. 1.5). In the following the uniguely
intersectable graphs are considered only in our sence of Definition 1.10.

1.12. Clearly if (X, @) is a set system determined by intersections then (X, a) is
uniquely intersectable.

1.13. Proposition. Let G be a graph. Then G is w.i. iff G/~ is u.i.
Proof. Let G/~ be not u.i. Let (X ag) and (X, Bs) be two nonisomciphic

minimal representation of G/~. Then (X, a), (X, B) where families a rasp. 8 are
constructed by adding multiple sets are not isomorphic. Thus G is not wi.
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Suppose that G is not u.i. Let (X, @), (X, B) “e two nonisomorphic minimal
rep-esentatins of G. Consider two cases:

(¥ Equivalent vertices are represented by the same sets in both (X, &) and
(X, B). Then the simple set system (X, ag) and (X, Bs) are not isomorphic.

(b) There exists a pair x, y of equivalent vertices of G such that x and y are
represented by distinct subsets of a ie. A,#A,. Suppose that |A.|<|A,|
Consider two graphs G, = G, = G/~ such that G, and G, are induced subgraphs
of G,xe V(G,), ye V(G,) and V(G,)—{x}= V(G,)—{y}. Put

a,={A,€a; ue V(Gy},
a,={A, ea: ue V(G,)—-{y}UiAl}, where A{=A, UA,.
Clearly (X, a;). re,.. (X, a,) are representations of G,, resp. G, coincident in all

vertices with ex.ption of tx and y. As |A,|<|A!| the set systems (X, ,) and
(X, a,) are not iscmorphic. Thus G/~ is not u.i.

1.14. Proposition. A set system (X, a) is determinzd by intersections iff Q(X, o) is
u.i. and Aut(X, a)= Aut 2(X, a).

For the proof it is sufficient to realize that if (X, &) is a minimal set representa-
tion of G, then £2: Aut{X, @) — Aut G is an injective mapping (cf. 1.7).

- 15. Combining 1.13 and 1.14 we get the following

¥roposition. For an arbitrary set systen (X, a) holds: (X, a) is determined by
intersections iff (X, ag) is determined by intersections.

1.16. If convenient we shall denote by 1 the set {1,2,..., n}. Denote by exp, n

{resp. exp<, n) the set system formed by all k-element resp. <k element subsets
of n.

Proposition. The only minimal represeniation of the graph G = Q(n, expp, .y n) is
the set system (N, €XPp,z n)-

Proof. Let (X, «) be a minimal representation of G. The system a must form an
antichain (i.e. a does not contain two sets A, B with A <B). By Sperner
Theucem [8] it fcllows that | X|=n, and the only antichains on n with cardinality
IV(G)| are expp,.qn and exp (.1y2) 1 If n is even then [n/2]=[(n+1)/2]}, if n is
odd then £2(n, exp, .12 n) is complete. Thus

(X, a) = (n, exppn2) n).

1.17. Notice that the statement converse to 1.12 does not held. An example is
given by set system (2m,exp, 2n). By 1.16 G=0Q(2n,exp. 2n) is u.i. but
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(2n, exp,, 2n) is not determined by intersections as

|Aut(2n, exp, 2n)|=(2n)!,
] = l}. (2"))’ 16 ‘
|Aut G| (2 " 12:03,

1.18. Another example of a set system which is not determined by intersections
but the intersection graph of which is u.i. was suggested by Dr. Jarik Nesetfil.

Let 4=(P, ¥) where @ is the set of points and £ < exp P is the system of lines
be projective plane. Denote by 4+ x a set system (X, a) defined by X =P U{x},
a=2U{{x,p}; peP}. Clearly the graph Q(X, a) is isomorphic to the graph
G=(P U, E) where

(p.p"eE forallp,p'e?® p#p’;
(L1eE forall [l'eZ I+,
(p,heE iffpel for pe?P lecs

The following sets of vertices are obviously all cliques of the graph G:

?, £ {Kpp);pe?), {K1);leZ}
where
K(p)={p}U{leZ; pel} forpe?,

K(Oh={}u{peP; pel} forleX.

Both {2} U{K(p); pe P} and {L}U{K(]); e £} are systems of cliques covering
all edges of the graph G and there is no other such a system with cardinality
<|%|+ 1. As the ninimal representations of the graph are in 1-1 correspondence
with minimal systems of cliques covering edges (see 17.4, Proposition 1 in [3]) the
only minimal representation of G are ¥+x and ¥*+x (where ¥* is the
projective plane dual to %).

If §=4* (this holds for Galois planes), then the graph G is uniquely intersect-
able because ¥ +x=%*+x, and ¥+x is not determined by intersections as

Aut G =Z,x Aut(9+x)

(where Z, is the cyclic group of order two).
If 43 %9*, then G is nct u.i. but Aut G = Aut(9+x).

2. Set systems determined by intersections
2.1. Definition. Let (X, :), (X, B) be two set systems. We say that a is a

refinement of B (a<p) if for every BepB and x & B there exists an A € a such
that xe Ac<B.
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2.2. Lemma. Let (X, a), (X, a'), (X,B) be set systems such that Q(X, a)=
(X, a") and a < B. Then for every isomorphism

¢: (X, a)—>iX a')

there exists  set system (X, B) ard isomorphism
¢:2(X,aU3)—> X a'"UB")

such that ¢ | a = ¢.

Froof. Without loss of generality we may suppose that (X, a) and (X, B) are
simple. Let us define the mapping ¢ by

¢(B)=1J{¢(A); Aca, Ac B} for Beg,
¢(A) = ¢(A) for Aca
and put
B'={#(B); E € B}.
It is easy to verify that ¢ has the required properties.

2.3. The following theorem is the main result of [9]. Using Sperner Theorem [8]
we give an easy proof different to that given in [9].

Theorem. The graph ()(n, exp, n) is uniquely intersectable for k <n/2.

Proof. Let (n, ') be a set system such that
0(n_exp, n)==02(n, a')

and let ¢ be an isomc;phism between these graphs. Clearly exp; n <expp,.)n
holds. If we apply Lemma 2.2 to a=exp, n and B =expp,;n We obtain an
isomorphism

(+) ¢ : (2(n, exp, nUexpp, oy n) — 2(n, e’ UB')

which extends ¢ and thus
Q(n, expryz n)=02n, ).

It follows by 1.16 that B'=expy, ;1 and hence we may rew:ite (+) as
@ : £2(n, exp, nUexpp,z n) —> (1, o’ Uexpy,z; ).

Tak= an arbitrary A €exp, n. The number of [n/2]-sets disjoint with A obviously
equals to the numbcr of those disjoint with @(A). Thus |§(A)| =k =|A| and as
the mapping ¢ is 1-1 "ve obtain that (n, exp, n)=(n, a).
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2.4. Theorem 2.3 may be strengthened to the following
Theorem. Let k <n/2 then the set system (n, expk nyis detennmed by intersections.

Proof. Let ¢: (n, exp,‘ n)—»ﬂ(n, a) be an 1somorph1sm By 2 3 (n, a)——
(n, exp, n) and thus ¢ is an automorphism of {2(#, exp, n). Choose an arbitrary
point x € n and consider a family

¥, ={p(A); x€ A eexp, n},

which obviously satisfies:
(i) all elements of &, are k-sets, k <n/2,
(ii) every two elements of &, have a 1onempty intersection,
(iii) &, is an antichain (in respect of <:) with cardinality (3Z}).
From the Erdos-Ko-Rado Theorem [4; it follows that | & |=1. Put f(x)=
N &,. It is not difficult to verify that ¢ is induced by f (i.e. ¢ = 2(f)).

2.5. In [5] the following was proved.

Theorem. Every 1-1 mapping ¢ : exp, n — exp, n such that
(%) lANB|=k-1 > |e(A)Ne(B)|=k-1
is induced by a permutation of n provided 2k # n.

We give a short proof of this Theorem as a consequence of 2.4. We may
suppose that 2k <n as in the opposite case we car consider 2xp,_, n and the
mapping ¢ definec by Y(A)=e@(n—A).

Consider a graph G with vertex set V(G)=exp, i+ and with edyes (A, B) for
|A NB|=k—1. It follows from (*) that ¢ is an autamorphlsm of G and thus ¢
preserves distances of vertices in G. As’

|ANB|=] iff distc(A,B)=k-]j,

it follows that ¢ preserves all intersections and thus according 2.4, ¢ is induced by
a permutation of n.

2.6. Definition. Let (X, a), (X, B) be two set systems. We say that 8 separates a
if for every Aea and Y < X there is & B € such that

ANB=0 if YNB#{.

2.7. Theorem. Let o< and B separates a. If (X, B) is determined by intersec-
tions, then (X, a) is determined by intersections also.

Proof. Let (X, a), (X, B) with above properties be given. Suppose that there is a
system (X, a') and an isomorphism

e:N(X, a)— (X, a.
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Consider B' and the isomorphism
¢: (X, aUB)— 22X, a'"UB')

the existence of which follows by Lemma 2.2. If we restrict ¢ to B we obtain an
isomorphisin :

¢: AUX, B)— (X, B).

As (X, B) is determined by intersections there is an isomorphism
f1(X,B)—>(X,B)

such that ¢ = Q(f), i.e.

(%) ¢(Y)={f(x); xe Y}

for every Yep.

We siow that (*) holds also for all Yea. In a way of contradiction suppose
that there is an A ea such that ¢(A)# f[A]. Then A #f '[¢(A)] which con-
tradicts to the fact that B separates a. Thus ¢ = Q(f).

2.8. Coroliary. Let a be a system of <.in-subsets of n. If @ <eXppu_1y23 N then
(n, a) is determined by intersections.

Proof. "he set system expy,. 1 2 1t is determined by intersections by Theorem 2.4
and cbviously separates exp.,,, n. Her.ce by Theoreni 2.6 (n, ) is determined by
intersectious.

2.9. Corollary. Let n, k be such that k <3(n—3) and let

’_Z_’: n*(in—-1)---(n—k+1)
k (n—-4(n—-6)---(n—-2k)

Then the probability that a simple set system (n, @) with

1.>

acexpp.n and |a|=L

is determined by intersections is bigger than 1—ne™

Proof. Let ¥ =(n, a) be an above set system. Then

Probla <expyu_1y21 1]

L

ot onf1_ Kk (n=8(n—6)---(n—2k)\"
=1-n2 (1 2kt n(n-l)--'(n—k+1))

-1
2
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Thus by Corollary 2.8 also
Prob[ is determined by intersections]=1-<ne™. -

3. Line graphs

3.1. The k-star is a connected graph with exactly k edges adjacent to ,che. vertex.
This vertex is called central. If G is a graph and x its vertex the comple:2 siar of x
is the graph formed by all edges adjacent to x. The degree of a vertex x s denoted
by d(x). An edge (x, y) we will denote by xy. If convenient we shall consider a
graph as the set of edges only.

3.2. Theorem. Let G be a graph. Then L(G) is u.i. iff G does not contain an
edge-amalgamed triangle (i.e. there are no three vertices x, y, z such that d(x) =2,
d(y), d(z)>2 and x, y, z form a triangle in G). '

3.3. The following easy proposition asserts that we may further consider con-
nected graphs only.

Proposition. G is u.i. iff each component of G is u.i.
3.4. Before proving Theorem 3.2 we introduce the notion of cover.

Definition. Let G be a graph. A system % ={H,, H,, ..., H,} of subgraphs of G
each of them is isomorphic either to a triangle or to a star is called a cover of G iff
each pair of incident edges is contained in at least one H, A cover % =
{Hy, H,, ..., H,} is called minima‘ if p = w(L(G)).

From the Proposition 1, Chapter 17, §4 in [3] and from the fact that cliques of
L(G) corresponds either to stars or to triangles of G we obtain immediately:

3.5. Lemma. Representations of L(G) are in a 1-1 correspondence with covers of
G.

Prooi. Te assignment of the above correspondence is constructed as follows: If
WU={Hy,,J,,...,H} is a cover ¢f G we define a representation (%, a) where
a={A.;ecE'G)} and A, ={H;; ce E(H,)}

3.6. Proof of Theorem 3.2. First we show that the statement of Theorem 3.2 is
valid for G =K, K., K, K,. It is easy to see that o(L(K,))=w(L(K;))=0 and
o{(L(K3;))=1 as K; can be covered by triangle. Although the graph K, has two
different minimal covers — one is formed by four triangles and the other by four 3-
stars — both corresponding representaiions are isomorphic to K,. Thus, the graphs
K, K,, K;, K, are u.i.
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Consider the following two cases:

(A) G has one minimal cover only (thus G is u.i.).

(B) G has two minimal representations % ={H,, ..., H,}, ¥'={H},..., H}}
such that H, is a 2-star, H} is triangle containing H, and H!=H, for all i=2.
Then the corresponding representaticns are not isomorphic and thus G is not u.i.

We show that for G dstinct from: K, (i =1, 2, 3, 4) and fullfiling the condition
of Theorem 3.2 (A) holds. If G coatains an amalgamed triangle (B) holds.

For an arbitrary vertex x of G we distinguish the following five cases:

0) d(x)=1.

(1) d(x)=2 and there are vertices y, z such that d(y),d(z)>2 and x,y,z is a
triangle (thus x is a vertex of amalgamed triangle).

(2) d(x)=2 and there are vertices y, z such that d(y)=2,d(z)>2and x, y, z is
a triangle.

(3) There are vertices z,Yy,, y,,-- -, Y, k=2 such that x, y,, z is a triangle and
diy)=2foralli=1,2,...,k.

(4) None of the possibitities (0), (1), (2), (3) hold.

We say that the type of the vertex x is i, t(x) =1, if (i) holds.

In the following definition the above notation is used.

Definition. Let G be a graph. We say that a cover AU is admissible if it can be
constructed by the following way:

(1) For every vertex x with t(x)=1 exactly one of the graphs {xy, xz},
{xy, xz, yz} is contained in .

(2) For every vertex with t(x) =2 take y and z as above and let {xy, yz, xz} € .

(3) Let t{x)=3. 1f for all y,,y,,...,V (obviously with t(y,)=1) we have
chosen triangles v3,z in step (1) let either {xy,,xy,,...,xy.}e® or
{xy1, Xys, ..., XV, x2}€ U, if there is y, j=1,2,...,k, for which the 2-star
xy;, zv; has been chosen in step (1) let {xy,, xy,, ..., Xy, xz} € U.

(4) For every; x with t(x)=4 the star which is formed by x and all vertices
adjacent to x (the complet: star) is an element of .

It is easily seen that the assumptions of the Theorem 3.2 are fullfiled iff there

exists exactly one admissitle cover. Thus the satatement of this Theorem follows
from

3.7. Lemma. A covcr is minimal iff it is admissible.

Procf. Firs: we show that every minimal cover is admissible.

(&) First we prove that if % is minimal then each vertex x with t(x)=4 is a
central vertex of exacily one star. It suffices to prove that such a vertex is a central
vertex of at lzast one star since a cover which contains twc stars with the same
central vertey is clearly not minimal. '

Suppose the contrary - thus there is an x with t(x) =4 and with each pair of
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edges incident to x covered by triangle. Thus x together with its neighbour-
hood form 4 complete graph. Denote the corresponding vertex set
{x1, X2, . . ., Xgy X411, . ., X, } Obviously r=4. Let x,, x,...,x, be the vertices of
K, which are central vertices of some star of 4. From the fact that each
component of G is different from K, it follows that if r=4, then a=1. The
number of triangles of cover A which are contained in K, is at least () —($). If we
replace all such triangles by new r—a stars with central vertices x,,,...,x, and
the stars of cover U with central vertices x,,. .., x, by complete stars with the
same¢ central vertices we get a new cover with a smaller cardinality, viz.

G)=-B)>r—a forr>4,r>a and r=4,4>a>0.

(b) f % is minimal, then % does not contain a triangle with vertices x, y, z
subject to t(x)=t(y) =t(z) =4 as removing triangle xyz and replacing the stars
with central vertices x, y. z by complete stars we get a new cover with smaller
cardinality.

(c) If ¥ is minimal, then each star with the central vertex x subject to t(x) =4
is compiete. Suppose the contrary let S be a star with a cer.tral vertex x with
t(x) =4 which is not complete, i.e. there is a pair of edges wh:ch is covered by a
triangle xyz. As (b) hoids and as every triangle containing « vertex of type 3
contains also a vertex of type 1 we may suppose that t(y) =1 or t(y)=2. The edge
xy together with each edge incident to x different from xz must be contained in a
star S, i.e. S contains all edges incident to x but xz. The edges xy’, y'# z and xz
are contained in a triangle. From (b) it follows that t(y’)=1 for all y. Thus
* t(x)=3-a contradiction. As at vertices x with t(x)=1,2,3 the minimal cover
satisfies (1), (2), (3), of definition and hence ¥ is admissible.

As 3all admissible covers have, by definition, the same cardinality and as
minimal cover is admissible it follows that every admissible ccver is minimal.

3.8. Remsrk. We have shown that the definition of admissillle cover gives an
algorithm for computation of w(L(G)). This may be interesting with regard to the
fact that the computation of w(G) is in general case an NP-com)lete problem (see

[7D.

3.9. Theorem. Let G be a connected graph with ai least five vertices. Then G is
determined by intersections if and only if the following holls:

(1) G coantains wneither edge nor vertex amalgamed triangle,

(ii) degree of every vertex of G is at least 2.

Proof. Let G be a connected graph with at least 5 vertices, satisfying (i) and (ii).
From this follows that all vertices of G are of type 4 only. Thus the only
acimissible ccver of G is formed by the system of complete stars. By Lemma 3.7,
G is the onlv minimal set representation of L(G). By the Whitney Theorem [10]
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every automorphism of L(G) is induced by an automorphism of G. Hence G is
determined by intersectioas.

If G does not satisfy one of (i), (i) then w(L(G))< V(G)| and thus G is not
detcymined by intersections.
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