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1. Introduction

Recent proposals for a non-relativistic version of the AdS/CFT
correspondence [1,2]1 stimulated renewed interest in non-relativis-
tic conformal (super)algebras [3–13] (for related earlier studies
see [14–18]). Matching of symmetries in the bulk to those on the
boundary is one of the principal ingredients of the correspondence.

There are two competing approaches to constructing non-
relativistic conformal algebras. The first option is to minimally
extend the Galilei algebra by the generators of dilatations and spe-
cial conformal transformations which form the so(1,2) subalgebra
together with the generator of time translations. The resulting al-
gebra is known as the Schrödinger algebra [19,20]. An alternative
possibility is to consider non-relativistic contractions of the confor-
mal algebra so(d + 1,2) (see e.g. the discussion in [3,5,7,8,11,12]).
This yields a larger algebra which goes under the name of confor-
mal Galilei algebra. Because the conformal Galilei algebra requires
vanishing mass, the Schrödinger algebra is likely to have a better
prospect for quantum mechanical applications.

An analogue of the Galilei algebra in the presence of a uni-
versal cosmological repulsion or attraction is the Newton–Hooke
algebra [21–23]. It can be derived from the (anti) de Sitter alge-
bra by a non-relativistic contraction in much the same way as the
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Galilei algebra is obtained from the Poincaré algebra [21]. In con-
trast to the Galilei transformations, however, the bracket relation
involving the generators of time and space translations is modi-
fied to yield the boost: [H, Pα] = ± 1

R2 K α . Here R is the radius
of the parent (anti) de Sitter space. The positive sign on the right-
hand side is realized in a non-relativistic spacetime with a negative
cosmological constant. The corresponding algebra is conventionally
denoted as nh− . The negative sign is realized in a spacetime with
a positive cosmological constant, the shorthand for the algebra be-
ing nh+ .

While in arbitrary dimension the Newton–Hooke algebra ad-
mits only one central charge, in (2 + 1)-dimensions the second
central charge is allowed which leads one to the so-called ex-
otic Newton–Hooke symmetry [22,24–26]. Generalizations of the
Newton–Hooke algebra associated with non-relativistic strings and
branes were studied in [10,27–29]. Various extensions of the
Newton–Hooke algebra by extra vector generators and their dy-
namical realizations were discussed in [30–32].

That the Newton–Hooke algebra can be extended by conformal
generators was known for a long time [33]. However, its dynami-
cal realization in many-body mechanics as well as supersymmetric
extensions have not yet been studied. It is natural to expect that
many-body models with superconformal Newton–Hooke symme-
try may provide new insight into the non-relativistic version of
the AdS/CFT correspondence. Another motivation stems from the
desire to construct new exactly solvable many-body models in a
non-relativistic spacetime with a cosmological constant and to ex-
plore novel correlations.
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The purpose of this work is to construct a representation of
the conformal Newton–Hooke algebra on a phase space of n par-
ticles in arbitrary dimension which interact with one another via
a generic conformal potential and experience a universal cosmo-
logical repulsion or attraction. We also study the minimal N = 2
superconformal extension2 of the Newton–Hooke algebra and pro-
vide its dynamical realization.

In Section 2 we discuss the minimal conformal Newton–Hooke
algebra and give its dynamical realization in many-body mechan-
ics. Section 3 is devoted to the minimal N = 2 superconformal
Newton–Hooke algebra and its representation on a phase space of
n superparticles in arbitrary dimension. In each section, the neg-
ative and positive values of a cosmological constant are treated
separately.

2. Conformal extension of the Newton–Hooke algebra

The Newton–Hooke algebra describes symmetries of a non-
relativistic spacetime with a cosmological constant [21–23]. The
generators of time translations H , space translations Pα , space ro-
tations Mαβ , and boosts K α obey the following Lie brackets[

H, Kα
] = −Pα,

[
Pα, K β

] = −Mδαβ,[
H, Pα

] = ± 1

R2
Kα,

[
Mαβ, Pγ

] = δαγ Pβ − δβγ Pα,[
Mαβ, Kγ

] = δαγ K β − δβγ Kα,[
Mαβ, Mγ δ

] = δαγ Mβδ + δβδ Mαγ − δβγ Mαδ − δαδ Mβγ , (1)

where M is the central charge and α = 1, . . . ,d. The algebra co-
incides with the (centrally extended) Galilei algebra but for the
leftmost bracket entering the second line in (1).

Conformal extensions of the Newton–Hooke algebra were dis-
cussed in [33]. Below we construct a representation of the minimal
conformal Newton–Hooke algebra on a phase space of n identical
particles in arbitrary dimension.

2.1. Negative cosmological constant

We first consider nh− . Apart form the generators displayed
above, the minimal conformal extension of nh− involves the gen-
erators of dilatations t1 and special conformal transformations t2.
Along with the generator of time translations t0 = H they form the
so(1,2) subalgebra3

[t0, t1] = − 2

R
t2, [t0, t2] = 2

R
t1, [t1, t2] = 1

2R
t0. (2)

Other non-vanishing Lie brackets include

[
t1, Pα

] = − 1

2R
Pα,

[
t1, Kα

] = 1

2R
Kα,

[
t2, Pα

] = 1

2R2
Kα,

[
t2, Kα

] = 1

2
Pα. (3)

It is straightforward to verify that the Jacobi identities hold for the
algebra determined by the structure relations (1), (2), (3) where
[H, Pα] = 1

R2 K α .
In order to construct a representation of the conformal nh− al-

gebra, let us consider a set of n identical particles (of unit mass)

2 Recent studies of N = 4 superconformal many-body models in one-dimension
(see e.g. [34] and references therein) indicate that N = 2 is likely to be the maximal
superextension compatible with the translation invariance in higher-dimensions.

3 Redefining the generators as t̃0 = Rt0, t̃1 = 2Rt1, t̃2 = 2Rt2, one gets the
standard structure relations of the so(1,2) algebra: [t̃0, t̃1] = −2t̃2, [t̃0, t̃2] = 2t̃1,
[t̃1, t̃2] = 2t̃0.
which are parameterized by the coordinates xα
i and momenta pα

i ,
i = 1, . . . ,n, obeying the standard Poisson bracket{

xα
i , pβ

j

} = δαβδi j . (4)

The Hamiltonian which governs the dynamics of the system is cho-
sen in the form

t0 = H = 1

2
pα

i pα
i + V (x) + 1

2R2
xα

i xα
i . (5)

The last term in (5) is designed to describe a universal cosmologi-
cal attraction [23], while V (x1, . . . , xn) is supposed to be a generic
conformal potential compatible with the translation and rotation
invariance

xα
i ∂αi V (x) + 2V (x) = 0,

n∑
i=1

∂αi V (x) = 0,

(
xα

i ∂β i − xβ

i ∂αi
)

V (x) = 0, (6)

where we denoted ∂αi = ∂
∂xα

i
.

Guided by the previous study of the conformal algebra in the
context of the oscillator potential [35], we introduce the notation

C = 1

2
xα

i xα
i , D = −1

2
xα

i pα
i , (7)

and construct the following quantities

t1 = 1

R
D cos(2t/R) + 1

2
H sin(2t/R) − 1

R2
C sin(2t/R),

t2 = 1

R2
C cos(2t/R) − 1

2
H cos(2t/R) + 1

R
D sin(2t/R),

Pα =
(

n∑
i=1

pα
i

)
cos(t/R) + 1

R

(
n∑

i=1

xα
i

)
sin(t/R),

Kα =
(

n∑
i=1

xα
i

)
cos(t/R) − R

(
n∑

i=1

pα
i

)
sin(t/R),

Mαβ = xα
i pβ

i − xβ

i pα
i . (8)

Note that they explicitly depend on time. It is a matter of straight-
forward calculation to verify that Eqs. (5), (8) contain the set of
functions which are conserved in time and form a representation
of the conformal nh− algebra under the Poisson bracket. The value
of the central charge for this particular representation is M = n.
For particles of mass m one would have M = nm. So M is inter-
preted as the mass of a system.

In order to implement the flat space limit, one first redefines
the generators t1 and t2 so as to restore the conventional dimen-
sions t1 → Rt1, t2 → R2(t2 + 1

2 t0) and then sends R to infinity
which corresponds to the vanishing cosmological constant. Taking
into account the relation limx→0

sin x
x = 1 one then precisely repro-

duces the representation of the Schrödinger algebra on a phase
space of n identical particles constructed in [4].

Concluding this section we note that in [16,35,36] (see also
a recent work [37]) it was demonstrated that the whole motion
of a free particle can be associated to a half-period of the har-
monic oscillator via a specific local diffeomorphism. With the use
of this transformation one can construct the wave function of the
oscillator starting from that of the free particle. A possibility to
generalize the transformation in [16,35–37] to the case of many-
body conformal mechanics in the harmonic trap is an interesting
open problem which we hope to address in the near future.
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2.2. Positive cosmological constant

We now turn to discuss the minimal conformal extension of
nh+ . As compared to the previous case the structure relations are
slightly modified so as to take into account the negative sign in
[H, Pα] = − 1

R2 K α in a way compatible with the Jacobi identities4

[t0, t1] = 2

R
t2, [t0, t2] = 2

R
t1, [t1, t2] = − 1

2R
t0,

[
t1, Pα

] = − 1

2R
Pα,

[
t1, Kα

] = 1

2R
Kα,

[
t2, Pα

] = 1

2R2
Kα,

[
t2, Kα

] = −1

2
Pα. (9)

A representation of the algebra on a phase space of n identi-
cal particles is constructed by analogy with the previous case. One
starts with the Hamiltonian

t0 = H = 1

2
pα

i pα
i + V (x) − 1

2R2
xα

i xα
i , (10)

where V (x) is a generic conformal potential obeying the con-
straints (6). The last term describes a universal cosmological re-
pulsion [22,23]. It proves sufficient to replace the trigonometric
functions entering (8) by the hyperbolic functions and adjust the
number coefficients so as to get the conserved charges

t1 = 1

R
D cosh(2t/R) + 1

2
H sinh(2t/R) + 1

R2
C sinh(2t/R),

t2 = 1

R2
C cosh(2t/R) + 1

2
H cosh(2t/R) + 1

R
D sinh(2t/R),

Pα =
(

n∑
i=1

pα
i

)
cosh(t/R) − 1

R

(
n∑

i=1

xα
i

)
sinh(t/R),

Kα =
(

n∑
i=1

xα
i

)
cosh(t/R) − R

(
n∑

i=1

pα
i

)
sinh(t/R),

Mαβ = xα
i pβ

i − xβ

i pα
i . (11)

Explicit calculation then shows that they do reproduce the struc-
ture relations of the conformal nh+ algebra under the Poisson
bracket, the corresponding central charge being M = n.

3. N = 2 superconformal extension of the Newton–Hooke
algebra

To the best of our knowledge, the minimal N = 2 supercon-
formal extension of the Newton–Hooke algebra has not yet been
studied in literature. Below we establish the structure relations of
the algebra and construct a representation on a phase space of n
superparticles in d-dimensions. Depending on the sign of a cosmo-
logical constant, the analysis proceeds along different lines. Given a
spacetime with a negative cosmological constant, our strategy is to
start with reasonable supercharges. On the one hand, they should
yield a Hamiltonian which reduces to the one from the preceding
section in the bosonic limit. On the other hand, the supercharges
ought to be compatible with the conformal generators. Other gen-
erators prove to follow from the requirement of the closure of the
full superalgebra.

In a spacetime with a positive cosmological constant the con-
struction of a conventional supersymmetric extension is problem-
atic [22]. The problem connects to the difficulty to define con-
served positive energy in the parent de Sitter space. In this case

4 The redefinition t̃0 = 2Rt2, t̃1 = Rt0, t̃2 = 2Rt1 yields the conventional structure
relations of so(1,2).
we construct a modified superalgebra in which the bracket of two
supersymmetry charges yields the conformal generator t2 which is
treated as a kind of a regularized Hamiltonian.

In order to accommodate N = 2 supersymmetry in many-body
mechanics, one introduces the fermionic variables ψα

i and ψ̄α
i

which are complex conjugates of each other and obey the brackets{
ψα

i ,ψ
β

j

} = 0,
{
ψ̄α

i , ψ̄
β

j

} = 0,{
ψα

i , ψ̄
β

j

} = −iδαβδi j. (12)

Brackets among the bosonic and fermionic variables vanish.

3.1. Negative cosmological constant

We first consider the minimal N = 2 superconformal extension
of nh− . Our ansatz for the supersymmetry charges is

Q = ψα
i

(
pα

i + i∂αi U (x) + i

R
xα

i

)
,

Q̄ = ψ̄α
i

(
pα

i − i∂αi U (x) − i

R
xα

i

)
. (13)

Here U (x) is a prepotential which obeys the system of partial dif-
ferential equations

(
xα

i ∂β i − xβ

i ∂αi
)
U (x) = 0,

n∑
i=1

∂αi U (x) = 0,

xα
i ∂αi U (x) = R Z , (14)

where Z is a constant. The first two constraints in (14) are needed
to ensure the rotation and translation invariance. The last restric-
tion guarantees the conformal invariance of a resulting supersym-
metric mechanics. Note that these restrictions coincide with those
underling many-body quantum mechanics with N = 2 Schrödinger
supersymmetry [6].

Computing brackets among Q and Q̄

{Q , Q } = 0, {Q̄ , Q̄ } = 0, {Q , Q̄ } = −2iH, (15)

one finds the Hamiltonian which governs the dynamics of the sys-
tem

t0 = H = 1

2
pα

i pα
i + 1

2
∂αi U (x)∂αi U (x) + 1

2R2
xα

i xα
i

− ∂αi∂β j U (x)ψα
i ψ̄

β

j − 1

R
ψα

i ψ̄α
i + Z . (16)

Because the Hamiltonian is defined up to a constant, if desirable,
one can disregard the constant contribution Z = xα

i ∂αi U (x)/R .
An immediate corollary of the structure relations (15) is that Q

and Q̄ are conserved in time. Note also that comparing the bosonic
limit of (16) with (5) one gets

V (x) = 1

2
∂αi U (x)∂αi U (x). (17)

That the latter is conformal invariant is assured by the last con-
straint in (14).

As the next step we modify the conformal generators in (8) so
as to take into account the fermionic degrees of freedom

t1 = 1

R
D cos(2t/R) + 1

2
H sin(2t/R) − 1

R2
C sin(2t/R)

+ 1

2R
J sin(2t/R),

t2 = 1

R2
C cos(2t/R) − 1

2
H cos(2t/R) + 1

R
D sin(2t/R)

− 1
J cos(2t/R). (18)
2R
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Here C , D are defined as in (7), H is the Hamiltonian (16) and J
is the generator of U (1) R-symmetry transformations which affect
only the fermionic variables

J = ψα
i ψ̄α

i − R Z . (19)

The constant contribution to J might seem odd. It was included so
as to avoid the appearance of a fictitious central charge in structure
relations of the superalgebra. It is straightforward to verify that t1,
t2 and J are conserved in time. Along with t0 = H they form a
closed subalgebra (vanishing brackets are omitted)

{t0, t1} = − 2

R
t2, {t0, t2} = 2

R
t1,

{t1, t2} = 1

2R
t0 + 1

2R2
J . (20)

Thus the so(1,2) subalgebra is modified and includes the R-
symmetry generator.

Computing brackets among the supersymmetry charges and the
conformal ones (see Appendix A for explicit relations) one gets two
new generators

S =
(

xα
i ψα

i + i

2
R Q

)
e

2it
R , S̄ =

(
xα

i ψ̄α
i − i

2
R Q̄

)
e− 2it

R , (21)

which correspond to superconformal transformations. It is read-
ily verified that these functions are conserved in time. However,
because they exhibit explicit dependence on time, they yield non-
vanishing brackets with the Hamiltonian (see Appendix A).

As for the tensor generators, the conserved charges correspond-
ing to translations and Galilei boosts prove to maintain their form
(see Eq. (8) above). The generator of rotations is to be modified so
as to take into account the fermionic degrees of freedom

Mαβ = xα
i pβ

i − xβ

i pα
i − i

(
ψα

i ψ̄
β

i − ψ
β

i ψ̄α
i

)
. (22)

Computing brackets among the generators of translations and
supertranslations (see Appendix A for explicit relations) one finds
two more fermionic conserved charges

Lα =
(

n∑
i=1

ψα
i

)
e

it
R , L̄α =

(
n∑

i=1

ψ̄α
i

)
e− it

R . (23)

At this stage it is straightforward to verify that the full algebra
closes and no further generators appear. Thus one ultimately ar-
rives at a representation of the minimal N = 2 superconformal
Newton–Hooke algebra on a phase space of n superparticles in d-
dimensions. Structure relations of the superalgebra are gathered in
Appendix A. In arbitrary dimension two central charges M and Z1
may enter the algebra (see Appendix A). The representation con-
structed above corresponds to M = Z1 = n.

3.2. Positive cosmological constant

For a conformal mechanics in a space with a positive cosmolog-
ical constant the energy spectrum is not bounded from below. This
is reminiscent of the fact that in the (parent) de Sitter space there
does not exist conserved positive energy. By this reason, a conven-
tional supersymmetric extension {Q , Q̄ } ∼ H which implies H � 0
is problematic [22].

As was mentioned above, the conformal generator t2 can be
viewed as a kind of a regularized Hamiltonian. Below we demon-
strate that discarding {Q , Q̄ } ∼ H in favour of {Q , Q̄ } ∼ t2 allows
one to construct a reasonable N = 2 supersymmetric extension of
the conformal nh+ algebra.
Our starting point is the following representation of the confor-
mal generators

t0 = H = 1

2
pα

i pα
i + 1

2
∂αi U (x)∂αi U (x) − 1

2R2
xα

i xα
i

− ∂αi∂β j U (x)ψα
i ψ̄

β

j ,

t1 = 1

R
D cosh(2t/R) + 1

2
H sinh(2t/R) + 1

R2
C sinh(2t/R),

t2 = 1

R2
C cosh(2t/R) + 1

2
H cosh(2t/R)

+ 1

R
D sinh(2t/R) + 1

2R
J , (24)

where C , D are defined as in (7) and J is given in (19). It is as-
sumed that the prepotential U (x) obeys the constraints (14). It is
readily verified that t1 and t2 are conserved in time. Together with
t0 they form a closed subalgebra (see Appendix B). Note that J was
included in t2 so as to reconcile the conformal generators with su-
percharges to be introduced below.

In order to fix the form of supersymmetry generators, we im-
pose the relations

{Q , Q̄ } = −4it2, {Q , Q } = 0, {Q̄ , Q̄ } = 0 (25)

and demand Q and Q̄ to be conserved with respect to the Hamil-
tonian t0. These requirements yield

Q = ψα
i

((
pα

i + i∂αi U (x)
)(

cosh(t/R) + i sinh(t/R)
)

− i

R
xα

i

(
cosh(t/R) − i sinh(t/R)

))
,

Q̄ = ψ̄α
i

((
pα

i − i∂αi U (x)
)(

cosh(t/R) − i sinh(t/R)
)

+ i

R
xα

i

(
cosh(t/R) + i sinh(t/R)

))
. (26)

Superconformal generators S and S̄ are then determined by com-
puting brackets among Q , Q̄ and the conformal generators (see
Appendix B for explicit relations)

S = ψα
i

((
pα

i + i∂αi U (x)
)(

cosh(t/R) − i sinh(t/R)
)

+ i

R
xα

i

(
cosh(t/R) + i sinh(t/R)

))
,

S̄ = ψ̄α
i

((
pα

i − i∂αi U (x)
)(

cosh(t/R) + i sinh(t/R)
)

− i

R
xα

i

(
cosh(t/R) − i sinh(t/R)

))
. (27)

These are conserved in time.
It turns out that the generators of translations Pα , Galilei boosts

K α , and rotations Mαβ can be chosen as in Eqs. (11) and (22),
respectively. They are conserved in time and form a closed algebra
together with other generators provided the fermionic partners of
K α are taken in the form

Lα =
n∑

i=1

ψα
i , L̄α =

n∑
i=1

ψ̄α
i . (28)

Because U (x) is translation invariant, Lα and L̄α are automatically
conserved in time. The full list of structure relations of the min-
imal N = 2 superconformal extension of nh+ algebra is given in
Appendix B. Like in the preceding case, two central charges M
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and Z1 enter the algebra. The representation above corresponds
to M = Z1 = n.

4. Concluding remarks

To summarize, in this work we have constructed a representa-
tion of the minimal conformal Newton–Hooke algebra on a phase
space of n particles in arbitrary dimension. The minimal N = 2
superconformal extension of the algebra and its dynamical realiza-
tion in many-body mechanics were proposed.

Turning to possible further developments, it is interesting to
construct a Lagrangian formulation and to uncover global symme-
tries which correspond to the conserved charges considered above.
Then it is tempting to explore if the decoupling similarity trans-
formation of [4,6] can be applied in the context of many-body
quantum mechanics in a spacetime with a cosmological constant.
Finally, it is interesting to study if larger (super)conformal Newton–
Hooke algebras can be derived by non-relativistic contractions.

Acknowledgements

This work was supported in part by RF Presidential grants MD-
2590.2008.2, NS-2553.2008.2 and RFBR grant 09-02-00078.

Appendix A

In this appendix we display structure relations of the mini-
mal N = 2 superconformal Newton–Hooke algebra for the case
of a negative cosmological constant. The non-vanishing graded Lie
brackets read

{Q , Q̄ } = −2it0, {Q , S̄} = 2R(t2 + it1),

{Q̄ , S} = −2R(t2 − it1), {S, S̄} = − i

2
R2t0 − iR J ,

[t1, Q ] = i

R2
S, [t2, Q ] = 1

R2
S, [t1, Q̄ ] = − i

R2
S̄,

[t2, Q̄ ] = 1

R2
S̄, [t0, S] = 2i

R
S, [t0, S̄] = −2i

R
S̄,

[t1, S] = − i

4
Q , [t2, S] = 1

4
Q , [t1, S̄] = i

4
Q̄ ,

[t2, S̄] = 1

4
Q̄ , [Q , J ] = i Q , [Q̄ , J ] = −i Q̄ ,

[S, J ] = i S, [S̄, J ] = −i S̄,
[

Q , Pα
] = i

R
Lα,

[
Q , Kα

] = −Lα,
[

Q̄ , Pα
] = − i

R
L̄α,

[
Q̄ , Kα

] = −L̄α,

[
S, Pα

] = 1

2
Lα,

[
S, Kα

] = − i

2
RLα,

[
S̄, Pα

] = 1

2
L̄α,

[
S̄, Kα

] = i

2
RL̄α,

[
t0, Lα

] = i

R
Lα,

[
t0, L̄α

] = − i

R
L̄α,

{
Q , L̄α

} = 1

R
Kα − i Pα,

{
Q̄ , Lα

} = − 1

R
Kα − i Pα,

{
Lα, L̄β

} = −i Z1δ
αβ,

{
S, L̄α

} = 1

2
R Pα − i

2
Kα,

{
S̄, Lα

} = −1

2
R Pα − i

2
Kα,

[
Lα, J

] = iLα,

[
L̄α, J

] = −i L̄α,
[
t1, Pα

] = − 1

2R
Pα,

[
t1, Kα

] = 1
Kα,

[
t2, Pα

] = 1
2

Kα,
[
t2, Kα

] = 1
Pα,
2R 2R 2
[t0, t1] = − 2

R
t2, [t0, t2] = 2

R
t1, [t1, t2] = 1

2R
t0 + 1

2R2
J ,

[
t0, Kα

] = −Pα,
[

Pα, K β
] = −Mδαβ,

[
t0, Pα

] = 1

R2
Kα,[

Mαβ, Pγ
] = δαγ Pβ − δβγ Pα,[

Mαβ, Kγ
] = δαγ K β − δβγ Kα,[

Mαβ, Lγ
] = δαγ Lβ − δβγ Lα,

[
Mαβ, L̄γ

] = δαγ L̄β − δβγ L̄α,[
Mαβ, Mγ δ

] = δαγ Mβδ + δβδ Mαγ − δβγ Mαδ − δαδ Mβγ .

Appendix B

In this appendix we give structure relations of the minimal
N = 2 superconformal Newton–Hooke algebra for the case of
a positive cosmological constant. The non-vanishing graded Lie
brackets read

{Q , Q̄ } = −4it2, {Q , S̄} = −4i

(
1

2
t0 + it1

)
,

{Q̄ , S} = −4i

(
1

2
t0 − it1

)
, {S, S̄} = −4i

(
t2 − 1

R
J

)
,

[t1, Q ] = − 1

2R
S, [t0, Q ] = i

R
S,

[t1, Q̄ ] = − 1

2R
S̄, [t0, Q̄ ] = − i

R
S̄, [t0, S] = − i

R
Q ,

[t0, S̄] = i

R
Q̄ , [t1, S] = − 1

2R
Q , [t2, S] = − i

R
S,

[t1, S̄] = − 1

2R
Q̄ , [t2, S̄] = i

R
S̄, [Q , J ] = i Q ,

[Q̄ , J ] = −i Q̄ , [S, J ] = i S, [S̄, J ] = −i S̄,[
Q , Pα

] = − i

R
Lα,

[
Q , Kα

] = −Lα,
[

Q̄ , Pα
] = i

R
L̄α,

[
Q̄ , Kα

] = −L̄α,
[

S, Pα
] = i

R
Lα,

[
S, Kα

] = −Lα,

[
S̄, Pα

] = − i

R
L̄α,

[
S̄, Kα

] = −L̄α,
[
t2, Lα

] = − i

2R
Lα,

[
t2, L̄α

] = i

2R
L̄α,

{
Q , L̄α

} = − 1

R
Kα − i Pα,

{
Q̄ , Lα

} = 1

R
Kα − i Pα,

{
Lα, L̄β

} = −i Z1δ
αβ,

{
S, L̄α

} = 1

R
Kα − i Pα,

{
S̄, Lα

} = − 1

R
Kα − i Pα,

[
Lα, J

] = iLα,
[
L̄α, J

] = −i L̄α,
[
t1, Pα

] = − 1

2R
Pα,

[
t1, Kα

] = 1

2R
Kα,

[
t2, Pα

] = 1

2R2
Kα,

[
t2, Kα

] = −1

2
Pα,

[t0, t1] = 2

R
t2 − 1

R2
J , [t0, t2] = 2

R
t1,

[t1, t2] = − 1

2R
t0,[

t0, Kα
] = −Pα,

[
Pα, K β

] = −Mδαβ,[
t0, Pα

] = − 1

R2
Kα,[

Mαβ, Pγ
] = δαγ Pβ − δβγ Pα,
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[
Mαβ, Kγ

] = δαγ K β − δβγ Kα,[
Mαβ, Lγ

] = δαγ Lβ − δβγ Lα,
[
Mαβ, L̄γ

] = δαγ L̄β − δβγ L̄α,[
Mαβ, Mγ δ

] = δαγ Mβδ + δβδ Mαγ − δβγ Mαδ − δαδ Mβγ .
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