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SUMMARY

Typically,�0.1%of the total number of olfactory sen-
sory neurons (OSNs) in the main olfactory epithelium
express the same odorant receptor (OR) in a singular
fashion and their axons coalesce into homotypic
glomeruli in the olfactory bulb. Here, we have
dramatically increased the total number of OSNs
expressing specific cloned OR coding sequences
by multimerizing a 21-bp sequence encompassing
the predicted homeodomain binding site sequence,
TAATGA, known to be essential in OR gene
choice. Singular gene choice is maintained in these
‘‘MouSensors.’’ In vivo synaptopHluorin imaging of
odor-induced responses by known M71 ligands
shows functional glomerular activation in an M71
MouSensor. Moreover, a behavioral avoidance task
demonstrates that specific odor detection thresh-
olds are significantly decreased in multiple trans-
genic lines, expressing mouse or human ORs. We
have developed a versatile platform to study gene
choice and axon identity, to create biosensors with
great translational potential, and to finally decode
human olfaction.

INTRODUCTION

Odorant receptor (OR) genes form the largest multigene family in

mammals, with about 1,200 members in the mouse and 350 in

humans (Zhang and Firestein, 2002). The main olfactory epithe-

lium (MOE) expresses ORs through a poorly understood singular

gene choicemechanism, whereby only one allele of any OR gene

is selected for specific expression in a given neuron (Chess et al.,

1994; Strotmann et al., 2000). Axons from olfactory sensory neu-

rons (OSNs) that express identical ORs coalesce into 2 out of the

roughly 1,800 glomeruli per olfactory bulb (OB). The OR coding

sequence (CDS) plays a role in the maintenance of gene choice;

that is, if the OR is not capable of this maintenance, then a sec-

ond OR allele is tested for functionality (Feinstein et al., 2004).
Ce
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Hence, deletion of an OR CDS precludes the convergence of

axons into a specific glomerulus and results in OSNs choosing

to express one of the other OR genes and concomitantly projec-

ting to a variety of glomeruli in the OB. In addition, OR proteins

are necessary for promoting axon guidance, axon identity, and

stabilizing neurons that have chosen to express those ORs (Fein-

stein et al., 2004; Feinstein and Mombaerts, 2004). Finally, the

OR protein needs to be targeted to the olfactory cilia where it

will function in odor signal transduction.

There has been limited success in odor profiling of ORs ex-

pressed in heterologous cells in vitro. Part of this limitation is

due to the inability of OR proteins to traffic to the plasma mem-

brane. In addition, given the biological properties of the olfactory

system, many OR alleles characterized in vitro may not be func-

tional in an in vivo setting and thus could be intact pseudogenes.

The major drawback, however, has been the ability to rapidly

contrast how odors presented to the OR in liquid phase

(in vitro) correspond to odors presented in vapor phase within

their mucosal environment (in vivo). Even ex vivo patching of

dendritic knobs from transgenic and gene-targeted mice suffers

from an absence of vapor phase delivery of odors. Finally, the

study of bothOR gene choice andOR coding in vivo is hampered

by the low representation of a given OR, which, on average, is

only expressed in 0.1% of the total neuronal population of a

wild-type mouse.

To increase specific OR representation by modulating OR

gene choice, we have been characterizing OR minigenes for

the past decade. We have identified highly conserved motifs in

the promoter sequences of several mouse OR genes that are

necessary and sufficient for singular gene choice (Rothman

et al., 2005; Vassalli et al., 2011). In the case of an M71 OR

minigene, a 7.5-kb DNA fragment accurately recapitulates the

functionality of the gene-targeted M71 locus and imparts an

expression pattern paralleling that of endogenous genes. We

have previously observed the following two highly conserved se-

quences: a single candidate Olfactory-1/Early B Cell Factor

(Olf1/EBF or O/E) binding site and two candidate-LIM homeobox

2 (Lhx2) binding sites (TAATXX or HD)within a 161-bp region. Our

experiments suggested that an HD sequence is critical for regu-

lating the probability for any OR gene to be expressed (Vassalli

et al., 2011).
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Figure 1. Transgenic Approach

(A) Design of the transgene. Top: the transgenic

vector is created using the M71 OR genomic

backbone. Any number of H_21-mer repeats can

be shuttled in the NheI site upstream of the tran-

scriptional start site (TSS), and any OR CDS can

be cloned into the AscI site. An IRES-tauCherry

cassette (PacI) follows the OR CDS. The internal

ribosomal entry sequence (IRES) allows for bicis-

tronic translation and simultaneous expression of

mCherry, enabling the visualization of the olfactory

morphology. Transgenic animals are generated

by pronuclear injection of PmeI (black) digested

DNA. Bottom: comparison of the HD binding sites

in the P and H elements. A gray box highlights the

extended homeodomain homology between the

P and H elements.

(B) 3D rendering of the 21-mer multimerized four

times. Given the fact that a DNA helix turns every

10.5 bp,multimerizationof 21-merpositions theHD

binding sites on the same site of the DNA, allowing

for cooperative binding of transcription factors.

(C) Confocal medial whole-mount view of MOE and MOB from a proof-of-concept 4,M71Ca hemi transgenic mouse, showing the increased numbers of OSNs

expressing M71 (red) and like axons projecting to a big medial glomerulus (arrow). The montage was created by merging a 53 fluorescent image of MOE and an

image of its corresponding MOB.
Analysis of sequences known to strongly influence OR gene

choice such as the mouse H (the homology region that acti-

vates the MOR28 cluster [Serizawa et al., 2003]) and P (a

sequence with high homology to the P3 minimal promoter

[Bozza et al., 2009]) elements have revealed a set of three HD

binding sites (TAATGA) in close proximity to each other, and

an associated O/E site, with one of the HD sites sharing the

same 13-mer AACTTTTTAATGA between them. When a

19-mer containing this 13-mer sequence from the P element

was multimerized nine times (9x19) and placed upstream of

the MOR23 transgene backbone, modest increases in cell

numbers were observed in 3/17 transgenic founders. Because

analysis of chimeric P/P3 promoter transgenes suggested

that DNA spacing of the HD might influence OR gene choice

(data not shown), we designed a gene choice enhancer consist-

ing of various multimers of a 21-bp sequence from the H

element (ACATAACTTTTTAATGAGTCT), each covering two

DNA turns of 10.5 bp and thereby allowing for maximum coop-

erativity of transcription factors, resulting in a radical increase in

expression of any cloned OR CDS, which was never obtained

with the 9x19 transgenic approach. We refer to these designer

mice as ‘‘MouSensors.’’

We provide a genetic platform, which increases the total pop-

ulation of OSNs expressing a specificOR, enabling us to robustly

study OR gene choice, axon identity, and odor coding simulta-

neously in its intact in vivo environment. Importantly, we show

that we can also express human ORs in large numbers of mouse

OSNs in our MouSensors, providing a breakthrough technology

to crack the human olfactory code.

RESULTS

The MouSensor Transgene
Using the previously described M71 minigene (Rothman et al.,

2005), we re-designed the transgenic vector in a modular
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way such that any number of the 21-bp enhancer sequence

(ACATAACTTTTTAATGAGTCT) and any OR CDS of interest

can be cloned (Figure 1). The addition of a bicistronic reporter al-

lows for the visualization of the olfactory neuronal morphology.

Effect of 21-mer Multimerization on the Organization of
the Olfactory System
Here we tested the effect of our newly designed enhancer

element on increasing the probability of OR gene choice. We

performed an initial analysis of variousM71 transgenic lines con-

taining 0, 1, 2, 3, or 4 multimers of the 21-mer sequence (Table

S1). We conclude that less than 50% of germline animals con-

taining fewer than four 21 multimers show expression of the

cloned OR and none of them are robust expressers. On the con-

trary, all 4x21 M71 lines generate robust increased expression

(3/3 germline animals); we have bred two 4x21-M71 lines

(4,M71Ca and b) for further analysis.

Subsequently, we assessed whether the copy number of

the transgenes insertions influences the rate of OR expression

by real-time qPCR as previously described (D’Hulst et al.,

2013) and found no correlation between the expression level

and copy number. Hemizygous 4,M71Ca contain �15 copies,

whereas hemizygous 4,M71Cb showed �24 copies. Interest-

ingly, 9 0,M71C founders contained between 5 and 32 insertions

of the transgene, but do not show any robust OR expression

(Tables S1 and S2). We hypothesize that our 4x21 enhancer

is able to recruit factors that can modulate the chromatin envi-

ronment and, as such, promotes specific OR expression when

randomly inserted in the genome.

To contrast the effect of increasing choice of theM71OR in the

4,M71Ca line on the expression level of the ‘‘endogenous’’ M71

OR on axon guidance and identity, we crossed this line to M71-

IRES-tauGFP mice gene targeted at the M71 locus (M71-GFP,

129 strain) (Feinstein et al., 2004). This established a new mouse

line that is either homozygous for M71-GFP (M71-GFP�/�,



Figure 2. Molecular Characterization of the

4,M71Ca MouSensors

(A) Confocal picture of a dorsal whole-mount

MOB of 4,M71Ca homo; M71G�/� showing M71

glomeruli in red.

(B) Red axons (from the M71 transgenic OSNs)

and green axons (from the M71 gene-targeted

OSNs) co-converge onto the same M71 glomer-

ulus, showing intact axon guidance in the M71

MouSensors (B3, overlay).

(C) Real-time qPCR with hydrolysis probes. Left:

Omp (encoding the olfactory marker protein, ex-

pressed in all mature OSNs) RNA levels are equally

expressed between 4,M71Ca hemi andWT (0.98-

fold). Endogenous RNA levels of M71-GFP are

significantly increased 3.89-fold in the 4,M71Ca

hemi line, suggesting that increasing the proba-

bility of choice of M71-mCherry affects the

endogenous RNA levels of M71 as well. The level

of M71-mCherry RNA is significantly increased by

�12-fold when compared to M71-GFP levels

within the 4,M71Ca hemi line and by �45-fold

when compared to M71-GFP levels in the WT.

(D) Coronal cryosection (253) of the MOE of a

4,M71Ca hemi animal showing conserved mono-

allelic expression, i.e., red and green cells never co-

express. M71-GFP positive OSNs and axons are

indicatedwithagreenandwhitearrow, respectively.

(E) Confocal images of OB tissue (cryosectioned coronally) of F1 offspring of a cross between our 4,M71Ca hemi and YFP-g mice (JAX Mice Database,

strain: 014130) showing normal mitral cell innervation (green, E2) of the M71 transgenic glomerulus (red, E3).
henceforth known as WT) or homozygous for M71-GFP and

hemizygous or homozygous for the M71-IREStauCherry trans-

gene (4,M71Ca+/0;M71-GFP�/� or 4,M71Ca+/+;M71-GFP�/�

henceforth known as 4,M71Ca hemi or homo, respectively). In

our 4,M71Ca line, the increase of OSNs expressing the M71

OR results in the coalescence of labeled axons onto one lateral

glomerulus and one medial glomerulus per OB side (Figure 2),

which are significantly larger (calculated spherical radius of

80–100 mm) than typical glomeruli (radius of �33 mm [Bressel

et al., 2016]). We confirmed the linear correlation between the

number of OSNs expressing a given OR and the total volume

of corresponding glomeruli in the OB, by performing real-time

qPCR to quantify M71 OR expression in the MOE (Figure 2;

Tables S4 and S5). We find that the level of M71-Cherry RNA is

significantly increased by �12-fold (p < 0.01) when compared

to M71-GFP within the hemi 4,M71Ca line and by �45-fold

(p < 0.01) when compared to M71-GFP in the WT line. This

apparent discrepancy is explained by the fact that the expres-

sion of the gene-targeted M71-GFP is 3.89-fold higher in the

4,M71Ca hemi animals when compared to the WT animals

(p < 0.01). These numbers suggest that increasing M71-Cherry

RNA levels help stabilize the endogenous M71-GFP RNA levels

early in development in the 4,M71Ca line, instead of cannibal-

izing their ability to be chosen, leading to an increase in endog-

enous M71 transcripts in the 4,M71Ca animals. This model is

supported by the fact that OSNs are interdependent in maintain-

ing axonal projections (Ebrahimi and Chess, 2000). Importantly,

we show that we have not changed the total number of mature

OSNs in the 4,M71Ca animals (real-time qPCR shows that olfac-

tory marker protein [omp] RNA levels are not changed between
4,M71Ca and WT animals [Figure 2]). This real-time qPCR anal-

ysis together with calculations of the total glomerular volume

(TGV) using 4,M71Ca MOE sections (data not shown) allow us

to estimate the total increase in M71 OR expression in 8-week-

old hemi 4,M71Ca animals to about 1% of the total OSN popu-

lation as compared to 0.02% in WT animals, assuming a total of

10 million total OSNs (Bressel et al., 2016).

Finally, because glomerulus-like structures may form in

absence of postsynaptic olfactory neurons (Bulfone et al.,

1998), we assessed whether the postsynaptic bulbar circuitry

necessary to convey olfactory sensory information to the higher

cortical regions remains intact (Belluscio et al., 2002). Therefore,

we crossed an existing YFP-g transgenic mouse line (in which

30% of the postsynaptic mitral cells are labeled in yellow) to

the 4,M71Ca line to visualize mitral cell dendrites (Figures 2

and S1). We establish that mitral cell innervation of the M71

glomerulus appears to be unchanged, as dendrites from post-

synaptic mitral and tufted cells are present.

Singular Gene Expression in the 4,M71Ca Line
Monogenic and monoallelic expression of OR genes is a prereq-

uisite for proper function of the olfactory system. Therefore, we

assessed whether this mechanism of singular gene choice is

maintained in our 4,M71Ca MouSensors.

Using coronal cryosections of the MOE of 4,M71Ca hemi an-

imals, we have counted a total of 4,754 Cherry-positive cells ex-

pressing theM71 4x21 transgene and 221 GFP-positive cells ex-

pressing the M71-GFP gene-targeted mutation; none of the red

cells co-express the green marker in the MOE, suggesting that

the 4x21 M71 transgene maintains monogenic expression
Cell Reports 16, 1115–1125, July 26, 2016 1117



(Figure 2). In addition, confocal imaging of the OB of these

animals reveals co-convergence of Cherry-positive and endoge-

nous GFP-positive axons onto the same isotypic M71 glomer-

ulus (Figure 2), showing that OSNs expressing the M71 trans-

gene have the same axonal identity as endogenous M71 OSNs

(represented by the GFP-tagged mutation). Axonal identity

strictly correlates with the most abundant OR expressed in an

OSN (Bozza et al., 2002), thus it is unlikely that other ORs are en-

riched in 4,M71Ca OSNs. Moreover, it is improbable that the

level of M71 RNA transcripts is elevated in the 4,M71Ca OSNs

as they coalesce with M71-GFP axons; this is consistent with

our previous observations that axons of OSNs expressing

MOR23 from the 9x19 transgene co-converge into the same

glomeruli as axons of OSNs expressing MOR23 from the endog-

enous locus (Vassalli et al., 2011) and our acute awareness that

subtle changes to OR levels have dramatic effects on axon iden-

tity (Zhang et al., 2012).

In Vivo SynaptopHluorin Imaging of Glomerular Activity
Our MouSensor approach provides us with the opportunity to

answer a long-standing question in the field of olfaction: What

is the effect of increasing axonal input to a single glomerulus

on odor responses and behavior?

Because the M71 OR is dorsally expressed in the OB, any

cloned OR using the M71 transgenic backbone will coalesce

its axons onto dorsally located glomeruli, which makes them

accessible for optical imaging. To functionally examine the trans-

genic M71 projections in the OB, we imaged odor-evoked activ-

ity from the OBs of mice expressing the genetically encoded ac-

tivity reporter synaptopHluorin (SpH) in all mature OSNs (Bozza

et al., 2004). We recorded from mice that were either hemi or

homo for 4,M71Ca (gene-targeted M71-GFP is out crossed)

and heterozygous for SpH and identified the fluorescent

glomeruli by thinning the bone overlying the OB. We used nine

different M71-selective ligands from ex vivo analysis of geneti-

cally defined M71 OSNs in gene-targeted mice (Zhang et al.,

2012): three of these ligands produced robust responses by

SpH imaging: Acetophenone (ACP), 4-Methylacetophenone

(4MACP), and 2,4-Dimethylacetophenone (24dMACP) when

delivered at different odor dilutions (in nitrogen [N2]) varying be-

tween 0% and 15% (Figures 3 and S2).

M71 Ligands Show the Same Efficacy but Different
Apparent Affinity in Hemizygous 4,M71Ca Animals
In 4,M71Ca hemi animals, the average highest (dF/F)max is

3.63% for ACP (n = 7 glomeruli at 1.33 mM), 4.48% for 4MACP

(n = 9 at 0.69 mM), and 4.15% for 24dMACP (n = 7 at 0.66 mM).

These results show that all three compounds cause a similar ef-

ficacy (i.e., average (dF/F)max: maximum response obtained by

a compound) in terms of M71 OR activation (a one-way ANOVA

comparing the highest (dF/F)max values between hemi animals

did not reveal any significant differences). However, the apparent

affinity of the M71 OR for 4MACP and 24dMACP is significantly

higher than ACP since the latter two compounds start activating

the M71 glomerulus at a lower concentration (Figures 4 and S2,

triangles). For example, when delivered at the same concentra-

tion (i.e.,�0.70mM), efficacy for ACP (0.73%, n=4) is significantly

lower than the efficacy for both 4MACP (4.48%, n = 9, p < 0.0001)
1118 Cell Reports 16, 1115–1125, July 26, 2016
and 24dMACP (4.15%, n = 7, p < 0.0001). Hence, similar odor ef-

ficacy is observed at lower concentrations for both 4MACP and

24dMACPwhencompared toACP responses in thehemi animals

(Figures 4 and S2).

Increasing the Number of OSNs Expressing M71
Changes the Efficacy for Both High- and Low-Affinity
Ligands
In 4,M71Ca homo animals, the highest efficacy for ACP is 4.57%

(n = 14 at 2.66 mM), 3.82% for 4MACP (n = 16 at 0.69 mM), and

4.92% for 24dMACP (n = 7 at 0.44 umM). To assess the influence

of both genotype and concentration on the (dF/F)max, we per-

formed a two-way ANOVA statistical analysis for each odor data-

set. For all odors tested, we see a significant effect of the concen-

tration on the response; ACP: p = 0.0002, 4MACP: p = 0.0003,

and 24dMACP: p < 0.0001. For ACP and 24dMACP, we also

see a significant effect of the genotype on the response, i.e.,

ACP: p = 0.008 and 24dMACP: p = 0.0018. However, the interac-

tion between genotype and concentration is not significantly

different for both odors. This observation can be explained by

the fact that we only see significant differences between hemi

and homo at specific concentrations of both ACP and 24dMACP

and not at all concentrations tested (Figure 4, boxed). Indeed,

when ACP is delivered at 0.71 mM in the homo group, the efficacy

is 3.00% (n = 6), which is significantly higher (p < 0.05) than

the response at the same concentration in the hemi group

(0.73%, n = 4), reflecting a change in apparent affinity for this

ligand when increasing the number of M71 expressing neurons.

Moreover, at the highest ACP concentration we delivered (i.e.,

2.66 mM), the homo response is also significantly higher than

the hemi response (4.57%, n = 14 versus 3.46%, n = 9,

p < 0.05). For 24dMACP, we see a significant increase in efficacy

at 0.44 mM (4.92% [n = 7] versus 2.92% [n = 4], p < 0.01) when

comparing the homoand the hemi group. In addition, the average

efficacy (of all concentrations and odors) is significantly different

between 24dMACP and 4MACP in homozygous animals (4.92%

versus 3.83%, p = 0.0272), even though they show practically

the same dose response in the hemi group (Figures 4 and S2).

Thus, further increasing the number of neurons (from hemi

to homo) expressing the M71 OR changes the efficacy of

24dMACP, empirically identifying it as the higher-affinity ligand.

In conclusion, given a defined number of OSNs expressing

M71, saturation of the glomerular response is reached at certain

concentrations of a given odor. However, this saturation

response is not determined by a specific subset of OSNs ex-

pressing one OR type. In our study, the use of an in vivo anesthe-

tized preparation using SpH imaging is sufficient to support our

observation that 4,M71Ca glomeruli are functional and that

more neurons increase glomerular response. There are no pub-

lished studies that systematically examine the effects of anes-

thetics on SpH imaging, which is likely a more accurate repre-

sentation of OSN response since its signals are clearly based

on synaptic vesicle fusion while the signals for intrinsic signal im-

aging are a bit more ambiguous. It is unlikely that unstable anes-

thesia is the basis for the observed changes in glomerular activa-

tion, but rather it is more likely a consequence of interglomerular

circuitry, which has been shown to exhibit lateral effects on

glomeruli within the region (Wilson and Mainen, 2006). Since



Figure 3. In Vivo SynaptopHluorin Imaging:

M71 Transgenic Glomerulus Is Activated

by Known M71 Ligands

Green panels show the resting SpH fluorescence

imaged through dorsally thinned bone (M71

glomerulus shown in red). Pseudocolored panels

show the mean dF/F (%) response during the odor

stimulus period (4 s). Anterior is up.

(A) Right bulbar area of a 4,M71Ca hemi mouse

showing activation of the M71 glomerulus (red

arrow) and recruitment of other glomeruli upon

presentation of different concentrations (7.5%–

15%) of ACP and 4MACP. Note the difference in

actual delivered vapor concentration (at the same

odor dilution) between the odors due to their

different saturated vapor pressures (Table S3).

(B) Left bulbar area of a 4,M71Ca mouse (hemi 2)

showing glomerular activation by 24dMACP. M71

glomerulus is indicatedwith red arrow. A blank trial

(0%) is shown on the top left.

(C) Glomerular activation by ACP and 4MACP of a

homozygous 4,M71Ca mouse. The dotted lines

demarcate the edges of the left olfactory bulb.

Both ACP and 4MACP activate the Class II domain

of the dorsal bulb (including the red M71 glomer-

ulus). Left bottom panel shows glomerular acti-

vation by propyl acetate (PA, 7.5%), indicating that

our 4,M71Ca mouse line is still able to detect

‘‘non-M71 ligands’’ as well.

(A–C) Responses are not confined to the M71

glomerulus alone. White arrows show other

glomeruli that are more strongly activated than the

M71 glomerulus (red arrow), by low concentra-

tions (7.5%) of ACP (1.33 mM), 4MACP (0.35 mM),

and 24dMACP (0.33 mM), suggestive of the exis-

tence of ORs with higher affinity for all odors

tested.
SpH imaging reflects only the activity of OSNs, the lateral inhibi-

tion from neighboring glomeruli associated with changes in odor

concentration may produce a sudden decrease in fluorescence

in some glomeruli while others become active. By contrast, ex-

periments in awake-behaving animals are highly susceptible to

a variety of top-down signals from higher brain regions (Blauvelt

et al., 2013). These centrifugal signals originate from various

brain regions and can clearly modify the odor response (Liu

et al., 2015; Rothermel et al., 2014), which in turn alters or could

potentially mask different aspects of the pure OSN odorant

evoked signal, which we are testing here.

Ex Vivo versus In Vivo Ligand Profiling
In our setup, odors are delivered from the headspace of odor

saturator vials containing 99% pure odorants and flow-diluted

with air (N2) prior to delivery to the anesthetized animal. The

molar vapor concentration (mM) reaching the animal’s nose is
Cell R
therefore determined by odorant-satu-

rated vapor pressure (Ps), which can

differ dramatically between odorants.

For example, 15% air dilution of ACP

(Ps = 0.3260 mmHg at 25�C) generates
2.66 mM concentration in air, while
4MACP and 24dMACP (Ps = 0.0849 and 0.0811, respectively)

are delivered at 0.69 mM and 0.66 mM, respectively (Table S3).

We compared in vivo responses with previous ex vivo data

(Zhang et al., 2012), by initially analyzing nine different odors

that did (Benzaldehyde [BA], Ethylmalthol [EM], 2-Amino-aceto-

phenone [2AACP], ACP, 4-Metoxyacetophenone [4MOHACP],

4MACP, and 24dMACP) or did not (Methylbenzoate [MB] and

Menthone [M]) elicit an M71 response through ex vivo patch

clamping of dendritic knobs when delivered in liquid phase.

We only observed glomerular activity with ACP, 4MACP, and

24dMACP. There are two reasons for these findings: the odor

is not delivered at a high enough concentration and/or the odor

may not generate a high enough activation within OSNs. We

find that the minimal Ps necessary to be able to elicit a response

in vivo is 0.0811 mmHg (which is the Ps of 24dMACP; Figure S3).

4MOHACP (a high responder ex vivo; Ps = 0.0133 [< 0.0811]

mmHg) and BA (a low responder ex vivo that has the highest
eports 16, 1115–1125, July 26, 2016 1119



Figure 4. Individual Odor Response Profiles

of In Vivo Glomerular Imaging of M71

MouSensors: 4,M71Ca

(A–C) Responses for ACP (gray; A), 4MACP (green;

B), and 24dMACP (orange; C). The odor concen-

tration, presented as the calculated vapor con-

centration (mM), is indicated on the log x axis. The

average max dF/F (%) is indicated on the y axis.

Each data point represents the average (dF/F)max

for 4–16 glomeruli. Error bars represent the SEM.

Triangles indicate responses from hemizygous

animals, and red circles indicate homozygous

animals. Asterisks indicate homozygous re-

sponses that are significantly higher than hemi-

zygous responses when the animals are pre-

sented with the same odor concentration (using a

Student’s t test). All imaged mice are heterozy-

gous for omp-SpH.
Ps of all odors tested; = 1.0100 mmHg at 25�; Figure S3) do not

show glomerular activation in vivo. Hence, we suggest that when

the minimal Ps requirement is met, a minimum current amplitude

(pA) M71 response (ex vivo) is necessary for an odor to activate

M71 glomeruli in our SpH imaging setup; this is the so-called

‘‘sweet spot’’ for generating an in vivo response (black dashed

line in Figure S3). To further test this hypothesis, we imaged

one additional 4,M71Ca hemi animal with two extra M71

ligands (i.e., Propiophenone [PP] and 2-Hydroxyacetophenone

[2OHACP]; Figure S3) that generate similar responses ex vivo

when delivered in liquid, but have a different Ps (PP: 0.149000

and 2OHACP: 0.07020, respectively); only 2OHACP elicited a

response in our hands (data not shown), even though it has a

lower Ps. This suggests that 2OHACP is a better ligand, which

reinforces our point that the Ps must be considered when as-

sessing the strength of a ligand; thus, the best in vivo odors

will have the combination of maximum ex vivo responses and

lowest Ps value. For the M71 OR, it is 24dMACP.
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Odor Detection Threshold in a
Two-Bottle Discrimination
Behavioral Task
Sensitivity studies performed in Wistar

neonate and adult rats have shown that

the highest sensitivity to an odor (lowest

threshold) correlates with the highest

OSN density in the MOE (Kraemer and

Apfelbach, 2004). Therefore,we assessed

whether detection of the most robust

M71 ligand is amplified in our 4,M71Ca

MouSensor line. We use an avoidance

task in which the odorant 24dMACP is

added to drinking water and becomes an

aversive stimulus associated with injec-

tion of lithium chloride (LiCl), a compound

known to induce gastric malaise (Cheng

et al., 2013). We chose to use 24dMACP

because SpH imaging with this odor

produced the greatest responses of any

odor tested at low concentrations and
this level could be altered with increasing numbers of M71 ex-

pressing neurons. After conditioning homo 4,M71Ca animals

and their WT littermates to water containing a 10�4 dilution of

24dMACP, the animals are given the choice between plain water

and water with decreasing concentrations of 24dMACP (10�4,

10�6, 53 10�7, and 10�7). Note that all tested animals are homo-

zygous forM71-GFP, so evenWTones have a functionalM71OR.

The results are presented as a preference index (PI) for the

odorized water for each group of animals, which is calculated

as the amount of the odorizedwater consumed divided by the to-

tal amount of liquid (odor and no-odor water) consumed over a

24-hr time period (Figure 5A). A PI of 50% reflects no preference

of the animal. After conditioning, both WT and 4,M71Ca homo

animals show a clear aversion toward 10�4 and 10�6 dilutions

of 24dMACP reflected through an average PI for 24dMACP.

However, when 24dMACP is delivered at 10�7, all animals fail

to detect the presence of the odor with an average PI of

45.38% for the WT (n = 8) and 58.76% for the homozygous



Figure 5. Behavioral Avoidance Assay Us-

ing a Two-Bottle Odor Discrimination Task

to Test Enhanced Sensitivity of Specific

MouSensors

The ratio of the odorized solution consumed to the

total solution consumed expressed as a percent-

age (preference index [PI]) is shown on the y axis

and represents the preference of the animals for

water containing the odor. A dotted horizontal line

indicates a PI of 50%, where animals do not have a

preference for either odor presented. Error bars

represent the SEM. The x axis shows the dilution of

the odorized solution on a logarithmic scale. The

blackarrow indicates the time;micewere trained for

several days starting at highest odor concentration

and then were given the choice between drinking

from a non-odorized solution or a solution contain-

ing the odor in the ‘‘training’’ dilution, which is the

day 1 time point. Subsequently, every 24 hr (days 2,

3, and 4) the concentration of the odorized solution

was lowered, respectively, until no preference was

observed between drinking either solution.

(A) 4,M71Ca MouSensor. Comparison of

4,M71Ca homo (n = 8) with WT controls (n = 8) in

detecting the high-affinity M71 ligand, 24dMACP.

Homo animals show a 0.3-log decrease in

detection threshold (*t test)

(B) 5,M71Ca MouSensor. Comparison of

5,M71Ca hemi (n = 9) with WT controls (n = 8) in

detecting the high-affinity M71 ligand, 24dMACP.

Hemi animals show a 0.3-log decrease in detec-

tion threshold (*t test).

(C) 5,OR1A1Cb MouSensor. Comparison of

5,OR1A1Cb hemi (n = 12) with their WT littermates

(n = 7) in detecting the high-affinity OR1A1 ligand

(�)-Carvone. Hemi animals show a 2-log decrease

in detection threshold for the 5,OR1A1Cb

MouSensor (*t test).
animals (n = 8). This suggested that if the sensitivity of these M71

MouSensors were changed, the threshold would be between

10�6 and 10�7. Indeed, the PI of the WT group is significantly

higher than the PI of the mutants at dilution 5 3 10�7 (55.32%

versus 28.83%, p < 0.05), showing that while theWT fail to detect

the odor at 5 3 10�7, the MouSensors still show aversion

behavior and thus still smell 24dMACP. Importantly, the WT an-

imals also show a lower PI for the odorized water at 10�4 than at

5 3 10�7 (9.88% versus 55.32%, p < 0.001), indicating that the

behavioral difference is most likely a result of the increased abil-

ity of the MouSensors to detect the odor rather than a learning

deficiency in the WT (Figure 5A, gray bars). As a reference, a

10�6 dilution of 24dMACP corresponds to 6.46 mM, a concentra-

tion that can be easily detected by both homo and WT animals

and does not cause an aversive response by itself (the PIs for

drinking water containing 10�6 of 24dMACP for naive, uncondi-

tioned mice are as follows: WT: 60% ± 7.72 [n = 5] and homo:

59%. ± 1.94 [n = 5]). In our imaging studies, non-M71 glomeruli
Cell R
could respond to ACP, 24dMACP, and

4MACP; however, response rates for

24dMACP were more robust for M71

and did not easily desensitize, suggesting
that for a given ligand-OR pair, behavioral differences can be

observed.

M71 MouSensors Do Not Have a Monoclonal Nose
Given the fact that the 4,M71Ca MouSensor animals express

the M71 OR in �1%–2% of the their OSNs, our transgenic

M71 line is different from the animals generated by Fleischmann

et al. (2008), where the neural representation of odors was

altered significantly by decreasing expression of most ORs by

95% and replacing them with M71, creating animals with a

monoclonal nose. Despite their observation that ACP (weakly)

activated most OSNs and glomeruli, odor discrimination and

performance in associative learning tasks is impaired in these

animals. One possible explanation for this behavior is that broad

uniform activation (such as in the monoclonal nose) may cause

lateral inhibition through intricate feedback mechanisms (at the

level of detection and/or perception) and ACP may be detected

as olfactory ‘‘noise.’’ In this regard, many small glomeruli could
eports 16, 1115–1125, July 26, 2016 1121



Figure 6. Versatility of the MouSensor

Platform

Left: confocal images of the medial whole-mount

view of the MOE with OSNs projecting their axons

to glomeruli in the MOB. Each montage was

createdbymerging a 53 fluorescent imageofMOE

and an image of its corresponding MOB. Right:

coronal cryosectionsof theMOE.OSNsexpressing

the transgenic M71 OR are labeled in red.

(A) 4,M71Ca hemi; M71G�/� (p25).

(B) 5,M71Ca hemi;M71G�/� (p27). Red OSNs are

abundantly present in the MOE, and their axons

co-converge onto glomeruli that are not confined

anymore to the dorsal zone.

(C) 5,OR1A1Cb hemi mouse (p31). Red OR1A1

axons are abundantly present in the MOE, and

several stable glomeruli are formed in the OB (see

Figure S5B). Since OR1A1 is a human OR, we

cannot gene target the endogenous gene for

OR1A1 in the mouse with a GFP reporter to

compare expression levels (like we did for theM71

MouSensor), hence the absence of green in the

bottom panels.
be disadvantageous compared to fewer very large glomeruli

(which are observed in our 4,M71Ca line) and patterned activa-

tion may be necessary for signal detection. On the other hand,

by reducing the representation of endogenous OR genes by

20-fold, they may have ablated the high-affinity OR for ACP as

well (e.g., Olfr145; von der Weid et al., 2015). The latter explana-

tion is supported by the fact that we, and others (Zhang et al.,

2012), have shown that ACP is not the best ligand for M71. In

support of this notion, Nguyen and Ryba (2012) showed that

overrepresentation of the I7 OR in mice does increase their

sensitivity to a high affinity odor, octanal.

MouSensor: A Versatile Platform
To assess the effect of further increasing the number ofmultimers

as a ubiquitous enhancer on the number of OSNs choosing to ex-

press any cloned OR, we additionally created MouSensors con-

taining five 21-mers for twomouseORs,M71, andMOR122-2. All

founders for 5,M71C (6/6) and one germline animal, 5,M71Ca,
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showhigh levels ofM71expression (Table

S1) and formglomeruli in the bulb (Figures

6B and S4). In addition, all five germline

animals for 5,MOR122-2 showhigh levels

of expression for MOR122-2, three of

which are shown in Figure S5. Based

on our TGV calculations using 5,M71Ca

sections (Bressel et al., 2016), we find

that adding an extra 21-mer to the M71

MouSensor transgene increases the

number of OSNs expressing the M71 by

1.5-fold to about 1.6% of the total OSN

population in hemi animals (Figures 6A

and 6B). Importantly, this increased num-

ber appears to be a result of multimeriza-

tion and not of increased copy number of

the transgene in the genome (�16 times

for 5x21 M71 versus �15 for the 4x21 M71 transgene; Table

S2). In addition, using 35 coronal cryosections from the MOE of

6.5-week-old 5,M71C hemi animals, we did not observe any

coexpression of 52 green cells among a large population of red

cells (too numerous to get an accurate count; Figure 6B). These

data show that adding five 21-mers maintains singular gene

expression in OSNs. Based on current models of singular gene

choice, this choice enhancer can still be suppressed in a large

number of neurons and should be a target of silencing in

non-cherry cells. We now have a model system for testing the

role of CDSs or other genomic sequences for its capacity to be

silenced (Magklara et al., 2011).

To compare specific odorant sensitivity between the 5,M71Ca

and the 4,M71Ca line, we performed the two-bottle discrimina-

tion behavioral task with 24dMACP as described above (Fig-

ure 5B). In summary, we find that at dilution 53 10�7 the average

PI of the 5,M71Ca group (n = 9) is 19.62%, which is significantly

(p < 0.01) lower than the PI of theWT group (n = 8; 55.32%). Even



though we observe the same but slightly more significant 0.3-log

decrease in odorant detection threshold in the 5,M71Ca line, it

is important to mention that we used 5,M71Ca hemi animals,

which have �1.6% of their OSNs expressing M71 (similar to the

4,M71Ca homo animals with �2% M71 expressing OSNs).

It is important to note that we are not performing precise odor-

thresholding based on number of OSNs. However, it would be

interesting to develop a series of M71 neuronal representations

and determine how their glomerular responses and behavioral

changes correlate. In addition, it is unlikely that our results are

due to increased OSN responses from associative learning as

the vast excess of M71 OSNs far outnumbers any change previ-

ously observed from this learning paradigm (Kass et al., 2013).

Decode Human Olfaction
To further evaluate the versatility of this platform,wehavecloneda

human OR using the 5x21 M71 transgenic backbone and suc-

cessfully increased the probability of choice of expression of

OR1A1. Both germline animals (5,OR1A1C b and d) show robust

expression of the human OR1A1 receptor in the MOE and stable

glomerular formation in theOB(oneofwhich isshown inFigures6C

and S5). Real-time qPCR reveals a �12-fold increase of OR1A1

RNA in the 5,OR1A1Cb hemi animals when compared to the

M71 RNA levels in the 4,M71Ca hemi line, which translates into

anestimated total of�13%ofOSNsexpressing thisOR(assuming

a total of 10 million OSNs in 8-week-old animals). Again, omp

levels were not changed. Clearly, the representation of some

ORs must be decreased to explain this equilibrium (Serizawa

et al., 2003). As was observed with the 4,M71Ca line, we find

that monoallelic expression remains intact even in a MouSensor

line containing large numbers of OSNs expressing OR1A1, by

crossing the 5,OR1A1Cb to the M71-GFP line. None of the red

axons (expressing OR1A1) coalesce onto green glomeruli (ex-

pressing M71); instead both ORs project their axons to distinct

glomeruli (Figure S6). In addition, in vivo SpH imaging (data not

shown) of the OR1A1Cb line also shows functional glomerular

activation with its known ligand (�)-Carvone (Saito et al., 2009).

In the 4,M71Ca homo animals and 5,M71Ca hemi animals, a

mere 2-log increase in M71 expressing OSNs leads to a signifi-

cant 0.3-log change in threshold. Therefore, we hypothesize

that further increasing the neuronal representation of specific

ORs may decrease detection thresholds even more. We have

tested this hypothesis using our established two-bottle behav-

ioral avoidance task with the 5,OR1A1Cb MouSensors (Fig-

ure 5C). We conditioned 5,OR1A1Cb hemi animals (n = 12)

and their (WT) non-transgenic littermates (n = 7) to water contain-

ing a 10�4 dilution of (�)-Carvone. For 4 consecutive days, ani-

mals were given the choice between plain water and water

with decreasing (10�4, 10�6, 10�7, and 10�8) dilutions of (�)-Car-

vone (Figure 5C). Both groups (WT and hemi) show clear aver-

sion toward a 10�4 dilution of (�)-Carvone (average PI WT =

6.17% and average PI hemi = 10.26%), reflecting successful

conditioning. Both WT (average PI = 55.52%) and hemi (average

PI = 47.88%) cannot detect a 10�8 dilution of (�)-Carvone.

At 10�6 and 10�7, however, there is a clear difference in detec-

tion between WT and hemi (10�6: average PI WT = 27.65%

versus average PI hemi = 11.38, p < 0.01 and 10�7: average PI

WT = 53.88% versus average PI hemi = 30.24, p < 0.05). These
findings indicate that expressing OR1A1 in about 13% of the

OSNs translates into a 2-log decrease in (�)-Carvone detection

thresholds. However, a delicate balance must exist between cell

number and sensitivity (Fleischmann et al., 2008). Again, the WT

animals show significantly lower PIs for the odorized water at

10�4 than at 10�6 (6.17% versus 27.65%, p < 0.01) and at

10�7 (6.17% versus 53.88%, p < 0.0001), indicating that the

behavioral difference is most likely a result of the increased

ability of the mutants to detect the odor rather than a learning

deficiency in the WT (Figure 5C). In addition, we find that

5,OR1A1Cb hemi and WT (n = 5 for both groups) do not show

detection threshold differences toward a non-OR1A1 ligand after

being conditioned toward 24dMACP (data not shown), which

proves that the effect we observe is ligand-specific.

Conclusions
We observe that placing specific HD elements in close proximity

to OR genes favors dramatically increasing the probability that

OR promoters are chosen. It has not escaped our attention

that the MouSensor transgenic platform is an invaluable tool to

further study and refine the mechanisms of singular gene choice

and axonal identity. Being able to generate any OR MouSensor

opens up an array of translational applications as well. We

have produced biosensors with an enhanced inherent sense of

smell, which can be applied to address global health and safety

challenges such as identification of explosives, contraband

searches, and odor-based disease diagnosis (He et al., 2015).

Moreover, training of these MouSensors, or for that matter, Rat

or DogSensors, in odor-detection tasks will be significantly

shorter and more efficient because of the selective amplification

of detection for a given subset of odors. In addition, the possibil-

ity to express human ORs in large numbers of mouse OSNs us-

ing the MouSensor technology provides a breakthrough in vivo

approach to finally crack the olfactory code.

EXPERIMENTAL PROCEDURES

Subjects

Mice used in this study were bred andmaintained in the Laboratory Animal Fa-

cility of Hunter College, CUNY. The Hunter College IACUC approved all proce-

dures. Animal care and procedures were in accordance with the Guide for the

Care and Use of Laboratory Animals (NHHS Publication No. [NIH] 85-23). The

omp-synaptopHluorin mice were a kind gift from Dr. Thomas Bozza (North-

western University, Chicago).

MouSensor Transgene

Using the M71 transgene backbone as described in Vassalli et al. (2002) and

Rothman et al. (2005), including 485 bp of the M71 promoter upstream of

the transcription start site (TSS) (Figure 1), we created a modular version of

this transgenic vector such that any number of a 21-bp singular gene choice

enhancer can be shuttled into the NheI site at position �485. Any OR CDS

of interest can be cloned into the AscI site, and any IRES-Reporter cassette

can be cloned into the PacI site. An internal ribosomal entry site (IRES) allows

for bicistronic translation and simultaneous expression of a reporter gene. The

transgenic animals that express the nx21-OR-IRES-Reporter transgenes are

referred to as MouSensors. A detailed description of the x21 cloning strategy

is provided in the Supplemental Experimental Procedures.

Genotyping

Presence of 4X21-M71-IRES-tauCherry transgene was assessed by PCR by

scoring for the tauCherry gene with the following primers: FWD: 50-CCCTGGA
Cell Reports 16, 1115–1125, July 26, 2016 1123



CAACATCACAC-30 and REV 50-CCCTCCATGTGCACCTTGAAGCGCA-30. To
distinguish between hemi and homo 4,M71Ca animals, we used a real-time

qPCR method that was previously described (D’Hulst et al., 2013). Presence

of the M71-IRES-tauGFP gene-targeted allele was determined by using

primers to detect GFP: FWD 50-CCCTGGACAACATCACAC-30 and REV 50-
CGTTTACGTCGCCGTCCAGCTC-30 and primers to detect the WT M71

allele with FWD 50-CCGCACTGGACAAAACACTGAGGAG-30 and REV 50-
CTGTTTCCTGTTCAGAGTTGGGTG-30, allowing us to distinguish between

WT, hemi, and homo animals.

Olfactometry

Odors (Sigma Aldrich) were delivered using a custom built olfactometer

controlled by an Arduino board (https://www.arduino.cc/) with custom

shields (http://mylabtime.blogspot.com) operating Teflon solenoids (Neptune

Research) and connected to two mass flow controllers (Alicat Scientific) to

dilute the clean air (N2, max flow is 2 Lpm) and to dilute the odorized air

(max flow is 300 SCCM). N2 was used as the vapor carrier to avoid oxidation.

Odor concentrations are expressed as % dilutions of saturated vapor and as

molar saturated vapor concentration (mM s.v.), calculated using published va-

por pressures at 25�C (US EPA, Estimation Programs Interface Suite, v.4.0

[Pacifico et al., 2012]). Flow diluted odors were delivered at 2 Lpm mixed prior

to the delivery site with air odorizedwith varying dilutions of odorant taken from

the saturated headspace of pre-cleaned amber vials with white polypropylene

closures and septum (J.G. Finneran) containing 99% pure odorants. To avoid

contamination of the olfactometer, odorized air was never passed through the

Teflon valves. Instead, odors were mixed with N2 in T-shaped mixing cham-

bers (Neptune Research) and delivered to the animal’s nose using an Arduino

controlled vacuum system. Odorized streams carrying different odors did not

come into contact. Output of the olfactometer was calibrated using the tracer

odor Pinene and a photoionization detector (PID; Aurora Scientific).

In Vivo SpH Imaging

Mice 8–12 weeks old were anesthetized using Ketamine (100 mg/kg)/Xylazine

(5 mg/kg) and maintained with Isoflurane (0.8% in O2) and immobilized using

a stereotactic head-holding device (Narishige). Optical signals for SpH and

Cherry were recorded using an ANDOR Neo 5.5 sCMOS camera connected

to a NIKON AZ100 epifluorescence microscope (NIS Elements) with a 43

objective (numerical aperture 0.4). Excitation wavelengths of 475 nm for SpH

and 575 nm for Cherry and emission of 520 nm for SpH and 635 nm for Cherry

were used to obtain images of the dorsolateral bulb through thinned skull over-

laying the bulb of a freely breathing animal. Each imaging trial consisted of a

pre-odor (3 s), odor (4 s), and post-odor (4 s) acquisition, with a total acquisition

time per trial of 14 s (including 3 s of valve switch delay). Using serial code, the

Arduino controlling the olfactometer was integrated in the NIS Elements soft-

ware, so that the entire image acquisition sequence and flow-diluted odor de-

livery is controlled by the microscope’s software (NIS Elements). Two-way

ANOVA andStudent’s t tests were used for statistical analysis. Image process-

ing is described in the Supplemental Experimental Procedures.

Olfactory Behavior Test

A two-bottle discrimination test was performed as previously described (Wy-

socki et al., 1977). Mice 8 weeks old were individually housed and given

food ad libitum but restricted access to saccharin-phthalic acid solution

(2.1 3 10�2 M sodium saccharin and 10�3 M phthalic acid [pH 6.5; SSPA])

for 1 hr twice a day for 2 days before the assay begins. This ensures mice

would commence drinking the solution during the conditioning. On day 3 (con-

ditioning day), mice are exposed to the SSPA solution with 10�4 dilution of

odorized water for 10 min. Immediately after, they are injected with LiCl intra-

peritoneally (15 ml/g body weight of a 0.6 M solution) to induce the aversive

malaise and lethargy state. After 2 hr, mice are returned to their home cage

and given access to two bottles of drinkingwater; they are given the choice be-

tween SSPA solution containing a 10�4 dilution of the odor versus the non-

odorized SSPA solution. During the following 3 days, every 24 hr, the location

of the bottles is reversed and the concentration of the odorized solution is

decreased to 10�6, 10�7, and 0.53 10�6, respectively. Every day both bottles

are weighed to determine the amount of liquid consumed. A PI was calculated

as the amount of odorized solution consumed divided by the total amount of
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water solution consumed for each mouse for every 24-hr test period at each

odor concentration. A t test was performed to test statistical significance,

assuming two-tailed distribution and two-sample unequal variance. Values

are mean ± SEM and are plotted on a log scale. Animals (both WT and trans-

genic) that did not seem to be conditioned after LiCl injections (showing a PI for

24dMACP higher than 20% at 10�4) were excluded from our analysis (i.e., four

WT and two homo). Student’s t tests were used for statistical analysis of the

data.

RNA Extraction and cDNA Synthesis

4,M71Ca hemi animals mice were sacrificed and the MOE tissue

was dissected on a mixture of ice and dry ice. Tissue was snap frozen in

liquid N2 and stored at �80�C. RNA was isolated using the RNeasy Mini col-

umns (QIAGEN, #74104) according the manufacturer’s protocol. Tissue was

homogenized in lysis buffer provided by the kit containing 10 ml b-mercaptoe-

thanol. The concentrations of the isolated RNA samples were measured using

a NanoDrop ND-1000 Spectrophotometer. After RNA extraction, an additional

DNase digestion was performed with a TURBO DNA-free (Life Technologies,

#AM1907) kit to remove all genomic DNA (gDNA) from the sample. First-strand

cDNAwas synthesized using SuperScript III First-Strand Synthesis System for

RT-PCR (Life Technologies, #18080-051). First-strand cDNAwas diluted 1:5 to

a total volume of 100 ml. Refer to Supplemental Experimental Procedures for

real-time qPCR.

Mitral Cell Labeling

Male YFP-g mice (strain: 014130, Jackson Laboratory) were crossed with fe-

male hemizygous 4,M71Ca (also M71-GFP�/�) mice to generate compound

mutant mice. Male offspring that were positive for both YFP and Cherry

were euthanized at 8–12 weeks of age and OB tissue was processed for his-

tological imaging. Images were collected on a LSM510 confocal microscope

(Carl Zeiss) using objectives, Fluar, 103 N.A. 0.5, and PlanNeofluar 403

N.A.1.3.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2016.06.047.

AUTHOR CONTRIBUTIONS

C.D. and P.F. designed the experiments and wrote the paper. C.D. and Y.S.

conducted the in vivo imaging experiments. Y.S. wrote the MATLAB code.

C.D., R.B.M., and A.C. performed the behavioral analysis. P.F., R.B.M., S.J.,

and Z.G. conducted the cryosectioning and imaging. C.D. and Z.G. conducted

the quantitative real-time PCR experiments. D.T. performed genotyping during

MouSensor derivation. S.J. performed the founder analysis. L. Bai and L. Bel-

luscio conducted the mitral cell labeling and immunohistochemistry.

CONFLICTS OF INTEREST

C.D. and P.F. have filed a provisional patent on theMouSensor technology and

have recently founded a company called MouSensor, LLC.

ACKNOWLEDGMENTS

We would like to thank the Hunter College Animal Facility Manager Barbara

Wolin and Veterinarian Patricia Glennon for help in maintaining the transgenic

colony and the Transgenic Core Facility at The Rockefeller University for

generating transgenic founders. We would like to thank Dr. Thomas Bozza

for helping set up SpH imaging and giving advice on the experiments. The

development of the MouSensor technology was made possible by a Research

Centers inMinority Institutions Program grant from the National Institute onMi-

nority Health and Health Disparities (MD007599) of the NIH (SC1 GM088114),

and its contents are solely the responsibility of the authors and do not neces-

sarily represent the official views of the NIMHD or the NIH. Firmenich

https://www.arduino.cc/
http://mylabtime.blogspot.com
http://dx.doi.org/10.1016/j.celrep.2016.06.047
http://dx.doi.org/10.1016/j.celrep.2016.06.047


sponsored other parts of the research. Z.G. is supported by the Hunter College

HHMI UGRAD 52007535.

Received: August 5, 2015

Revised: May 2, 2016

Accepted: June 9, 2016

Published: July 7, 2016

REFERENCES

Belluscio, L., Lodovichi, C., Feinstein, P., Mombaerts, P., and Katz, L.C.

(2002). Odorant receptors instruct functional circuitry in the mouse olfactory

bulb. Nature 419, 296–300.

Blauvelt, D.G., Sato, T.F., Wienisch, M., Knöpfel, T., and Murthy, V.N. (2013).
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