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1. INTRODUCTION 

This paper presents existence results for semipositone higher-order boundary value problems. In 
particular, we discuss the conjugate boundary value problem 

(-v-PY(n)(t) = Pf(t,Y(t)), o<t<1, 

y@)(O) = 0, o<i<p-1, 

y(i)(l) = 0, O<i<n-p-l, 

(1.1) 

where n 2 2, 1 5 p 5 n - 1, and p > 0 are constants. We note that our nonlinearity f may take 
negative values. Problems of this type are referred to as semipositone problems in the literature 
and they arise naturally in chemical reactor theory [l] . Th e constant p is usually called the Thiele 
modulus, and in applications one is interested in showing the existence of positive solutions for 
p > 0 small (see [2] f or a nonexistence result). Most papers [3-71 in the literature discuss (1.1) 
when f takes nonnegative values (i.e., positone problems) and only a handful of papers (see 
[2,8,9] and the references therein) have appeared discussing the semipositone problem. This 
paper attempts to fill part of this gap in the literature. Moreover, our technique should enable 
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the reader to see that other types of boundary data could also be considered. To illustrate this, 
we will also briefly discuss the (n,p) problem 

y’“‘(t) + Pf(4 y(t)) = 0, o<t<1, 
y@)(O) = 0, O<i<n-2, 

y(P)(l) = 0, 

where n 1 2 and 1 5 p 5 n - 1 is fixed. Existence in this paper will be established using 
Krasnoselskii’s fixed-point theorem in a cone, which we state here for the convenience of the 
reader. 

THEOREM 1.1. Let E = (E, ]I. 11) b e a B anach space and let K c E be a cone in E. Assume 
Rr and & are open subsets of E with 0 E Rr and fir c fls and let A : K f~ (fiz\s2,) + K be 
continuous and completely continuous. In addition, suppose either 

IlAull 5 Ilull, for u E K n W, and IlAull 2 Ilull, for u E Kn 8% 

or 
IlAull 2 11~11, for u E K n 801, and IlA~ll I Ilull, for u E K n af12, 

hold. Then A has a fixed point in K n (02\s2,). 

2. SEMIPOSITONE PROBLEMS 

In this section, we first discuss the conjugate boundary value problem 

(-1)yp(t) = pLf(t,y(t)), 0 < t < 1, 

yyo) = 0, o<i<p-1, (2.1) 

y(i)(l) = 0, O<i<n--p-l, 

where n 2 2, 1 5 p < n - 1, and p > 0 are constants. Of physical interest is the existence of 
solutions which are positive on (0,l). 

Before we prove our main result, we first recall two well-known results from the literature which 
will be used in our proof. The first lemma can be found in [3,4] and the second in [lo, p. 181. 

LEMMA 2.1. Suppose y E C”-l[O, 11 n Cn(O, 1) satisfies 

Then 

(-l)“-Py(“)(t) 2 0, for t E (0, l), 

y@)(O) = 0, o<i<p-1, 

y@)(l) = 0, O<i<n-p-l. 

y(t) 2 tpu - t)n-PIYlo, for t E [0, 11; 

here IYIO = su~~elo,rl Iy(t)l. 
LEMMA 2.2. The boundary value problem 

(-l)+Py(“)(t) = 1, fort E (O,l), 

y@)(O) = 0, o<i<p-1, 

y(i)(l) = 0, O<i<n-p-l, 

has a solution w with 
w(t) I &P(l - ty--p, for t E [0, 11. 

We now use Lemma 2.1, Lemma 2.2, and Krasnoselskii’s fixed-point theorem to establish our 
main result. 
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THEOREM 2.3. Suppose the following conditions are satisfied: 

f : [0, l] x [0, KJ) + R is continuous and there exists a constant 
M > 0, with f(t, IL) + M 1 0 for (t, IL) E [0, l] x [0, co), 

f(t,u) + M F Q(u) on [O, 11 x [O, oo), with ?I : [O, co) + [O, cm) 
continuous and nondecreasing and $(u) > 0 for u > 0, 

there exists a E (0,1/a) ( h c oose and Ax it) and a continuous, non- 
decreasing function g : (0, co) + (0, co), with f(t, u) + M 2 g(u) 
for (t, U) E [a, 1 - a] X (0, co), 

(2.5) 

and 

R 

J 

l-a 
3 R > r, with <P 

g(cRAo) - 
(-l)“-G(cT, s) ds; 

a 
(2.6) 

here E > 0 is any constant (choose and fix it) so that 1 - pM/Rn! 2 E (note E exists since 
R > r > PM/n!), 

Ao = 
i 

ap(l - a)+p, if n 5 2~3, 

(1 - a)pan-p, if n > 2p, 

G(t, s) is the Green’s function (see 14,101 f or an explicit representation) for 

y(“) = 0, on (0, 11, 

y@)(O) = 0, o<i<p--1, 

y(Q(l) = 0, O<i<n--p-l, 

and 0 5 0 5 1 is such that 

/+a(-l)“-pG(o, s) ds = s;pll /‘=(-l)+pG(t, s) ds. 
a , a 

Then (2.2) has a solution y E Cn-l[O, l] n Cn(O, 1) with y(t) > 0 for t E (0,l). 

PROOF. To show (2.1) has a nonnegative solution, we will look at the boundary value problem 

(-l)n-pY(n)(t) = Pf*(t,Y(t) - 4(t)), o<t<1, 

yyo) = 0, osi<p-1, (2.7) 

y@)(l) = 0, Oii<n-p-l, 

where 4(t) = pMw(t) (w is as in Lemma 2.2) and 

f(t, u) + M, 
f*(t’v) = { f(t,o) + M, 

211% 

2, 5 0. 

We will show, using Theorem 1.1, that there exists a solution y1 to (2.7) with yl(t) 2 d(t) for 
t E [0, l] (note 4(t) > 0 for t E (0,l)). If th’ 1s is true, then u(t) = yl(t) - 4(t) is a nonnegative 
solution (positive on (0,l)) of (2.1) since for t E (0,l) we have 

(-l)-‘dn)(t) = (-l)n-Pyp)(t) - pM = pf*(t,y(t) - 6(t)) - pM 

= P [f(t, y(t) - d(t)) + Ml - PM = d(t, 4t)). 
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As a result, we will concentrate our study on (2.7). Let E = (C[O, 11, 1 . lo) and 

K = {u E C[O, l] : u(t) > tp(l - t)n--P]~]o, for t E [0, l]} . 

Clearly, K is a cone of E. Let 

fll = {u E C[O, l] : ]U]c < ?-} and R2 = {u E C[O, l] : ]U]c < R}. 

Next let A : K n (fiz\flr) -+ C[O, l] be defined by 

AY(~) = P ol(-l)“-pC(t, s).f*(s> Y(S) - 4(s)) ds. J 
First we show A : K n (i72\Q1) + K. If u E K n (!&\Rr), then (-l)n-PG(t,s) > 0 for 
(t, s) E [0, l] x [0, 1] (see [4]) and (2.2) guarantee that 

(-l)“-p(A@)(t) 2 0, on (0, I), 

(A+(O) = 0, o<i<p-1, 

(Au)@)(l) = 0, O<i<n-p-l, 

and so Lemma 2.1 implies Au(t) > tp(l - t)n-PIAulo for t E [O,l]. Consequently, Au E K so 
A : K n (!?‘2\fi,) --+ K. It is well known [3] that A : Kn(f&\iQ -+ K is continuous and compact. 

We now show 

PYIO 5 IYIO, for y E K n dR1. (2.8) 

To see this, let y E K n ZQr. Then ]y]o = T and y(t) 2 tp(l - t)+Pr for t E [O,l]. Now, for 
t E [O, 11, we have 

Ay(t) = p 
J 

ol(-l)“-pG(t, s)f*(s, y(s) - 4(s)) ds 

I p ol(-ypG(t, s)$(Y(s)) ds J 
I ,-u,wo) J1(-v-pws 

0 

since for s E (0,l) (note y(s) 2 0), 

~(s,Y(s) - d(s)) + M I $(Y(s) - 4(s)) I NY(S)), 
f*(s,Y(s) - 4(s)) = { f 

if Y(s) - d(s) 2 0, 

(s, 0) + A/f 5 4(O) I NY(S)), if y(s) -4(s) < 0; 

in fact, one can show y(s) - 4(s) > 0 for s E (0,l) ( see the argument below). This together with 
(2.4) yields 

lAylo < P@(T) SUP +)n-P~(t, s) ds I T = 1~10, 
tc[o,l] 0 

so (2.8) holds. 
Next, we show 

lAylo > 1~10, for y E K n X12. (2.9) 
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To see this, let y E K n dSlz so ]y]e = R and y(t) > tp(1 - t)+PR for t E [O,l]. Let E, a, and A 
be as in the statement of Theorem 2.3. For t E (0, l), we have from Lemmas 2.i and 2.2 that 

2 Etp(l - t)n-plylo = ctp(l - t)“-pR. 

As a result, 
y(t) - 4(t) P EAoR, for t E [a, 1 - a]. 

Now with c as in the statement of Theorem 2.3, we have 

(2.10) 

AL/(~) = P ol(-l)‘“‘G(o; s)f*(s, Y(S) - 4(s)) ds 
J’ 

pl-U 

2 p / (-l)“-pG(g, s)f*(s, Y(S) - 4(s)) ds 
Ja 

/.--a 

2 pg(cAoR) / (-l)“-PG(a, 3) ds, 

since for s E [a, 1 - e] we have from (2.10) that 

f*(s, y(s) - $(s)) = f(s, Y(S) - 4(s)) + M 2 dy(s) - 4(s)) 2 g(=W. 

This together with (2.6) yields 

Ay(a) 2 pg(eA,,R) /l-a(-l)n-pG(o; s) ds > R = 1~10. 
a 

Thus, lAylo 2 ]y]e, so (2.9) holds. 
Now Theorem 1.1 implies A has a fixed point y1 E K II (fi,\Rr), i.e., T 5 ]yr]e 2 R and 

yl(t) > tp(1 - t)‘++ for t E [0, I]. To finish the proof, we need to show yl(t) 2 4(t) for t E [0, I]. 
This is immediate since Lemma 2.2 with the fact that T > pM/n! implies for t E (0,l) that 

yl(t) 2 tp(l - t)n-Pr 2 Ttp(l - t)“-p = ,uMw(t) = 4(t). I 

EXAMPLE. Consider (2.1) with f(t,u) = urn - 1, m > 1, and p E (O,n!]. Then (2.1) has a 
solution y with y(t) > 0 for t E (0,l). 

To see this, we will apply Theorem 2.3 with (here R > 1 will be chosen later) 

M = 1, $(u) = g(u) = urn, e=i(l-A), and a=:. 

Clearly, (2.2), (2.3), and (2.5) hold. In addition, we have [lo, p. 181 that 

,sipl, ll(-l)n-pG(t, s) ds = -$ s;Prltp(I - t)n-pl 

so (2.4) is true with T = 1 since 

PM -=- 
I p <l=r 

n! - 
and 

n. P SUP J tE[O,l] 0 
‘(-I)“-“G(t, s) ds 5 -$ I 1 = &. 
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Finally, notice (2.6) is satisfied for R large since 

R 1 -= 
g(EAoR) c”A;;1 R”-l -+ 0, as R-t 00. 

Thus, all the conditions of Theorem 2.3 are satisfied so existence is guaranteed. 

Next we consider the (n,p) boundary value problem 

Y'"'(t) + P.f(C y(t)) = 0, o<t<1, 

y@)(O) = 0, O<i<n’-2, (2.11) 

y(P)(l) = 0, 

where n > 2, 1 5 p 5 n - 1 is fixed and ,Y > 0 is a constant. The following two results are well 
known, see [3] for the first and [lo, pp. 21, 851 for the second. 

LEMMA 2.4. Suppose y E C”-l[O, l] n Cn(O, 1) satisfies 

y’“‘(t) IO, 

y@)(O) = 0, 

y(P)(l) = 0. 

Then 
y(t) 2 WYlot 

LEMMA 2.5. The boundary value problem 

y’“‘(t) + 1 = 0, 

y(Q(O) = 0, 

y(P)(l) = 0, 

has a solution w with 

1 

fort E (O,l), 

O<i<n-2, 

for t E [0, l]. 

fort E (0, l), 

O<i<n-2, 

w(t) 5 (n _ l);(n - J-l, for t E [0, 11. 

Essentially the same reasoning as in Theorem 2.3 (only obvious adjustments are needed) es- 
tablishes the following result. 

THEOREM 2.6. Suppose (2.2) and (2.3) hold. In addition, assume the following conditions are 
satisfied: 

r 1 
with - 

l/J(T) L “gl] 0 J Gl(t, s) ds, (2.12) 

there exists a E (0,1/a) ( h c oose and fix it) and a continuous, non- 
dec;easing function g : (0, co) + (0, co), with f(t, U) + M L g(u) 
for (6 u) E [a, 11 x (0, ~1, 

(2.13) 

and 

1 
3R>F-, with 

R 
<P g(cRa”-l) - J G (c, s) ds; a 

(2.14) 
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here E > 0 is any constant (choose and fix it) so that 1 - pM/R(n - l)!(n -p) 2 E, G1 is the 
Green’s function (see [4,1Oj f or an explicit representation) for 

-y(n) = 0 
yfi’(0) = 0: 

(0, I>, 
O<i<n-2, 

y(P)(l) = 0, 

and 0 5 ~7 5 1 is such that 

s 

1 

J' 

1 

Gl(a, s) ds = sup G1 (t, s) ds. 
a %[O,l] a 

Then (2.11) has a solution y E C+l[O, I] n Cn(O, 1) with y(t) > 0 for t E (0, 11. 
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