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INTRODUCTION 

Inequalities involving the absolute moments, v,, of a probability 
distribution have a long and honourable history dating (at least) back to 
Laplace [ 11 in 18 10 and Gauss [ 2 ] in 182 1. For example, Gauss stated the 
inequality 5v, > 9~: in 1821; this is a special case of the so-called 
Gauss-Winckler inequality [(n + 1 )vn] “n < [(r + l)vr] “r first stated by 
Winckler [3] in 1866 (with a false proof). Laplace dealt with a probability 
distribution function Q corresponding to a mass (1) on [0, a] = Z with Q(x) 
concave on I, and proved that v2 < (+)a *. Extensive generalizations of this 
inequality were given by Winckler and seem to have been ignored since, 
although some special cases appear in the 1950 monograph of Frechet [lo]. 

In this paper, which is of a semi-historical nature, we deal with a large 
number of such inequalities from a more modern point of view. We correct, 
resurrect, or extend these inequalities and present a few new ones. In this 
introductory section we shall give an outline of what appears in subsequent 
sections. To this end, let F: IR + [0, 1 ] be a proability distribution function, 
let a E IR, and set 

v, = 1 Ix ~ .lr dF(x), P(x) = Pr(lX - a I& x), Q(x) = 1 -P(x). 
-Ip 

In Sections l-4 we give CebySev type inequalities of the form 
P(x,) < A(r, vr, x,) giving upper bounds for P(x,). In particular Section 2 
gives a correct proof of an inequality due to Camp [6], Section 3 does the 
same for two inequalities of von Mises [8], and Section 4 gives a comparison 
of these results when both apply. (In most cases the upper bounds of von 
Mises are better than that of Camp.) Special cases of von Mises’ bounds are 
given in Section 5 for which it is also noted that the case r = 2 was given by 
Gauss and the cases r > 1 by Winckler. 

In Section 6, which constitutes almost a third of the paper, we present 
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versions of more than twenty inequalities of Winckler involving x,(s) = 
jt t’ de(t) (0 < x < a < a~) and v, =x,(a). As examples of such inequalities. 
in .case Q is concave on [0, a) we have 

x,(x) 2 ( ) 1 +; ‘x:IQW - Q<x,,l if Q(x,) > 5 Q(x), (28) 

[(n+l)v,]“% /+-(&)“nI [(r+l)l# (O<n<r), (30) 

x,(x) G 5 Q(x) (r > 0,o < x < a), (32) 

(r+ lWM+ (n + lM~tx> + n~++n1)xr+.(4 

n(n + 1) 
G (r + n)(r + n + 1) xr+“Q(x) (r, n, x > O), (34) 

m(n + 1) x"x,(x) - n(m + 1) x"x,(x) 

< (m - n) xm+"Q(x) (m>n > O,x>O), (4 1) 

(1 ++-)a- (1 +t)-$<+--$ (m>n>O,afinite). (43) 

Moreover, if Q’(x) is continuous and nonincreasing on [0, a) then 

(n + 1) x%(x> 2 (m + 1) x”x,(x) (m > n > Oh (45) 

(n+ l)(r-m)-$+(r+ l)(m-n)-$ 

>(m+ l)(r-rzn)J$ (m > n > 0, r > m + n, a finite). (48) 

The special case r = 2, x = a (so x,(x) = v,) of (28) was stated in 1821 by 
Gauss, as well as a corresponding inequality for the case Q(x,) < 
(r/(r + 1)) Q(x), also for r = 2, x = a. Inequality (30) is what was proved 
(correctly) by Winckler. By an incorrect modification of the proof he also 
“obtained” the improved Gauss-Winckler inequality, which is (30) with the 
factor { . . . } replaced by 1. 
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The case x = Q, I = 2 of (32) gives the Laplace inequality mentioned 
above. In case 0 < a < co, inequalities of the form (34), (41), (45) yield 
corresponding inequalities involving the absolute moments vr, P,, etc., on 
setting x = a; in fact (43) follows from (41) in this way. 

The first valid proof of the Gauss-Winckler inequality appears to be due 
to Faber [7] in 1926. In Section 7 we give a modification of a proof of it by 
von Mises [8] which makes use of Liapounov’s inequality; a short proof of 
this latter inequality is also given in Section 7. The paper concludes by using 
this same method of proof to give a powerful extension of the 
Gauss-Winckler inequality, and an application of it to obtain the (probably) 
new inequality 

(z-(n+k+ l)}““<{r(r+k+ l)y (0 < n < r, k = I, 2 ,... ), (50) 

involving the gamma function of analysis. 

1 

Let F: R + [0, 1 ] be a probability distribution function and let a E R. 
Then the rth absolute moment of F about a is defined by 

vr=v O” r.a = i 
-ml~-al’dF(x), r > 0. 

It will be more convenient to deal with the probabilities 

P(x) = P&Y - a I> x), Q(x)= 1 -P(x)=Pr(lX-aI <x), (2) 

than with F in what follows. In particular we note that 

Q(x) = F(a + x) - F(a - x), x > 0, 

from which it follows that 

I 
a, 

xr de(x) = v,. (3) 
0 

Note that Q(0) = 0, Q(co) = 1 and Q is nondecreasing on [0, co). We shall 
give several inequalities relating v, and P(x,) under appropriate hypotheses 
on Q. These results are essentially due to Gauss [2], Winckler [3], Camp 
[6], and von Mises [9]. We shall first deal with the inequalities of Camp and 
von Mises since those of Winckler and Gauss then follow as special cases. 
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2. CAMP'S INEQUALITY 

Suppose that x0 > 0, r > 0, p > 1, k=p(l + (l/r)), and s, = pro. Ij 
Q’(x) exists and is nonincreasing on the interljal [x0, kx-,], then 

iP- lk+ 1) 
p(xJ)G I +cp- I)(~+ qpyl + I/~)’ \ 

L’r 1 
iz+ (p- l)(r+ l)I. (4) 

To prove (4), we shall use the following lemma, also due to Camp [6]. 

LEMMA. Let P be nonincreasing on [x0, kx,] with P’(x) nondecreasing 
on this interval. where x,, > 0, k = p( 1 + (l/r)) with p > 1, r > 0. Let y(x) = 
P(xO) + m(x -x0) be the equation of the secant line to the graph of P 
through the points (x,, P(xO)) and (x, , P(x,)), where x, = px,. Then 

1 
.kxo 

xr- ‘P(x) d.u > fkx@ xr- 14’(x) ds. (5) 
. 10 . X” 

We first use (5) to prove (4) where P. Q are related by (2), noting that the 
hypotheses on P are implied by those on Q. To this end, we have 

v,=J’mxrd(l-P)>[ex’d(l-P)=-j‘fx’dP 
-0 . XII . 1” 

,. x 

= xi P(xo) + r ) xr- ‘P(x) dx, 
. 10 

since XrP(X) = X’ jp d( I - P) ,< j? xr d( 1 - P) = .f; xr dQ -+ 0, as X + 00. 
Hence, 

! 

.kq 

v, 2 xi P(xo) + r x’-‘P(x) dx > x;,P(xo) + r ) 
Jr” 

xrm ‘y(x) d-x. 
XfJ -x0 

using the lemma. Using m = [P(x,) - P(x,)]/(p - 1)x,, this eventually 
reduces to 

“, a xh I- (p -4’;(u’+ 1) + p(x,) 1 + (p - l)(r + W(l + W-W 1 . 

2-G I- (Pm /f(+ 1) +PCxJ 

(P- l)P+ 1) \ 

1 + (p- I)@-+ l)p’(l + (l/r))‘/ 
r (p- l)(r+ 1) \’ 

from which (4) follows. 

Proof of Lemma. Let z(x) = P(x,) + P’(x,)(x - x1) be the equation of 
the tangent line to the graph of P at the point (x,, P(x,)). Since P’ is 
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nondecreasing we have P(x) > z(x) on [x0, kx,], so that (5) will follow if we 
can show that 

i 

kxo .kx,, 

xr- ‘z(x) d.x > ) x- ‘J,(X) dx. 
. X0 . X” 

(6) 

Using the preceding computation, 

+ 1 + (P - l)(r+ l)P’(l + (l/r))’ p(K )( 
(P- l)(r+ 1) 

’ I \’ 

A similar computation gives 

.kxo 
r xrp’z(x)dx=x; [p’(l + (l/r))‘- l]P(x,) 

. IO I 

) 
t x,P’(x,) * 
\ 

From this we see after further reduction that (6) is equivalent to 

WJ - WJ r(P - 1) + P 
,< P’(x,) 

r(p-l)+p 
xo(P - 1) r+ 1 r+l ’ 

or by the mean value theorem, to 

P’(X) < P’(x,), where x0 < X < x, = px, . 

Since P’ is nondecreasing, the result follows. 

Remark 1. It is easy to see that equality is attained in (4) for the case 
that Q(x) = 0 for 0 <x < x,,, Q(x) = 1 for x > kx,, and Q(x) = 
(x - x,)/(k - 1)x,, for x,, <.Y < kx,. In this case of course, 
P(x) E J’(X) E z(x) in the lemma, and P(x,,) = 1. 

Remark 2. In [6], a different notation was used from that used here. The 
proof of (6) given in [6] does not appear to be valid. Moreover in [6] only 
the special case that F(x) = jr, f(t) dt was considered, where F had mean 
value 0, and it was assumed that f(x) was a monotonic decreasing function 
of (xl for Ix]>,x,. Taking a = 0 in the preceding, Q’(x) = f(x) -f(-x) is 
thus nonincreasing for x > x,, as required. 
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Remark 3. In case Q’(X) exists and is nonincreasing for x > 0, we may 
set x,, = ca, x, = La. p = l/c in (4) and let c -+ 0 to obtain 

(7) 

precisely as in Camp [6]. As noted there. this is an improvement of 
Pearson’s inequality [ 5 1. 

Remark 4. Note that the case x0 > 0 allows one to handle the case of a 
bimodal distribution F corresponding to a continuous probability density 
function f having maxima at x = a f x0. 

3. VON MISES' INEQUALITY 191 

Under the assumptions of Section 1, we now weaken somewhat the 
hypotheses on Q. Here we only assume that there are three values x0, x, , z, 
with 0 ,< x0 < x, < z, such that the graph of Q(x) for x > x0 always lies 
under the line D passing through the two points (x,, Q,) and (z, l), where 
Q, = Q(x,). That is, we assume 

Q(x,<Q, +z (x-x,) for x>x,. 
I 

Then 

where c is the unique solution (c > x,) of the equation 

r+ I 
x0 -cT-+rc=(r+ 1)x,. 

Moreover, if 

r+ I 

(r+ 1)x, <+-+ra, 

where a is the unique solution (a > x0) of the equation 

.r+ I -xi+‘=(r+ l)v,(a-x0), 

(9) 

(10) 

(11) 

(12) 
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then 

P(x,) gz. 
0 

(13) 

Moreover, when (11) holds, the estimate (13) is always better than (9), while 
if (12) has a solution a > x,, which does not satisfy (1 l), then (9) is better 
than (13). 

To prove (9), let Q. be the distribution function with Q,,(x) E 0 for x < 0, 
QO(x)= Q&x0) for Ogx<x,, Q,,(x) = 1 for x > z, and Q,,(x) = 
Q, + (1 - Q,)(x - x,)(z -x,)-l for x,, <x < z. Then 

v, = v,(Q) > j"" xr dQ + v,(Qo>v 
0 

(14) 

where v,.(QJ denotes the rth moment about 0 of the distribution Q,. For, 

I 

x0 
v, = 

0 
xrdQ+jzx’dQ+jmx’dQ, 

x0 L 

> jr Xr dQ + ~Q(z> - /X;Q(Xo) + r fz x-IQ(x) dx 1 + zr[ 1 - Q(z)], 
. 50 

> j’” xr dQ - ix; Q&o) + r j’:, xr- ‘Q,,(x) dx 1 + zrQo(z), 
0 

= s X0 xr dQ + v,(Q,>, 
0 

where we have only used the fact that Q is nondecreasing on [z, co), and 
-Q(x) 2 -Qo( x 1 f or x0 < x < z. It is easy to see that equality holds in (14) if 
and only if Q(x) = Qo(x) for x > x0, and that vJQ) = v,(Qo) if and only if 
Q=Qo. 

From (14), it follows that 

or 

P(xl)= l-QI<(r+ l)v, 
Z 

,+zI-x’ -x;+” (15) 

Now (15) is satisfied for some z > x, , by hypothesis. On the other hand, the 
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right side of (15) assumes its maximum value for z > s, when its derivative 
with respect to z has the value 0, that is, when z = c, where 

c r+l - xk+’ = (r + 1) cr(c - x,), c > x,, (10’) 

or where c satisfies (10). Moreover this maximum value is found to be equal 
to rr/cr, proving (9). 

We note that the function g defined by 

g(x) = xL+ ‘x --’ + rs, x 2 x0. 

has g(x,) = TX, + x~(x~/x,)~ < (r + 1)x,, and g’(x) = r[ 1 - (x,/x)~’ ’ 1 > 0 
for x > x0, so that since g(x) + co, as x --( 00, Eq. (10) has a unique solution 
c > x,. 

For the second part, we observe that since Q(x,) > 0, the slope of the line 
D cannot exceed that of the line D,, passing through the points (x0. 0), 
(x1, Q,), so that z necessarily satisfies 

or 

l-Q, < Q, 
2 -x, ‘x*-x0’ 

x, - x0 
z>x,+-= 

Ql 
- zo. (16) 

If the value z = c given by (10) is >z,, then the distribution Q,,(x) 
corresponding to this value of z is admissible, and for it the equality sign 
holds in (14)-with Q = Q,-and in (15)--with z = c-hence also in (9). 
Thus (9) is “best possible” in this case. On the other hand, suppose the 
solution c of (10) is less than z,, . Then the admissible values of the right side 
of (15), that is, values for z > zO, are all less than or equal to its value for 
2 = zo, since h(z) = (z - x,)/(z’+ ’ - xk+’ ) is strictly decreasing for z > c. In 
this case we have 

From (16) 
z. -x, ~ = 1 - Q, = P(x, ), 
zo - x0 

whence (17) can be written as 

ZO 
r+1 -Xrtl 

0 

zo - x0 
< (r + lpr. (18) 
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Since both k,(x) = (x’+ ’ - x6+ ’ )/(x - x0) and k2(x) = (x - x,)/(x - x0) are 
increasing functions for x > x,, and x > x,, respectively, it follows from (12) 
and (18) that z,-, < a, and hence that 

P(x,)=Z<S, 
0 ‘0 - 0 

proving (13) under the assumption c < zo. Inequality (13) is also “best 
possible” in this case because equality holds in (17) for the distribution 
Q = Q,, corresponding to the line Do, for which z = zo, and a = zo. 

However, as noted by Frechet [ 10, p. 16 I]. the condition 

x, -x0 
c<z,=x,+------ 

Q, ' (19) 

involves the very quantity Q, which is being estimated. Suppose now that a 
satisfies the condition (11). Since g(x) =xi+ ‘xmmr + rx is increasing for 
x > x0, it follows from (10) that c < a. Now if P(x,) > (c - x,)/(c - x0) then 
it follows from P(x,) = (z. - x,)/(zo - x0) that z. > c, and so (13) holds as 
proved above. If P(x,) < (c - x,)/(c - x0) then since c < a, it follows that 

P(x,) < s < z, 

. 0 0 

so (13) again holds. Thus (13) holds whenever a satisfies (11). Moreover, in 
this case (c < a) the estimate (13) is always better than the estimate (9). For, 
c < a together with (12) and (10’) implies 

a-x, 
-= (r + l)v, arf,y$+, < (r + l)Pl cr+c,_“:r+, = 5. a - x0 (20) 

0 0 

We observe that it is impossible to have both c < a and z. < c for the 
distribution Q = Q, corresponding to the line D with z = c, since if this were 
the case we would then have 

P(x+$>~, 
‘0 

the equality sign holding since z. Q c (as noted after (16)), and the inequality 
sign holding by (20) since c < a. We thus have a contradiction since (13) 
holds when c < a. 

Similarly, if Eq. (12) has a solution a > x, such that (11) does not hold, 
then 

rt1 
g(a) = xo -+ra<(r+ l)x,=g(c) 

ar 
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implies that a < c, and so (20) holds with < replaced by >. Thus (9) is 
better than (13) in this case. 

Remark 1. Condition (11) is equivalent to the condition c < a. as noted 
above, and can be applied without computing c. In general, the situation with 
regard to the solutions a of (12) is as follows: either (12) has no solution 
a > x0 (this holds if XL > v, clearly), or has a solution a, with x0 < a < x, 
(this holds if XL < v, < (xi $ ... + x;))/(T + l)), and in both cases, (9) is our 
only estimate; or (12) has a solution a, with x, < a. In this latter case, either 
(11) holds, in which case c < a and (13) is a better estimate than (9), or 
a < c and (9) is better than (13). 

Remark 2. Von Mises [9] gave a geometric “proof’ of the basic 
inequality (14). In his book, Frtchet [ 10, p. 159]-who must have remained 
unconvinced by von Mises’ proof-altered the argument somewhat. and 
claimed that 

which would be enough to prove (14). Frechet’s “proof’ was also geometric. 
Unfortunately, the last inequality is false in general as can be seen by taking 
xc’ = 0, x,=+, Q(x)=x”’ for O<x<l, QO(x)=Q,+Q~(x-$)= 

(1/P da> + (x/v% so z = 3/(2 v/T), and r > i. 

4. COMPARISON OF BOUNDS OF CAMP AND VON MISES 

First we note that if Camp’s hypothesis, that Q’(x) is nonincreasing on 
[x0, kx,], is satisfied then taking Q,(X) = Q, + Q;(x -.u,) we see that 
z =x, + P(x,)(Qi)-‘. Hence von Mises’ hypothesis will be satisfied if and 
only if x, + P,(Q;)-’ < kx, =pxO( 1 + (l/r)), which reduces to P, < 
px,Q;r-‘. This not only involves the quantity P, = P(x,) to be estimated, 
but in general will not be satisfied for large r. Hence in order that both 
estimates apply we shall assume that Q’(x) is nonincreasing on [x,, CO), and 
that x0 > 0. (The useful case x0 = 0 is excluded in Camp’s estimate.) 

We now show that when Eq. (12) has a solution a > c, then the von Mises 
estimate (13) is better than the estimate (4) of Camp, that is 

a-x, a - pxu 
Y,E-----XP 

a - x0 a - x0 

(P- I)@-+ 1) I 2, 1 
’ 1 +(p- l)(r+ l)p’(l+(l/r))’ Ix;, 

‘-c 
(p- l)(r+ l)i = ” 

Moreover, equality can hold only if a = px,( 1 + (l/r)). 
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Writing (a - px,,)/(a -x0) = 1 - [(p - l)xJ(a - x,)], and using the fact 
that 

r+ 1 -,;+I 

(r*+ l)(a -x0) = “’ 

by (12), it is easy to verify that V, < C, if and only if 

(r+ 1)l-f ( r ax: < a’+’ + xL+‘p(r + 1)p’ 

or 

G(x) = x’+ ’ -(X-PxJX;)(r+l)p’ for x=a. 

Now G(px,) = (J.JX,,)~+’ > 0, while 

G’(x)=(r+l) [x’-x:$(1 ++)‘I, G’(px,)<O, 

and G”(x) > 0 for all x > 0. Moreover G’(x) = 0 for x = pxO( 1 + (l/r)), 
while G(px,(l + (l/r))) = 0. It follows that G(x) > 0 for all x > px,, with 
strict inequality unless x = px,(l f (l/r)). Since a > c > x, = px,, this 
proves the assertion. 

For example, for the standard normal distribution N(x; 0, l), we take 
a = 0 in Section 1, and r = 1, x,, = 0.5, p = 1.2, so x, = 0.6. One finds 
a = 1.09577, that (11) is satisfied, and V, =0.83215, C, = 0.83587. Since 
(1 + (l/r))px, = 1.2, is close to a, one would expect V,, C, to be close, 
from the above analysis. In this case, V, = m = 0.7978846, 
c = 0.93 16625, and the larger estimate, V,/C = 0.85641; from tables, the 
actual value of P(x,) is 0.5485. 

In case a < c, or even more generally, the estimate (4) of Camp is only 
sometimes better than the estimate (9) of von Mises. Consider the simple 
case r = 1, when the oounds (4), (9), respectively, are 

2(P- 1) p-1 1 ( 
cz= 1 +4p(p- 1) i&+ 2(p - 1) \‘ 

V*=v’. 
C 

where c* - 2px, + xi = 0, so c = (p + &-)x0. The condition Cz < Vz 
becomes 

VP- 1) v’+ 1 1 VI 
1+4p(p- 1) -qJ 1+4p(p-1)Qp+Jn.r,. 
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1 I Z(P- 1) 2(P- 1) 

p+&T %= 4P(P- 1) > 1 +4p(p- I)’ 

for all p > 1, we see that Cz < Vz holds for large p. However. if 11, < x0. then 
Vz < Cz holds for p near 1. We note that in this case. CI = ZV, - x”, whence 

7 a < c holds precisely when r, < f(p + 1 + tip- - 1)x,. The latter condition 
also holds for large p so that Camp’s estimate (4) is better than the better of 
von Mises’ estimates for large p, when r = 1. 

For general r, we again denote the estimates (4) and (9) by Cz and C’,. 
Computation shows that Cz < I’, if and only if 

v, i-~~+(P-l)(r+l)[x;p’(1+~)‘-c’]I >x;cr, (21) 

where c is the unique solution (c > x, = px,,) of Eq. (lo), that is. of 

g(c) = x;+‘x-’ +rc=(r+ l)px,. 

Since g(px,,( 1 + (l/r))) > (r + 1) px,, it follows that c < px,,( 1 + (l/r)) so 
the term in square brackets in (21) is positive. Unfortunately, c is a function 
of both r and p, and I have found no simple condition that will assure (21). 
One can show that (1 + (Plr)) px, < c( <( 1 + (l/r)) pxJ if j3 E [0, 1) is such 
that 

1 

(1 + cm)’ 
< (1 -p)p’+‘, 

which is clearly satisfied for any p > 1 and all large r, or any I > 0 and all 
large p. Replacing v,/c’ by vr/[( 1 + (/3/r)) pxoj’ we see that Cz < Vz if 

v, !l +(p- l)(r+ 1)p’ 
I 

[(l++)‘-(l+~)‘l~ >(l+$)L’x;, 

and this is clearly true for fixed r > 0 and all large p. 
As a first example with a < c, we use the standard normal distribution and 

take r=l, x,=l,p=2, so x,=2. One finds a<O.6<c=2+fi, and 
C, = 0.15269, I’, = 0.21379, so (4) is better than (9) in this case. The actual 
value of P(x,) is 0.0445. 

On the other hand, also using the standard normal distribution, with r = 2, 
x,, = 1, p = 2, so x, = 2, v2 = 1, we find a = 1 < c = 2.9422. Now, C, = $ = 
0.142857, Vz = 0.115519, so (9) is better than (4). The actual value of P(x,) 
is still 0.0455. Note that both estimates with r = 2 are better than those with 
r= 1. 
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5. THE CASE x,=0: INEQUALITIES OF GAUSS AND WINCKLER 

Von Mises’ results are much simpler in the case x0 = 0. Here the 
hypothesis is that for numbers x,, z (0 < X, < z), the graph of Q(x) for x > 0 
lies under the line D, passing through the two points (x,, Q,) and (z. l), 
where Q, = Q(x,). Stating only the better bound where applicable, (9) and 
(13) reduce to 

p(wKl) G (1 + (Y;r))!Y: 

P(x,) < 1 - 
((r +T)“,y 

if x, > *[(I-+ l)vp, (22) 

if XI < * ((r + l)r,]‘,r. (23) 

It is easy to verify that both the upper bounds in (22) (23) remain less than 
unity for all r > 0. In case X, = { r/(r + l)}[(r + l)v,] ‘*r, both upper bounds 
reduce to l/( 1 + r). 

The bounds (22), (23) for the case r = 2 were given without proof by 
Gauss [2, Art. lo]. For r > 1 these bounds were also given by Winckler [3. 
Sect. 81, but under more restrictive hypotheses. See also Section 6. In 
addition, the conditions given by Winckler for (22) (23) were that P(x,) < 
l/(r + 11, P(x,) > l/(r + I), respectively. By (19) these are equivalent to the 
conditions c > zO, c < zO, when My0 = 0, and so also follow from our analysis. 
Additional special cases are given in Frechet [ 10, 16441671. 

6. INEQUALITIES OF A. WINCKLER 

In a paper published in 1866, Winckler [3] obtained a large number of 
inequalities dealing with a probability distribution F derived from a 
continuous probability density function v, which is unimodal and symmetric 
on a bounded interval [-a, u], so that o(-x) = o(x), v, is decreasing on 
[O, a], co-a) = p(u) = 0. and j’“, a, dx = 1. We shall restate some of these 
results under the less restrictive hypotheses for F listed in Section 1, adding 
additional hypotheses as required. In particular, we use the notation of 
Section 1, except that now we assume F is defined on [u -a. a + a]. and Q 
is defined and nondecreasing on [0, a], where 0 < (II < +a~, and 

v, = r t’ dQ(t), 
“0 

Q(a) = 1. (24) 

We also define 

x,(x) = ,f; f dQ(f), O<x,<a. (25) 

409 98 2 IO 
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6.1 

First we give Winckler’s proof of (22), (23) under the hypotheses given ,n 
Section 5. That is, we suppose that the graph of Q(f) for 0 < t < x lies under 
a straight line D, through the point (x,, Q(x,)), which we may assume has 
an equation -V = u + [Q(x,) - u](f/x,), where 0 < u < Q, = Q(x,). That is, 

Q(t) < u + Q(x’) - ’ t, or 
XI 

t > 2”)-” x, 
XI u 

for 0 < t < x. It follows that 

x,(x> = f t’ dQ(t) > 
,Q(xf- u,' 1: [Q(f) - ~1’ dQ@) 

0 

or 

x; 
x,(x) > - 

[Q(x) - ulr+’ 
r+ 1 [Q<x,>-4” 

(0 < x, ,< x). (26) 

Now let g(u) = (Q - u)*+‘(Q, - u)-~, and compute 

g’(u) = (Q - u)‘(Q, - u)-(r+‘){~ - [(r + l)Q, - rQ]}. 

If Q, < (T/(T + l))Q, g’(u) > 0 for 0 < u < Q,, so g(u) > g(O), and thus 

4 <Q<x)Y+ ' x,(x> > - r + 1 (Q@,>>' if Q(x,, < 5 Q(x). (27) 

If, however, (r/(r + 1))Q < Q, (<Q), then g has an absolute minimum for 
u=(r+l)Q,-rQ>O.InthiscaseQ-u=(r+l)(Q-Q,),andQ,-u= 
r(Q - Q,), whence 

x,(x> > kQ(4 - Q(x,)l if Qk,> > 5 Q(x). (28) 

When x= CY, Q(x)= 1, x,(x)= vr, and (27), (28) reduce to (23), (22), 
respectively. 

6.2 

We may rewrite (27), (28) in the form 

QYx,) 
4 G (r + 1) x,(x) Qr+ ‘(x) 9 

1 
x’; G (1 + (l/r))’ x,(x)[Q(x) - QW-'5 
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whence if n > 0 also, 

4 < [(r + 1)x,(x)1"" Q'YxJ 
[Q(x)]"+'""' 

if Q(x,) < + Q(x), 

x""(X) 1 
x” (1 + (l/r))” [Q(x) - Q(x,),“‘~ if -+ Q(x) < Q(x,> < Q(x)- 

If now we assume Q is concave on [0,x], then we may take D to be a 
tangent line at (x,, Q(x,)) for each x1 E [0,x]. Then the last inequalities 
hold for 0 <x, < x, r > 0, n > 0. Now integrate these inequalities with 
respect to dQ(x,) over [0,x,(x)], [x,(x),x], respectively, where Q(x,(x)) = 
(r/(r + l))Q(x), and add th e corresponding integrals. A change of variables 
J’= Q(x,) in the integrals on the right side leads to the inequality 

1 (n +;:;&I I/n < r 
X I ‘r+l ( 1 

r ‘In 1 (r +;(I;&) ‘jr 
r-n x 1 ’ (29) 

provided 0 < n < r, and Q is concave on [0,x]. For x = a this reduces to 

[(n + l)~,]“~ < I--+ i---J--)“” 1 [(r + l)v,] ‘lr, 0 < n < r. (30) 

Observe that the factor 

r r 
- - ““>l~(~)~=(l-~)~>L-~. 
r+l ( ) r-n 

If r > n > 1 the latter inequality follows from Bernoulli’s inequality, so that 
the first factor on the right side of (30) is larger than 1 in this case. By 
calculus one can show it exceeds 1 for 0 < n < r. In [3] Winckler used (26) 
and a false argument to obtain (29) and (30) with this factor replaced by 1 
when 1 < n < r. The results are true and we shall later (Section 7) obtain 
them using a different proof. (The argument in [3] was as follows: for each 
x, E (0, x] we have an inequality of the form (26) when Q is concave on 
[0,x], just as above; solve as above for x’;, then xy, and integrate the 
resulting inequality with respect to dQ(x,) over the interval [Q-‘(U), x] and 
finally set u = 0 to obtain the result. The falsity of the argument lies in the 
fact that in (26), u is a function of x,-in fact u = Q(x,)-x,Q’(x,).) 

6.3 

In this subsection we give some generalizations of Winckler of earlier 
inequalities of Laplace and Gauss. From now on we assume throughout that 
Q is concave on [0, a], and nondecreasing with Q(0) = 0, Q(a) = 1, where 
O<a<aL 
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In this case, if 0 < x, < x, with Q, = Q(x,), Q = Q(x). we have 

Q(r)>Q, +s(+x,), x,<r<x. 
- I 

Hence 

x,(x) = 1; t’ de(t) = j;' t' dQ(t) + I-.' t' dQ(t) 
. I, 

Q'(t) de(t) + j; 
I lx, + s [Q(t) - Q, I( ' dQ(t). 

and this reduces to 

valid for any’ r > 0. Taking limits as x, --t x, or as x, + 0 we obtain 

Q(-y,. x > 0, r > 0. (32) 

Moreover, if Q(a) = 1, w’ith a finite, then 

a r+1 
v, < 

- x’+ ’ - aQ(x)(ar - xr) 

(r+ l)(a-x) ’ 
0 < x < a, r > 0. (33) 

The inequality (33), for x = 0, r = 2, gives the result v2 < a’/3, first proved 
by Laplace [ 1 ] in 18 10. 

For additional results, rewrite (29) in the form 

xQ(x,)(xl - xi) < Q(x)(x” ’ - xi+ ‘) - (r + 1 )x,(x)(x - x,). 

multiply by x- ‘x- I, and integrate with respect to x, over [0,x]. An 
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integration-by-parts of the integral on the left, and algebraic simplification 
leads to the inequality 

(I + l)x”x,(x) - (n + l)X’X”@) + n;+t,l)xr+nw 

n(n + 1) 
G (r + n)(r + n + 1) Xr+nQ(X)V (34) 

oalid for x > 0, r > 0, n > 0. In particular, if Q(a) = 1 with a finite, we may 
take x = a above, so Q(x) = 1. On division by a”+” we obtain 

(r-f l)$-(n+ l)$< n(n+l) \ 
(r+n)(r+n+l) ~l-P+n+$$+~) 

for r > 0, n > 0. 
We may also rewrite (31) in the form 

Q(x,)@x, + 
xrQ(x) - (r + 1) x,(x) x - x, 

X X xr - x; . 

Now multiply by xyP ’ (n > 0) and again integrate over [0, -Y] to obtain after 
some simplification, 

Y+“Q(x) < (n + 1) x”x,(x) 

+ n(n + l)[x’+” Q(x) - (r + 1) x”x,(-u)l G, r), (36) 

where 

One could obtain additional inequalities from (36) by multiplying by xmP ’ 
and integrating over [0,X], and so on. Instead, we observe that on 
expanding (I - fr) ’ and integrating, we obtain 

A(n, r) = c 
1 

keo (kr+n)(kr+n+ 1) 

1 1 1 
=n(n+l)+(r+n)(r+n+l)+*“>n(n+l)’ 

for all n > 0, r > 0. Moreover, if r > 1, A(n, r) > l/(m) for all n > 0, and 
A(n, r) < l/[r(n - r + l)] for all n > r. In particular, since 
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n(n + 1) A(n, r) > 1 for n > 0, r > 0. it follows that we may rewrite (36) in 
the form 

Q(-u) > 
n + 1 \ #a-~) /?A-~) I 

n(n + 1)A - 1 
,n(r+ 1)1--p 
/ xr x” \‘ 

n>O,r>O. 138) 

If Q(a) = 1. we obtain 

1 
n(r+ l)A’:-&r-- 

ar a” nfl 
for n > 0, I’ > 0. (39) 

where ,I = l(n, r) is defined by (37). If r = 1, A= tc ‘, whence 

2v,<y n 
a ’ a” n+l 

for n > 0. (40) 

For n = 1, (40) gives the same result as (32) for r = 1. x = a. 
Note that (32) can be written in the form 

with (o nonincreasing on [0,x], and thus is an early special form of 
Cebylev’s inequality. This approach was pushed somewhat further in [3 1, 
but with only partial success. Instead of pursuing this, we return to (32). and 
rewrite it in the form 

(n+ 1) j-*’ f” de(t) < 4 Q(x,), n > 0,x, >O. 
-0 

Multiply by x’; ~’ r (m > n), and integrate over [0,x] to obtain 

(n+ l)-Xm-Rx.(r)-~x,(x)~~Q(~)-~~,(~~). m-n 

or after multiplication by m(m - n)x”, 

m(n + 1) x”x,(x) - n(m + 1) x”x,(x) < (m - n) x”““Q(x), (41) 

valid for m > n > 0, x > 0. Similarly we may multiply (41) by xPm -‘- ’ 
(where r > m + n, m > n), integrate by parts, and then multiply by 
r(r - m)(r - n)xm+” to obtain 

mr(r-m)(n+ 1)x ““‘x,(x) + rn(n - r)(m + 1) xrtn~Jx) 

+ nm(m - n)(r + 1) x”~~x,.(x) Q (m - r)(r - n)(n - m) x”‘“‘~Q(x), 

provided 0 < n < m, m + n < r. (42) 
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If Q(a) = 1 with a finite, we may take x = a in (41), (42) and, dividing by 
mn, and by r2m2n2, respectively, obtain 

(I+$)$-(I+;)%<$-$ if m>n>O. (43) 

$(l+~i(t-;)$+f(l+;)(f-;)$ 

9; (1+-l-)(+-;)-!&+ (&-)(=J($-J-), (44) 

provided 0 < n < m, m + n < r. 

6.4 

In this final subsection we shall obtain some reverse inequalities to those 
in 6.3 by assuming somewhat more, namely, that Q is not only 
nondecreasing and concave, but, in fact, that Q’ is nonincreasing and 
continuous on [0, a] (0 < a < co). In place of (32) we may then write 

~,(x)=j~t”Q’(t)dt>jo‘t’Q’(x)dt=~Q’(x), n > 0. 

We now proceed as in the analysis leading to (4lk(44). Multiply the last 
inequality by xm-‘-’ (m > n), and integrate to obtain 

X 
m-n 

---L(X) - m-n &Xdx) a-&j’ t”QW dt = 
0 

or after some reduction 

(n + 1 )x”x,(x> > Cm + 1) x”x,(x) if m>n>O. (45) 

Similarly, multiply through (45) by x~-“~~-’ (r > m + n), and integrate 
over [0,x]. After multiplication by (r - n)(r - m)P+“, we have 

(n+ l)(r-m)x ‘+“x~(x) + (r + l)(m - n)xm+“&) 

> (m + l)(r - n) x~+~X&), (46) 

validform>n>O,r>m+n,x>O. 
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If Q(a) = 1 where (I is finite, we may set .Y = c1 in (45). (46) to obtain 

(n+ I)$>(m+ l)-$ if m > n > 0. (471 

(n+ l)(r-m)$+(r+ l)(m-n)$ 

> (m + I)(r-n)$ if in 2 n > 0, r > m + II. (48) 

7. INEQUALITIES OF LIAPOUNOV AND GAUSS-WINCKLER 

Again we return to the rth absolute moment of Section 1. 

v, = v,,, = [Ic /x - air dF(x) = j-,X t’dQ(x) (r > 0). 
L -iI 

We observe that v,, = 1, and if v, exists for some n > 0, then I’, exists for 
0 < r < n, and 

I’;,’ < VA n. (49) 

This follows from Hdlder’s inequality with conjugate exponents 
p = n/r > 1, and q = n/(n - r), which gives 

v, = I 
. % 

-0 
xr . 1 dQ(x) < 1 (-1 ,y,, dp)““jl; 1 de)‘“-” “, 

and hence (49). 
We next prove that the function g(r) = log v, is convex on (0, co), that is. 

g(ls + I4 < MS) + Kc(t) for O<s<t,O<i< l.k+~=l. (50) 

Indeed, using Holder’s inequality with p = 1~ ‘. q = ,u ‘, we have 

g(h + ,ut) = log iK (x~)-‘(x~)~ dQ < log ( [u_ x5 dQ) .’ (1; x’ dQ) u 
-0 -0 

= k(s) + NW. 

Inequality (50) may be written in a different form, when it is called 
Liapounov’s inequality [4 1: 

+-Q < ,+-++-a if O<a<b<c. (50’ 1 

This is just (50) with a = s. c = t, J = (c - b)/(c - a), p = (b - a)/(~ - a). 
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We shall use (50) to prove the so-called Gauss-Winckler inequality, 
namely, 

[(n + l)~,]“~ < [(r t l)~,]“’ if O<n<r, (51) 

provided Q’ is continuous and nonincreasing on (0, co). Note that this is an 
improvement of (30); as noted following (30), Winckler obtained (51) by an 
invalid argument in 1866. According to Frechet [ 10, p. 681, the first proof of 
(5 1) was due to Faber [7] in 1926. The following proof is a modification of 
von Mises’ proof [S] given in 1931. The special case n = 2, r = 4. of (51), 
namely, 

1’, > ;v; (52) 

was stated without proof by Gauss 12, Art. lo]. 
To prove (51), observe that the existence of v,. = rc fQ dt under the 

hypotheses on Q’ implies that 

.x, 

) t’Q’(t) dt > !I,, fQ’(t) dt > 14)’ Q’(a) . +- 0 as a + co, 
-o;? 

and 

j]:fQ’(t)dt>Q@$--o as & -+ 0. 

Hence. 

1? = Q’(t)t’+’ cT’ + 1 .% 
r r-t1 o 

-] fr+’ 
r+ 1 .. 4-Q'(t)l, 

or 

(r + l)r, = IX t’+’ d[-Q’(t)], 
‘0 

(53) 

and, in particular, the latter integral exists. Similarly, since r. exists, J, = 
.I-; td[-Q’(t)] < co follows in the same way. and the function Q, defined by 
Q,(t) = 0, t < 0, 

Q,(t) = J; ' 10' u d[-Q'(u)], I > 0, 

is a probability distribution function. We may write the preceding equality in 
the form 

(r + l)v, = J, [‘i t’ de,(t) = J, Fr, 
-0 
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where F, denotes the rth moment about 0 of Q, (and thus exists). Now apply 
(50) to the moments G, = J; ‘(r + l)r,. with s = 0. t = r, ,a = (n/r) < 1, to 
obtain 

log[J;‘(rt+ I)r,]< (1-Y)logjJ,‘. 1 .r,,j++log[.I;‘.(r+ l)v,/. 

Since v,, = 1, this reduces to (5 1). We observe that this proof is valid even in 
the case that Q’(O+) = -co. In case 0 < Q’(0) < 00. a slightly simpler proof 
can be given, using Q,(X) = 1 - {Q’(x)/Q’(O)} in place of Q,(X). 

IA in addition to the preceding hypotheses on Q, we assume that -Q” is 
continuous, posititte and decreasing. then from (53) we may write 

tr + 1 )L,r = -jr Q”(t) t’+ ’ dt = s [-Q”(t)] I ’ + I 1’~’ t”+ ’ dQ”U). 
I, r+ 2 .O 

This reduces as before to 

(r + l)(r + 2)~~ = l’ir I’+’ dQ”(t) =J: 1.” t’ dQ,(t). 
-0 .o 

where Jz = .I‘: t’ dQ”(t) exists (since J, does), and 

Q?(t) = J; ’ .io’ u’ dQ”(u). 

From this, the same analysis as before shows that 

[(n + l)(n + 2)v,l”” < [(r+ l)(r+ 2)rl,l’ r if 0 < n < r. 

More generally, if Q is a probability distribution *function with Q(x) = 0 
for x < 0. Q(0) = 0, Q(m) = 1, and if (-l)Am’Q’“’ is positive. continuous. 
and decreasing on (0, m) for k = 1, 2 ,..., N, then 

{(n + l)(n + 2) ... (n + k)v,}’ ’ 

< {(rf l)(r+2)... (r+k)v,.}‘,’ if 0 < n < r. (54) 

holds for 1 < k ,< N. As an application of (54), consider the case Q(X) = 
1 - em”, .Y > 0, for which the hypotheses of (54) are satisfied for arbitrary 
N > 0. Since V, = T(r + 1) in this case, (54) reduces to 

(r(n+k+ l)}““< {f(r+k+ 1))“‘. 0 < n < r, k = 1. 2, 3 . . . . . (55) 
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