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O&~ch’ve~. This study was designed to evaluate the relation 
between the velocity of flow propagation and left ventricular 
relrrxatlon by using color M-mode Doppler ech~ardiograpby to 
analyze flow propagation in the IeFt ventricle. 

Background. Noninvasive attempts to identify alterations in left 
ventricular relaxation have been hampered because both the 
relaxation rate and left atria! Wing pressure m-e the detcrmioa~~s 
of peak early velocity and ii!ling rate, 

Illlefkocls. Color M-mode veloci$ data were transferred to a 
micmmputer and compared with conventlonal pulsed Doppler 
data to assess the ability of color M-mode echocardiography to 
analyze velocity field properties. The velocity OF flow propagation 
was measured as the slope of the flow wave Front during early 
filling in normal subjects (n = 29) and in patients with disease that 
alters relaxation (dilated cardiomyopathy [n = 311, ischemic 
cardiomyopathy [n = $1, hypertrophic cardiomyopathy [n = 51, 
systemic hypertension [n = 221 and aortic valve disease [n = ZS]). 
In nine patients with end-stage dilated cardiomyopathy, echocar- 

-_ 

A delay in flow propagation in the left ventricle was first 
described in dilated cardiomyopathy by Jacobs et al. (1). 
Using both two-dimensional color Doppler and color 
M-mode echocardiography, they showed that early filling 
reached the apex late in diastole or even during the following 
systole. The increased dimensions of the left ventricle and a 
disorientation of flow due to the mitral valve orifice were 
thought to be the mechanisms explaining the difference 
between this flow pattern and the rapid progression of flow 
toward the apex observed in the normal ventricle (I). How- 
ever, because left ventricular relaxation persists during early 
diastole (2-6), another possible explanation is a restraint on 
flow propagation in the ventricular cavity as a result of wall 
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propagation was related t 
(p < 0.001) but not in 
isovolumeltric relaxation 
sion and the two variables were 

Conclusions. The v&c 
filling seems to be high1 
relaxation rate and coul 
diastolic Function. 

properties. An asynchrony in wall relaxation could modulate 
flow propagation in the cavity and increased asynchrony 
could induce the increased delay of flow observed in dilated 
cardiomyopathy. 

The purpose of this study was to test this hypothesis, 
relating the left ventricular intlow pattern to diastolic myo- 
cardial properties. We attempted to analyze the velocity 
of flow propagation rather than flow propagation delay, 
because the latter variable is too dependent on ventricular 
cavity dimensions. Our first objective was to test the 
feasibility of accurately measuring the velocity of flow 
propagation with color M-mode echocardiography. Next, we 
attempted to compare this value in norma! subjects with 
values found in patients with five different diseases known 
to alter the relaxation process in the presence or absence 
of left ventricular dilation: dilated cardiomyopathy (7-1 I), 
ischemic cardiomyopathy (12-16), hypertrophic cardiomy- 
opathy (17-2l), systemic hypertension (7,22) and aortic 
valve disease (23-26). Our last objective was to determine 
the significance of the velocity of flow propagation by 
comparing the values observed in diEerent hemodynamic 
states with values of the isovolumetric relaxation time con- 
stant (27,28). 
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ventricular inflow was also recorded with the 

agaiion of the color signal in the left veat~~uiar ch 
optimize the recording; peak velocities had to be 
for ~2.5 cm in the left ventricle without major velocity Boss. 
The gain was always se to the maximal value, avoiding 
saturation effects. Pulsed oppier and color M-mode record- 
ings of left ventricular infiow were obtained within a minimal 
delay. 

Color k&mode characterisfics. The ultrasound system 
used a frequency of 3.25 MHz for the imaging mode and a 

uency of 2.5 MHz for the Doppler mode. The color 
mode line contained 128 samples, with a variable depth 

range (10 to 18 cm). Data were displayed on the system 
monitor every 5 ms, using 18 color levels for each flow 
direction. 

transfer. An interface board developed by the Bio- 
me Engkeering Department of Trondheim University, 
Norway allowed the transfer of the ultrasound data and 
physiologic tracings to a microcom ter. Dedicated soft- 
ware (EchoLink, Vingmed Sound, orten, Norway) en- 
sured the transfer of ail echocardiographic modes. Data were 
first entered into a scrolling memory containing 5 to 10 
cardiac cycles and then transferred to the microcomputer. 
We used a Macintosh IIci with 8 Mbytes of central memory. 

e selected. In the coi~r 

cordings; 2) provide a spatial description of Peft verltricu!ar 
w patterns in normal su 
rent diseases; 3) analyze 

the information available in th 
provide a quantitative study of 
and 4) compare the velocity of 
isovoiumetric time constant of relaxation. 

cardiography, we se- 
lected the peak transmitral velocity values (E wave and A 
wave) and compared the velocities obtained by conventional 
single-gate pulsed Doppler e~hocardiog~a~by to similar ve- 
locities obtained in the ~.,e depth a by color ~-rn~d~ 
echocardiography. Because color -mode echocardiog- 

rs mean velocities, we cltiiized modal velocities 
oppier studies according to the close rdation 

n and modal velocities in a iaminar flow situa- 
tk. The comparison was performed for each subject, using 
one cardiac cycle selected at the end-expiratory phase. 

Reproducibility and accuracy. To further test color 
M-mode qur.ntitauve information, we selected a document 
chosen for optimal technical conditions and smooth appear- 
ance of diastolic flow. Six consecutive cardiac cycles were 
included in a temporal and spatial study. To determine 
temporal accurucy, we compared t 
tions (t, and tz) during a stable phase 
sample of the -mode line, we assu 
velocity remained unchanged during the 5-ms time interval. 
Therefore, any observed change would be considered to be 
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Figure 1. Determination of the velocity of flow propagation (FPS) in 
the left ventricle by color M-mode echocardiography. The Bow 
pattern in the left ventricle is schematized during diastole. The flow 
wave front during early filling is shown as a linear segment in the 
basal zone of the left ventricle. This linear property was observed in 
most subjects, but is usually lost closer to the apex. Flow propaga- 
tion velocity is defined as the slope of the linear segmeat (m/s). 
MV = mitral valve. 

an inaccurate velocity estimation. For spatial accumcy, the 
comparison included the two lines (1, and fJ and was 
performed on 50 velocity samples situated in the basal and 
mid portions of the left ventricular cavity. Because impor- 
tant flow velocity changes were observed wifh changes in 
depth, we assumed that the average values during six cardiac 
cycles represented the true velocity. Each individual differ- 
ence in velocity between adjacent samples was compared 
with the corresponding mean spatial changes. 

Spatial description of left ventricular inflow patterns. The 
temporal pattern of left ventricular inflow velocity has been 
widely described in normal conditions and in disease using 
single-gate pulsed Doppler echocardiography, but these 
studies are restricted to the transmitral area. Conversely, 
color M-mode echocardiography permits spatial and tempo- 
ral visualization of flow propagation inside the whole left 
ventricular c&y. The extent of this flow propagation was 
analyzed during early and late filling in the normal group and 
in patients with disease. 

Choice of a method to determine velocity of flow propaga- 
tion. Different approaches were tested to determine the 
velocitv of flow propagation in the left ventricle during the 
early filling period. Our choice was to draw a line segment 
along a color change as displayed on the Macintosh monitor 
and to read the speed directly. Because use of the highest 
velocities, gave erratic results, we selected the low velocities 
outlining the early filling wave front (black to red transition). 
This wave front had to be reasonably linear (Fig. I). We 
always selemd the color map that allowed the best low 
velocity contrast (called the “rainbow without variance” in 
our software program) and never used low velocity filters. 
The segment began with the onset of flow in the left 
ventricular inlet and ended as far as possible in the left 

ven:rjcu!ar chamber (Fig. I). In case of sig 
beat differences, we always selected the highest velocity of 
flow propagation. Propagation velocity values wzre ex- 
pressed in m/s. 

In this preliminary study, neither interobse~ver nor in- 
traobserver variability was measured. As a rule, hcwever, 
each determination required the agreement of two observers 
and computer storage of the 

Comparison with inform 
cat~eter~z~tio~. The subset 
myopathy who underwent cardiac catbete~za~io~ (n = 9) 
received intraco ary dob~~tamine infusion to determine 

ic ~:i~~t~acti~e reserve, accordi 
the protocol proposed by Colluci et al 
patients were included in Group 
state appear in the general st 
patients, left ventricular pr ure ~ecor~i~l~s were obtained 
simultaneously with a 5F liar catheter and transferred 
with color M-mode data t 
tamine infusion (50 to 
left ventricular peak, 
maximal and minimal first derivative o 
pressure (dP/dt) and peak early velocity obtained by color 
M-mode echocardiography. The tine constant of left ven- 
tricuiar isovolumetric relaxation was t:alculated in two ways. 
First, we used the natural logarithm method (27) to compu 
the time constant of isovolumetric relaxation (q,J fro 
negative peak dP/dt to mitral valve opening; mitral valve 

was delnonstrated by the onset of flow on the color 
used the direct measure- 
ith this method, (T,,~) is 

measured directly from the pressure tr;\cing as the time 
required for left ventricular pressure to decrease to half of its 
value at negative peak dP/dt. Flow propagation velocity was 
calculated as previously described. 

All early filling waves starting after minimal left ventric- 
ular pressure were excluded in evaluation of the flow prop- 
agation velocity. This condition was found in five instances: 
the values of !hc isovolumetric relaxation time constant were 
always considerably decreased by reference to their basal 
state values. It was assumed that wiih left coronary dobu- 
tamine infusion, the relaxation process was complete (30) 
before the onset of early filling. Conversely, the velocity of 
flow propagation was measured during late filling in on: 
patient because I) early filling velocity was extremely low; 
and 2) relaxation was prolonged as evidenced by the isovol- 
umetric time constant. The prctocol was approved by the 
local Ethics Committee of the University Hospital Henri 
Mondor. All patients provided written informed consent. No 
complications occurred as a result of the study. 

Statistical aaalysis. Data are expressed as mean value + 
SD. The correlations between color M-mode and pulsed 
Doppler values, between flow propagation velocity and peak 
velocity variables, between flow propagation velocity and 
age and between flow propagation velocity and the hemody- 
namic constant T were assessed by least squares regression 
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2. Comparison between peak v values measured by 
gate pulsed Doppler and color echocardiography. 

This comparison was performed during ly and late transmi- 
tral velocities (n = 217). The correlation between the measurements 
obtained with both methods is ly significant and close to the 
identity line. The plot of the ence against the mean of the 
values confirms the good agreement of the two methods. 

analysis. Agreement between color 
Doppler values was assessed by plot 
ences against the mean values of the two measurements (31). 
Comparison of flow propagation velocity in the normal group 
and in the different groups of patients was accomplished by 
one-way an is of variance (ANOVA). If the F value was 
significant, Student unpaired t test was performed with 
the use of the Bonferroni correction. Two-term multiple 
regressions were performed for flow propagation velocity 
and its potential relations with rand other variables by using 
the highest values of partial F. Statistical significance was 
accepted at a p value < 0.05. 

Validation of Co10 Measurements 

and 0.72 f 0.26 m/s (range 0.30 to 1.33 and 0.26 to I .38), and 
the mean values of A wave (n = 96) were 0.61 ? 0.25 and 
0.60 2 0.27 m/s (range 0.20-I .33 and 0.21-1.27). For both E 
and A waves (n = 217), the mean values were 0.67 + 0.24 
and 0.66 + 0.27 m/s, respectively. A high correlation was 

n Peak Early and Late Vekxities 
e-Gate Pulsed Doppler and Color 

I_ _-_.__ 
NO. r Value p Value Slope Y Intercept 

E wave (or unique wave) 121 0.93 0.0001 1.066 -0.050 
A wave 96 (J 93 5.0001 1.032 -0.0% 
E and A waves (or 214 0.94 O.OOOl 1.052 -0.038 
EtA) 

M-mode velocities were measured in samples corresponding to the same 

depth as the pulsed Doppler volume. The first correlation concerns peak early 
velocity(E) or peak velocity of a unique wave (E t A). The second concerns 

peak late velocity (A). All values are included in the third correlation. No. = 
number of values. 

Doppler and color 
eak early velocity, peak late velocity 
. Correlation coefficients are give0 in 

e regression equations were close to the i 
e the wide raise of s. The mean diifer- 
wave values was 0. with a 95% con& 

of +0.097 to -8.95 e mean deference 

interval of +0.103 to -0. 

ow acceleration in the left atriu 
mitral featlet tips, the sl 
r&M [Jf the Ventride a 

apex. 

al velocities at the 

Teymrtil accur0c.v. ‘The ~isto~ra~~ in Figure 
the results of the comparison between consecut 
situated ai the same depth during a s 

rences did not exceed + 
99% of the cases. 

suggests that part of the difference ic: &re to a true phenom- 
enon, the progression of Bow in 5 ms. The standard deviation 
of the difference between cycle and mean values was low 

or +0.05 m/s, n = 6 
The histogram in Figure 3C shows the 

results of the comparison between adjacent velocity sam- 
ples. The differences did not exceed +2 velocity steps (OF 2 

0.08 m/s) in 98% of the cases. The standard deviation of the 
difference between cycle values and mean values was low 
(~%I.78 velocity step or -to.03 m/s, n = 6 

It was systematically observed in color 
ings that whenever proper alignment had been achieved 
between left ventricular inflow and the ultrasound beam, the 
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Figure 3. Temporal and spatial accuracy of color M-mode echocar- 
diography. In A, velccity is plotted against depth frorr the left 
atrium (LA) on the right to the apex of the left ventricle (LV) on the 
left. Clawed circles represent the mean of measurements performed 
just after peak early velocity in six successive cardiac cycles. Open 
circles correspond to the same type of measurements but performed 
5 ms after the previous measurements. The two patterns are very 
similar. Vertical arrows limit the zone retained for the spatial study 
in C. In the study of temporal accuracy in B, the frequency 
distribution of the differences between both sets of measurements 
(n = 61 I) is shown. The true flow velocities are assumed to remain 
constant during this short time interval. In the study of spatial 
accuracy in C, the frequency distrktion of the differences between 
adjacent velocity samples is shown. Individual differences are 
compared with the mean difference, assumed to represent the true 
velocity profile (n = 600). 
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highest flow velocity in the left ventricular inlet could be 
followed downstream for a long distance without a mjor 
loss in velocity. As suggested by numeric models (32), tbe 
flow streamlines did not diverge when enteri eft 
ventricle and flow remained coherent. Small r~cirsuIat~ons 
were detected at the leaflet tip level, characterized in color 
M-mode images by flow persisting over time witbout down- 
stream progression. Further downstream, flow velocity de- 
creased steeply toward the apex. Both models and two- 
dimensional images suggest that major recirculation 
place between the mid portion of the !eft ventricle an 
apical region. In the apical region of the ventricle 
ultrasound beam orie tation becomes inadequate with refer- 
ence to flow orientation. 

In young normal subjects, the flow wave related to early 
filling progressed rir$ dly toward the apex. In contrast, filling 
related to atrial contraction id not pass the mid portion of 
the ventricle. When flow di reach the apical region during 
late diastole, it was undoubtly related to early filling (Fig. 
4A). In older normal subjects, early and late filli 
gressed toward the apex at an equal rate (Fig. 
patients with disease, whenever peak early to late 
ratio remained normal or hypernormal, the color 
pattern was similar to the pattern observed in youn 
subjects, but the progression toward the apex was delayed 
(I) and flow could require a full cardiac cycle to reach the 
apex (Fig. 4C). When the velocity ratio was abnormal (E < 
A), early filling did not always reach the apical region of the 
left ventricle, which was instead attained by the flow related 
to atrial contraction (Fig. 4D). In patients with dilated 
card opathy. when both peak early and late transmitral 
velo were low, flow was not recorded beyond the mid 
portion of the ventricle, despite the ability to record very low 
velocities. 

Velocity of Flow Propagatiorz 

The linear character of the flow wave front was confirmed 
in most of the study subjects (96%), and the velocity of flow 
propagation could be measured according to the require- 
ments of the selected technique. 

Flow propagation velocity. The valbes of flow propaga- 
tion velocity and transmitral velocity variables determined 
by color M-mode echocardiography and age are given in 
Table 2. In the normal group, a high flow propagation 
velocity was always observed, ranging from O.H3 in 1.05 m/s. 
It was clearly greater than peak early flow velocity (0.84 + 
0.1 I vs. 0.7 ” 0.13 m/s. p 5 0.0001). Flow propagation 
velocity was also significantly related to age (r = -0.62, p I 
O.OOOS), velocity ratio (r = 0.70, p 5 0.0001) with peak early 
velocity (r = 0.68, p 5 O.OOOl), but not to peak late velocity. 
A relation between age and both the velocity ratio and peak 
early velocity (33) was also present in the normal group (r = 
-0.42, p I: 0.05 and r = 0.71, p I 0. 

In contrast, in patients with disease, a low flow propaga- 
tion velocity was most often &hsprvpd and there wag an 

Velocity steps (0.042 m/s) 
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towml the apex. In contrast, iat 
64) is Kkted to the basal region of the 

9 typical for an elderly 
subject, the progression 12 early filling 
and late filling is similar. In both sub- 
jects, the early filling wave fronts out- 
lined in white are linear and their slopes 

0.5 and 0.7 m/s, respective- 
show the Row progression 

with heart disease. In C, 
early filling progresses toward the 

regression is slow, de- 
velocities fM~e ~01~) 

observed during the E wave (hypernol- 
mal EM ratio). Late filli 
is extremely limited. In 
does not reach the apex. Pn contrast, 
late filling extends to the apex: high 
velocities are observed during the A 

wave (abnormal E/A ratio). In both 
subjects, the early filling wave fronts 
are linear, but their slopes are low (0.45 
and 0.30 m/s, respectively). 

* _._. ” - _..^_ __._ ____ C..-___.._ 

lQQmns /t 

overall significant difference compared with resul’us in t 
normai group (0.46 t 0.15 vs. 0.84 2 0.1 I m/s, p < O.~!II 

red si~~ifi~~~t~y from all five groups 
ever, no significant differences were seen 

among these five groups. Hn the five groups flow propagation 
velocity was related to age (r = -0.35, p < O.OOS), but not 
with peak early and late velocities and their ratio, except for 
a weak relation (p < 0.05) for peak early velocity in Group IV. 

with Ileft v@~~~~~M~a~ ~~~ss~~e 
vidual results of the nine patients studied in the basal state 

and during doburamine infusion are summarized in Table 3. 
1r1 Patient 4, no distinct early filling was observed, and flow 
propagation velocity was measured during late fil 
cause its flow wave front took place within the left ventric- 
ular relaxation phase (ventricular relaxation was considered 
complete approximately 3.5 T after minimal dP!dt or at 
approximately 320 ms in t patient) (2). In the basal state, 
all patients bad a decreas Wow propagation velocity and, 
accordingly, the isovolumetric relaxation time constants 
were always increased. Dobutamine induced a significant 

Table 2. M-Mode Flow Propagation Velocity and Pulsed Doppler Peak Early and Late Velocity Variables 

Group No. Age lyr) FPV (m/s) E (m/s) A (r& E/A 
--- -- 

Normal 29” 392 I3 0.84 c 0.11 0.70 f 0.13 0.43 + 0.07 1.65 + 0.42 

( 19-59) (0.68-1.05) (C.~2 -0.98) (0.30 -0.55) (0.79 -2.79) 

Disease 91* 582 17 0.46 IT 0.15 0.74 2 0.28 0.64 f 0.32 1.33 -t 1.13 

(Groups I to V) (22-92) (0.20-I .lO) (0.23-I .48) (0.11-1.27) (0.20-6.25) 

Group I 31 53 -” I4 0.41 + 0.1 It 0.80 2 0.27 0.41 + 0.20 2.00 2 1.60 

(I;-83) (0.20-0.78) (0.30-1.35) (0. I l-0.76) (0.65-6.25) 

Group II 8 59 ? IO 0.46 lr 0.11: 0.72 2 0.21 0.52 1 0.18 1.35 ?C 0.59 

(45-73) (0.27-0.65) (0.42-1.01) (0.34-0.93) (0.47-2.00) 

Group 111 5* 66 I 2 0.58 k 0.29$ 1.09 _+ 0.14 1.15 -c 0.18 I.03 t 0.14 

(63-67) (0.40-I. IO) (0.91-1.30) (I .02-1.27) (0.94-I .Q8) 

Group IV 22* 55 t 15 0.50 2 O.l7? 0.61 t 0.20 0.83 f 0.20 0.86 + 0.31 

(22-82) (0.27-0.92) (0.38-1.02) (0.45-1.35) (0.37-l .73) 

Group V 25* 63 i: 22 0.48 t 0.14t 0.80 r 0.32 0.75 2 0.36 1.52 t 1.40 

(23-92) (0.29-0.80) (0.23-1.48) (0.23-1.25) (0.20-4.93) 

*Correct measurement of flow propagation velocity could not be performed in 5 of 125 subjects. *Difference significant at 99% with respect to normal values. 

*Difference significant at 95% with respect to normal values. Values are reported as mean value k I SD; values in parentheses indicate range. WV = M-mode 

flow propagation velocity: Group I = dilated cardiomyopathy; Group II = ischemic cardiomyopathy: Group 111 = hypertrophic cardiomyopathy; Group Iv = 
t+ysie& irypcli&irti; CiOUp V = aortic valve disease; other abbreviations as in Table I.. 
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TaMe 3. Left Ventricular Pressure Results and Color M-Mode Echocardiographic Results in the Basal State and i)uring 
Dobutamine Infusion 

LV Pressure (mm Hg) dPldt (mm l-&k) 
Pt HR 71n FPV PEV 

No. HS (beats/mm) Max Min ED Max Min (ms) 7l1z (msl Ws) Ws) 

4 

I* 

2 

3 

I 
2 

3 

4 

5 

I 
2 

3 

4 

2 
3 

2 

9 

loo 

I09 

103 

98 

89 

87 

77 

80 

IO? 

92 

96 

% 

97 

93 

93 

95 

69 

67 

73 

103 

90 

Ill 

IO5 

II6 

I25 

II3 

73 

72 

81 

91 

100 

I00 

II9 

127 

95 

93 

97 

97 

I00 

92 

98 

98 

IO3 

126 

139 

I41 

131 

128 

127 

140 

I48 

75 

75 

97 

67 

69 

90 

94 

IO0 

IO1 

I8 26 

IO 25 

4 19 

-4 3 

29 35 

29 34 

26 29 

20 20 

24 24 

24 29 

I9 24 

25 29 

24 30 

I9 

22 

22 

23 

28 

22 

6 

I4 

20 

20 

6 

20 

24 

I9 

8 

I3 

12 

25 

28 

25 

24 

26 

23 

IO 

22 

I8 

20 

8 

II 

20 

I4 

I3 

I3 

I4 

750 -875 88 59 

550 -jSO 64 41 

I.110 -1,100 39 32 

I.500 -1.550 27 25 

505 -545 I10 68 

460 -460 107 80 

670 -700 130 84 

800 -920 140 90 

945 -960 135 103 

635 -510 99 64 

720 -595 95 50 

720 -595 85 67 

805 -680 35 53 

I.105 -l,lU5 78 41 

1.735 - 1,265 77 44 

I.265 - 1,580 66 39 

I .045 -1.290 53 42 

805 -. 1,290 65 48 

1,100 -1,170 88 38 

I.600 - I.780 I4 13 

1,800 -2,0Qo 28 I8 

505 -620 47 33 

505 -660 50 29 

950 -1.010 38 22 

505 -545 56 31 

465 -580 55 38 

705 -750 105 79 

1,080 - I .7OO 54 17 

I.450 - I.950 44 24 

I .370 - 1,620 52 I9 

0.45 

0.45 

0.60 

DE 

0.44 

0.42 

0.34 

0.26 

0.26 

0.35, 

0.40t 

0.36t 

0.4tt 

0.33 

0.34 

0.36 

0.37 

u.31 

0.38 

DE 

0.65 

0.49 

0.52 

DE 

0.53 

0.57 

0.35 

DE 

DE 

DE 

I .02 

0.64 

0.58 

0.37 

0.64 

0.72 

0.57 

0.37 

0.71 

0.57 

0.76 

0.68 

0.72 

0.30 

0.34 

0.34 

0.24 

0.20 

0.94 

0.54 

0.92 

1.13 

I.13 

0.30 

0.95 

1.12 

0.49 

0.49 

0.42 

0.42 

*Nonsimultaseous. Wlow propagation velocity (FPV) calculated during the A wave (see text). DE = delayed E wave occurring after minimal (Mm) left 

venlricular pressure: dP/dt = first derivative of left ventricular pressure: ED = end-diastolic; HR = heart rate: HS = hemodynamic state; LV = left ventricc:?:; 

Max = maximal: PEV = peak early velocity except for Patient 4. for whom peak late velocity is given: Pt = patient: rrn and ~,,a = isovolumetric relaxation r’jne 
constants measured according to the natural logarithm method (27) or pressure half-time method (28). 

decrease in the time constant of isovolumetric relaxation in 
five patients, a significant increase in one and no significant 
change in three; flow propagation velocity behaved in a 
concordant manner with the time constant of isovolumetric 
relaxation. These changes in the time constant of isovolu- 
metric rc!axation differed from the more homogeneous re- 
sults reported by Colucci et al. (28). A difference in patient 
selection could explain this discrepancy. 

A strong relation was found between the isovolmetric 
time constant (T,,, or T,~Z) and frow propagation velocity 
(Fig. 5 and 6) and among these variables and other hemody 
ramic or color M-mode variables (Table 4). It is also 
tmportant to note: I) the strong relation between the time 
constant of isovolumetric relaxation and left ventricular 
minima! pressure and the concordant strong relation be- 
tween flow propagation velocity and minimal pressure; 2) the 
relation between flow propagation velocity and peak early 

velocity, despite the absence of a relation between :).:al: 
early velocity and the time constant of isovolumetric r&ix- 
ation; and 3) the relation between flow propagation velllcity 
and heart rate (p < 0.01); relations with heart rate wen not 
significant for rtn and Tl12. The results of multiple regresslh;rl 
analysis are given in Table 5. It is important to recognize the 
primary importance of the isovolumetric time constant (T,” 
or T,,J and the weaker though significant importance of the 
difference between atrial driving pressure and minima! left 
ventricular pressure. 

In early diastole, after mitral valve opening, left v 
ular pressure continues to decrease even tbo~gb the 
ber is expanding (4,34). Relaxation continues when blood 
flows into the ventricle and the relaxation rate, ventricular 
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5. Correlations between velocity of Wow propa@ion and the 
luuaetric relaxation rate duning intrasoronary dobutamtn~ infu- 

sion. To allow identification of Cranges 
and T&W 3). each patient is represented by a 
methods were used to calculate the time con 
relaxation: the natural iogarithm meth 
pressure half-time method (~2) (Power 
strated a stroug correlation between flow propagation velocity, a 
noninvasive variable, and isovolumetric relaxation time constant. 

diastolic suction and left atrial filling pressure are important 
determinants of ventricular filling (5,35--41). Relaxation is 
considered to be complete after a time interval equal to 3.5 
times the isovolumetric time constant from the time of 
minimal dP!dt (2-6). In the normal human heart, the effect of 
relaxation is essentiahy ovet when left ventricular pressure 
reaches its minimal value. Conversely, in disease, t 
ation process persists after minimal pressure and 
cupy the complete diastole. 

Early tilling is therefore strictly conditioned by the relax- 
ation process. However, relatively few data are available to 
document this interaction between intraventric~l~ 
myocardial wall. Lepeschkin (42), studying the ECG U 
wave, provided a mechanical explanation: afterpotentials 

phy can offer the same Femporai 

fail to giveu s~m~~ta~eo 
o-dime~sio~ai color 

e same spatial resolut 
provide poor temporal resolution (ap~roxi~late~y 20 
frames/s). 

Jacobs et al. (1) were the first to describe a del 
~r~pa~atio~ in dilated cardiomyopathy using cola 
ecbocardiog~a~by. They &owed that early filli 
reached the apex of the ventricle duriug the next systole. 
However, they attributed this delay to the geometry of the 
dilated veratricle and disorientation of transmitra~ 00~. 
first confirmed these findings in patients with dilated ca 
myopathy but observed that flow 
delayed in the absence of left vc 
cases, the delay was less impor 
dilated cardiomyo~atby but rem 
with findings in normal subjects. 

Therefore, it appeared necessary to ~~orma~i~e the dctaY 
in flow propagation, and we chose to measure the 
flow propagation. Our preliminary aim was to Qd 



428 BRUN ET AL. 
INFLOW PROPAGATION AND VENTRICULAR RELAXATION 

JACC Vol. 20, NQ. 2 
August 9!#2:420-32 

M-mode quantified data, with two objectives. The first was 
to pet-Form a validation by reference to single-gate pulsed 
Doppler ultrasound (5354). This was accomplished by using 
either a linear regression method with correlation coeffi- 
cients zO.93 (p < 0.0001) and regression line slopes close to 
1, or relating individual differences to the mean values of the 
two measurements. The mean differences for E and A waves 
were <O.Ol m/s and the limits of agreement were small 
enough For our purpose. Our second objective was to test the 
accuracy of individual color M-mode measurements by 
looking for temporal or spatial data heterogeneity during the 
study of flow with smooth variations. Again, this was 
accomplished with low temporal and spatial velocity differ- 
ences between pixels (Fig. 3, B and C). 

Another aim was to define the value and limits of the 
velocity of flow propagation in the normal group. Concur- 
rently, we grouped patients with different cardiac diseases. 
These diseases have digerent consequences on left ventric- 
ular dimensions but are all known to induce significantly 
proionged relaxation. We then compared the velocity of flow 

Figure 6. Examples of short-term changes in the veloc- 
ity of flow propagation during left coronary infusion of 
dobMtam~~e. In 
increased from 0 
isovolumetric rel 
the time constant of isovolumetric relaxation deter- 
mined by the natural logarithm method IQ,] and 41 to 
32 ms for the time constant of isovolumetric relaxation 
determined by the pressure half-time method [r,,J). 
Conversely, in C and D, flow propa 
decreased from 0.44 m/s (C) to 0.26 m/s ( 
isovolumetric relaxa?ion rate increased 
for q,, and 68 to 90 ms for T,,~, respectively). In 
minimal pressure was considerably delayed, a pattern 
suggesting silent myocardial &hernia. ECG = electro- 
cardiogram; LV = left ventricle; P = KG P wave. 

propagation in the normal group and in the groups with 
disease. For this comparison, patients were observed during 
routine echocardiography and no interruption or modifica- 
tion of their treatment was requested. 

Using a one-way analysis of variance, we observed 
significant differences in the velocity of flow propagation 
between the normal group and the patients, considered as a 
whole or in subgroups with ddferent diseases. We could 
conclude that this velocity was decreased in the patients 
with disease but that this decrease might have been depen- 
dent on geometric factors related to left ventricular hyper- 
trophy despite the absence of dilation in some patients. The 
next steps in our study were therefore 1) to compare the 
velocity of flow propagation and the hemodynamic isovolu- 
metric constant reflecting left ventricular relaxation, and 
2) to determine whether the velocity flow propagation could 
change rapidly and in accordance with the time constant of 
isovolumetric relaxation, thereby demonstrating the inde- 
pendence of the velocity of flow propagation from geometry. 
These objectives were achieved during a protocol studying 
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NO. r Value p Value 

‘qn and FPV 24 -0.i3 <O.OQOl 

r,,z and FPV 24 -0.69 ~0.0002 

71” and P,,, 31 NS 

71, and pmin 31 0.74 <0.0001 

tin and PED 31 0.56 <Q.oOS 

q, and Wdi,,, 31 -0.43 <0.02 

T,,, and dP/dt,,, 31 0.45 <O.O? 

qn and PEV 31 NS 

qn and heart rate 31 NS 

rll? and P,“, 31 NS 

rl/Z and pain 31 0.74 <O.OOOl 

T,,~ and PEo 31 0.56 <O.OO5 

T,,~ and dPldt,,,, 31 -0.49 10.01 

T.,,_, and dP/dt,,,,, 31 0.52 <WI05 

r,,? and PEV 31 NS 

T,,? and heart rate 31 NS 

FPV and P,,,, 24 NS 

FPV and P,,, 24 -0.69 ~n.0005 

FPV and PE,, 24 NS 

FPV and dP/dt,,, 24 NS 

FPV and dP/dt,,,i,, 24 NS 
FPV and PEV 14 0.64 <0.005 

FPV and heart 24 0.54 CO.01 

rate 

In the absence of peak early filling velocity IPEVL peak late velocity was 

considered (see text). max = maximal; min = minimal: P = left ventricular 

pressure; otl,er abbreviations as in Tables I and 3. 

the contractile reserve of the left ventricle with left coronary 
dobutamine infusion in patients with dilated cardiomyopathy 

(29). 
Befors: dabutamine infusion, the velocity of 

gation was decreased and the isovolumetric rel 

constant increased in the nine patients studied. Dobutamiae 
induced a significant decrease in the time constant of isovol- 
umetric relaxation in five atients, a significant increase in 
one and no significant change in three. The two methods 

used to calculate the time corlstant of Isovolumetric relax- 
ation gave the same results. The velocity and flow. propaga- 

lion behaved ids a cmcor t marmer with the time constant 

of ~sovo~~metric rel There was a strong correlation 
.74, p < 0.000~ for r,, 

.69, p ( 0.0002 for T,Q (Fig. 5). 

s. In animal experiments. the time course of the 
isovolumetric pressure decline is etermined by a series of 
interacting factors, including loadi conditions. i~act~va~~o~ 
rate of in ual fibers and the 
within the wall of the ventricle (44-4 
studies (5637) in patients with norm 

hat the rate of isovolumetric relaxation 
ted by modest changes in loading conditio 
afterload) when heart rate was maintain 

ressure overloa[l hy- 
relaxation was found 

m left ventricular load (26). Only drastic 
shifts in afterload slowed the relaxation rate in patients with 
severe aortic stenosis (58). This s g could be explained 

edifications in the inactivati ocess or by regional 
docardia! ischemia (58). ~O~~~ifQrrn~ty also seems to 

be an important and independent determinant of the rate of 
left ventricular pressure decrease. In dog hearts, nonunifor- 

d by regional i~~t~o~ic st~rn~~at~o~ of the 
owever, in pz :lents with coronary artery 

hit cardiomycqathy, the relative mag- 
nitude of nonuniformity compare v ,th inactivation in slow- 
ing the rate of pressure decrease .-as noi been assessed 

(21,241. 
In summary, two factors Sect the time constant of 

isovolume!ric relaxltirn in humans: the rate of inactivation 
and nonuniformity. Conversely, the time constant of isovol- 
umetric re!axation does not seem to be affected by moderate 

velocity. In the nor- 
mal group of patients, the flow propagation velocity was 
always greater than peak early velocity; however, a signifi- 
cant relation was present between those two variables. In 
patients with disease. flow propagation velocity was always 
decreased compared with that in normal subjects, whereas 
peak early velocity remained in the normal range, despite 

Table 5. hh.Wariate Correlations Between Left Ventricular Pressure Variables and Color M-Mode 
Echocardiographic Propagation Velocity 

Flow propagation velocity with 1) ?” 2) %,O-Mn r = 0.83. p < O.OWl (n = 24) 

Partial p value 0.0001 0.005 

Partial F 25.4 9.7 

Flow propagation velocity with I) TI/? 21 APWIM” r = 0.78. p (: O.COOi In = ‘4) 

Partial p value 0.0006 0.02 

Partial F 16.2 9.4 

Peak early velocity with I b APE,+,” 2) PM0 r = 0.74. p C O.ooOl (n = 31) 

Partial p value O.OOG! 0.02 

Partial F 32.4 6.4 

APEF_Mn = difference between pressure at the end of early filling and minimal pressure: APW,,.M, = difference 

between pressure al mitral opening (PMO) and minimal pressure; other abbreviations as in Table 4. r and p in the final 

column refer lo the overall significance of the muhivariate correlations (n values). 
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wide individual variations. In the different disease groups, 
no relations or only weak relations were found between flow 
propagation velocity and peak early velocity. Hswr+er, the 
relation was stronger in the subgroup in which values for the 
time constant of isovolumetric relaxation were available 
(p < 0.005). 

Multivariate analysis (Table 5) showed that flow propa- 
gation velocity was mostly dependent on the time constant 
of isovolumetric relaxation describing the rate of pressure 
decline, whereas peak early velocity was independent of the 
time constant of isovolumetric ie!dxation and related to the 
difference between left ventricular pressure at the end of 
early filling and minimal pressure. Therefore, we assume 
that during the filling period and as long as relaxation is not 
complete, flow can only progress in the left ventricular 
chamber according to the speed allowed by the wall relax- 
ation properties. 

In normal subjects, the flow propagation velocity is 
evidently related to a physiologic nonuniformity, and in 
those with disease this nonuniformity is major (44,46). We 
admit that the course of relaxation is space dependent and 
that the relaxation process in the free wall is progressively 
delayed, spreading from base to apex. The preliminary work 
of Lew and Le Winter (47), studying mid wall circumferen- 
tial lengthening in the canine left ventricle, supports this 
interpretation by demonstrating normal regional variations 
and a significant delay from base to apex. A recent study (59) 
using color M-mode echosardiography provides further sup 
Port. In the canine heart, the delay in the timing of peak early 
velocity to reach the apex increased significantly during 
regional myocardial ischemia (59). 

The close relation found between the velocity of flow 
propagation and the time constant of isovolumetric relax- 
ation strongly suggests that the rate of inactivation also plays 
an important role in determining flow propagation velocity, 
in different forms of myocardial hypertrophy, for example, 
or during interventions thought to influence calcium dynam- 
ics V&61) at a cellular level. The mfluence of heart rate on 
velocity of flow propagation supports this assumption. 

study. The determination of the veloc- 
ity of fiow propagation is strictly dependent on the dedicated 
interface and associated software proposed by the Trend- 
Mm University group. It seems impossible to assess it 

directly on the ultrasound system monitor. Digital informa- 
tion is necessary to visualize the data with the indispensable 
time and depth magnification. Moreover, even though the 
determination of the flow propagation velocity remained 
manual in this study, full digital information is nl aded for an 
automatic determination. 

We found only two conditions in which the velocity of 
flow PrX@gation could not be measured: 1) when it was 
imgossible to obtain a linear wave front for early filling in 
patients with poor echogenicity or in the presence of an 
important anterograde flow during the isovolumetric Period 
6% and 2) in the extraphysiologic condition of an intracor- 

onary dobutamine infusion when early filling started after 
myocardial deactivation was complete (30). 

The alignment betweer! the flow and the ultrasound beam 
is crucial. A beam incorrectly oriented can lose the flow 
streamlines close to the mitral orifice and induce a false low 
propagation speed. It is imperative that the highest 
velocities be followed without major loss from the mitral tip 
to 22.5 cm. 

The correlation established between the isovolumetric 
relaxation time constant and propagation velocity has 
been limited to a subgroup 
normal subjects were not consid 
However, it is obvious that the int 
for both the time constant of iso 
flow propagation velocity would have greatly increased the 
significance of the correlation. 

With the use of the flow propagation velocity, the spatial 
spreading of relaxation is studied along only one path, the 
base-apex-free wall path; it is not explored in the septal area, 
according to an apex-base path or to a free wa~~-se~ta~ 

ications. These findings have Potentially im- 
portant implications and deserve further investigation in 
assessing diastolic function in patients with heart &EN. 
The determination of flow propagation velocity seems pos- 
sible in almost all situations. This constant could noninva- 
sively explore the relaxation process despite “normalized” 
or hypernormal velocity ratios (9) or in the presence of 
tachycardia when the velocity ratio cannot be ca$culated. 
Moreover, like the time constant of isovolumetric relax- 
ation, flow Propagation velocity could follow short- or 
long-term modifications of left ventricular relaxation. Fur- 
ther studies are necessary to evaluate its sensitivity, accu- 
racy and limits in detecting small changes in the relaxation 
status. Repeat measurements of flow propagation velocity 
could easily be made during patient follow-up evaluations or 
when analyzing the effects of drugs. 

Conclusions. Both flow propagation velocity (or early 
filling velocity constant describing the flow propagation) and 
the isovolumetric time constant describing the pressure 
decrease seem to be related to left ventricular myocardial 
relaxation. The flow propagation velocity could represent a 
noninvasive challenge to the time constant of isovolumetric 
relaxation. Color M-mode echocardiography allows an anal- 
ysis of the flow velocity field along a line in the left 
ventricular cavity and helps define the relation between flow 
and wall properties. During the early filling period, progres- 
sion of flow into the left ventricular cavity is governed by the 
complex relaxation process taking place in the wall, involv- 
ing spatial and temporal nonuniformity and myocardial in- 
activation. 

We thank Philippe Estagniasie, MD and Jean-Marc Lupoglazoff, MD for their 
contribution to data acquisition. We acknowledge the helpful comments of 
Akim Kerouani, HervC Perchet. MD and Yvan Perez, MD. 
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