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Abstract 

With the advent of novel hot stamping technologies to produce increasingly complex components, conventional FLDs, which 
are usually only determined at a constant temperature, strain rate and strain path, are unable to provide an accurate definition of 
formability. This is particularly the case with the solution Heat treatment, Forming and in-die Quenching (HFQ) process. In this 
work, a viscoplastic constitutive model was developed to predict the flow stress and formability of a sheet metal alloy 
undergoing temperature, strain rate and strain path changes. The capability of the proposed model was demonstrated by 
presenting the effect of these varying conditions on the stress-strain curves and FLDs of the aluminium alloy AA5754.  
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1. Introduction 

Forming limit diagrams (FLDs) are an essential tool in the finite element (FE) modelling of forming processes, 
as they indicate the level of deformation that can occur in a sheet metal alloy before fracture takes place. They are 
determined experimentally for constant temperatures, strain paths and strain rates, by measuring the limit strains of 
specimens formed using stretch-forming tests (Ayres and Wenner, 1979; Naka et al., 2001). Sheet metal 
formability has been shown to differ with varying temperature, strain rate and strain path (Hsu et al., 2008; Hsu et 
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al., 2006; Stoughton and Yoon, 2012), however due to the time and resources required to generate a single FLD, it 
would not be realistic to produce one for every possible condition that occurs in a forming process.  

With the tremendous growth in the use of lightweight alloys in vehicle structures to curb CO2 emissions 
(Casadei and Broda, 2007; Lutsey, 2010), the application of warm and hot stamping technologies to produce 
components from these alloys has been expanding; the limited formability at room temperature necessitates the use 
of elevated temperatures (Mohamed et al., 2012; Toros et al., 2008; Wang et al., 2011). One such technology is the 
solution Heat treatment, Forming, and in-die Quenching process, in which the sheet metal is solutionized before 
forming at a high speed in a cold die (Lin and Dean, 2005; Mohamed et al., 2012; Wang et al., 2011).  
Experimentally determined FLDs would no longer be applicable to such a process, due to the varying temperature, 
strain rate and strain path that different regions of the sheet metal experience during forming. In effect, each point 
of a formed component would have its own loading history, and theoretically, a unique FLD would be required for 
each point. A sensible FLD prediction model is therefore essential.  

In the present study, a viscoplastic constitutive model was developed to predict the stress-strain relationships 
and FLDs for a lightweight sheet metal alloy undergoing temperature, strain rate and strain path changes during 
deformation. Dislocation density-based hardening constitutive equations were utilized to model the flow stress 
evolution, taking into account the thermo-mechanical history of the deformation, with the anisotropic behaviour of 
the sheet metal described by the Hosford yield criterion. A physically based damage model was implemented to 
predict fracture. The model was calibrated using the results of uniaxial tensile tests and formability tests conducted 
on the aluminium alloy AA5754. The effect of varying temperature, strain rate and strain path on the FLD was then 
presented.  

2. Methods 

2.1. Modeling details 

At the elevated temperatures that a sheet metal experiences during warm or hot stamping, the microstructure 
and behaviour will vary throughout the process (Lin and Dean, 2005; Lin and Liu, 2003); a set of viscoplastic 
constitutive equations utilizing dislocation density based hardening laws was hence implemented to accurately 
model the deformation. These equations were combined with a physically based damage model to predict the final 
failure of the material. It is assumed that there exists an initial imperfection in the material, denoted zone B, where 
the thickness is slightly lower than the rest of the material, denoted zone A ( ). The 
initial size of this imperfection is given by f0, and is the ratio of the thickness in zone B to A; its value was 
calibrated using experimental FLDs. As deformation progresses, the imperfect factor f (Equation 1) decreases, and 
strain becomes localized at zone B; failure occurs when the ratio of strains in zone B to A approaches a critical 
value, shown in Eq. (2). 

 
                   

   
                    
 
The different points along the FLD representing different strain conditions were calculated by varying the ratio 

between the minor and major strain in zone A. This ratio, denoted , has a value of -0.5 for the uniaxial condition, 
and a value of 1 in the biaxial condition. Deformation in zone B was then deduced from minor strain compatibility 
with zone A at their interface (Equation 3), and by ensuring that Eq. (4) was satisfied throughout the deformation 
process.  

  
 
 
All the following equations had to therefore be solved simultaneously for both zone A and B. The viscoplastic 

flow rule is shown in Eq. (5), and is a function of the flow stress and the isotropic hardening variable, R (Eq. (6)). 
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This in itself is a function of the normalized dislocation density (Eq. (7)), which accounts for the accumulation and 
annihilation of dislocations during deformation; hence ‘R’ captures the effect of hardening due to dislocation pile-
up and entanglement (Lin and Dean, 2005). The anisotropic nature of the sheet material was represented by the 
Hosford yield function, shown in Eq. (9) (Hosford, 1985). The constant a is set to 6 for FCC metals, while R1 and 
R2 are the longitudinal and transverse r-values respectively, determined from tensile tests. 

 
                     
             
 
 
 
 
 
 
 

where k, K, n1, B, A, n2 and E are temperature-dependent material constants calibrated using the results of uniaxial 
tension tests. The equations were solved until one of the failure conditions was satisfied. The minor and major 
strains in zone A at failure were hence the limit strains for that particular  value; by combining the limit strains for 
each  value, a FLD for a constant temperature, strain rate and strain path could be constructed. The use of a time 
integration procedure also enabled the effect on the FLD of time dependent phenomena and process conditions, 
such as the varying temperatures, strain rates and strain paths in a hot stamping process, to be captured.  

2.2. Experimental details 

Uniaxial tension tests were conducted on the aluminium alloy AA5754 at different temperatures and strain rates. 
Strains rates of 0.001, 0.1 and 1/s, at temperatures of 200, 250 and 300 °C, were tested, using a high rate Instron 
testing machine with an integrated furnace; strain was measured through DIC techniques using ARAMIS software, 
provided by GOM. The results were used to calibrate the constants of the constitutive equations. The formability of 
the material was also assessed using dome tests (Shi et al., 2012), following the international standard for the 
determination of forming limit curves (ISO, 2008). Waisted circular blanks with central shafts of different widths 
were tested, each representing a different strain path, at different temperatures and forming speeds. The generated 
FLDs were then also used to calibrate the material model, by varying the f0 value (Eq. (1)).  

3. Results and discussion 

Fig. 1(a) shows the close agreement that was achieved between the flow stresses predicted using the material 
model (solid line) and the experimental results (symbols), for different temperatures, at a strain rate of 1 /s. The 
viscoplastic effect was also accurately modelled, as shown by the close agreement between the predicted and 
experimental flow stress in Fig. 1(b) for different strain rates, at a temperature of 250 °C. 
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Fig. 1. Comparison between the predicted (lines) and experimental (symbols) stress-strain curves at different temperatures (a), and different 
strain rates (b). 

Fig. 2. Predicted and experimental FLDs at temperatures of 200 and 300°C, at a speed of 75 mm/s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the material model for AA5754 calibrated and verified using the results of the uniaxial tension tests, it was 

then applied in the prediction of FLDs for the material. Fig. 2 shows close agreement between the predicted and 
experimental FLDs at temperatures of 200 and 300 °C, at a forming speed of 75 mm/s. The parallel flow stress 
curves shown in Figure 1(a) indicate that the strain hardening of AA5754 at 200 and 300 °C is almost the same. 
However, the strain rate hardening coefficient (1/n1 in Eq. (5)) increased from 0.078 at 200 °C to 0.125 at 300 °C. 
Therefore, the pronounced strain rate hardening effect at higher temperatures led to the increased formability. In 
particular, the higher strain rate in zone B would increase the strength difference between zone A and zone B, 
limiting the strain ratios between them, and therefore delaying the onset of necking at zone B. The effect of a 
quenching rate of 50 °C/s being applied from an initial temperature of 300 °C is also presented; as expected, the 
resulting FLD is lower, indicating a drop in formability as a result of temperature decreasing. 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3 shows close agreement between the predicted and experimental FLDs at forming speeds of 20 and 300 

mm/s, at a temperature of 250 °C. Both strain hardening and strain rate hardening enhance formability. Strain 
hardening is more pronounced at low temperature conditions, while strain rate hardening is the dominant factor at 
higher temperatures. Hence at the onset of strain localization in zone B, and the resulting steep increase in strain 
rate, the strength in this region is increased, delaying the onset of necking; at 250 °C the formability is therefore 
higher when the strain rate is lower. The effect of a strain rate reduction to 0.25 /s being applied from an initial 
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Fig. 4. Effect of change in strain path on the FLD, at temperature of 300°C and average strain rate of 0.88/s. 

Fig. 3. Predicted and experimental FLDs at forming speeds of 20 and 300 mm/s, at a temperature of 250 °C. 

strain rate of 3.5 /s is also presented; as expected, the resulting FLD is higher, indicating an improvement in 
formability as a result of strain rate decreasing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A change in strain path on the FLD of AA5754 was also successfully captured, as shown in Fig. 4. Uniaxial pre-

stretching enhanced the formability of the material during biaxial straining, while biaxial pre-stretching enhanced 
the formability of the material during uniaxial straining. This is consistent with many previous research findings, 
such as those of Graf and Hosford in (Graf and Hosford, 1993) and (Graf and Hosford, 1994).  

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Although stress based forming limit curves (FLSCs) have the benefit of being almost path-independent 

(Yoshida et al., 2007), for hot stamping processes, traditional strain based FLCs are probably more effective; in 
FLSCs, each stress value may not have a corresponding unique strain value, making it more difficult to define a 
stress limit for necking. Also, the integration of strain with a small time increment is perhaps more suitable for the 
prediction of forming limits when loading history effects are pronounced.   

4. Conclusion 

A FLD prediction model was presented and successfully validated using experimental results from uniaxial 
tension and formability tests on the aluminium alloy AA5754. The ability of the model to capture time dependent 
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phenomena was also demonstrated, with obvious effects on the material’s properties as a result of a change in 
temperature, strain rate and strain path. The model’s capability will be further verified by comparing the measured 
failure strains from a point on an actual hot formed component, to the predicted forming limit at that point taking 
into account its temperature, strain rate and loading history. This will highlight the value of using such a model in 
FE forming process simulations, to ensure sensible components and forming tool design, and to select the optimal 
process parameters and appropriate material to produce a given sheet metal component successfully. 
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