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Abstract

We produce a topological analogue of André—Quillen’s spectral sequence and prove that for
connective spectrdAQ~ x if and onlyfﬁﬁ ~ %, whereTHH is the reduced topological Hochschild
Homology.
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1. Introduction and notations

In [7] Quillen introduced a homology theory for commutative algebras (André—Quillen
homology) and discussed its relationship with Hochschild homology. In particular, he
observed that ifA — B is a morphism of commutative rings, then the homologyBof
as just an associativ&-algebra may be calculated as certain Tor groups in the homotopy
category of simplicial modules ovét- ® B, where— ® B is the left derived functor of
— ® B. In other words,B- ® B is the objectR ® B, whereR is a simplicial A-algebra
resolution of B which in every dimension is flat as afrmodule. In addition, Quillen
produced a spectral sequence

B
2 B-®B
qu:Hp(/\LB/A> = Tors,%%(B. B)
q

which therefore may be regarded as a relation between the homologies as a commutative
A-algebra and as just an associatidealgebra. This spectral sequence leads to a
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decomposition of Hochschild homology in the rational case and is frequently referred to
as thefundamental spectral sequence for André—Quillen homology.

The main objective of this paper is to develop an analogue of this spectral sequence for
topological setting in the framework provided in [4]. We start by listing the categories in
which our work takes place.

e My is the category oA-modules, wherél is a cofibrantS-algebra.
e (4 is the category of commutativé-algebras.

Another description of 4 is obtained by observing that it coincides witl 4[P] the
category ofP-algebras wher : M 4 — M4 isthe monad given b§ M = \/j)0 MI/X;.
Here M/ denotes thej-fold smash power oveA and M° = A. Clearly, P can viewed
as a functor fromM 4 to the category ofd-algebras augmented ovarwith the obvious
augmentation map. A related construction is the mdhagiven byP1 M = \/j>0 Mf/Zj.
It leads to the next category of interest.

e N, is the category of commutative non-unitakalgebras which coincides with
M 4[P1]. We adopt the terminology of [1] and call the objects\6f A — NUCASs.

e C4/p is the category of commutativé-algebras oveB, i.e., the objects of 4/ are
A-algebrasC equipped with an algebra map— B and the morphisms are maps of
algebras oveB.

Note that all of these categories are closed model categories [3] and for a discussion on
their homotopy categories we refer to [4,1].

To obtain the desired spectral sequence we produce a tower of functors that approxi-
mates the forgetful (exponential) functor Exjdy — M 4. Using this tower we arrive to
certain inverse limit systems, and it is the second quadrant spectral sequences associated
to these systems that provide the topological analogue of Quillen’s fundamental spectral
sequence.

2. André—Quillen spectral sequence

First we construct a tower of functors (denoted hyl”+1}n>1) which approxi-
mates Exp. However, before we begin we list some of the properties we would like our
tower to have.

One frequently wants to work with’s (orCa /4, or M) not only up to isomorphism,
but up to a weak equivalence as well, i.e., often it is essential that functors preserve
weak equivalences. This can frequently be achieved by considering the derived version
of functors. In other words, we evaluate our functors not at the objects themselves but
rather at their cofibrant replacement, or equivalently, we precompose our functors with the
functor I", which is the cofibrant replacement functorfy (see [4, Chapter 7]).

In addition, we want to build a tower which is computationally friendly. The following
construction is a step in this direction. Recall th@, u,n) is the free non-unital
commutative algebra triple in the categokt 4 and for a cofiborantA — NUCAN define



V. Minasian / Topology and its Applications 129 (2003) 273-280 275

B.N = B.(P1,P1, N) to be the simplicial object with-simplicesB,, = IP”;+l and face and
degeneracy maps operators given by

d; = ]P”l/L]P,,ll_,-_l 0<i<n, d, =Ple,
5 = IP’il"'lnPg_; 0<i<n.

This construction (along with a discussion of its properties) can be found in [4,1].
Of course, B,N is a simplicial A — NUCA For this construction to be useful
calculationally, the simplicial spectruB, N must be proper in the following sense.

Definition 2.1. Let K. be a simplicial spectrum and leK, C K, be the ‘union’ of the
subspectra; K,_1, 0< j < g. A simplicial A-moduleK is proper if the canonical map
of A-modulessK, — K, is a c-cofibration for each > 0.

In the above definition we use the term ‘c-cofibration’ (for classical cofibration) to
distinguish it from cofibrations that are part of the model category structure. Thus, a
c-cofibration ofA-modules is simply a map: M — M of A-modules that satisfies the
homotopy extension property in the categorydemodules. Of course, all cofibrations are
c-cofibrations, but not conversely.

The main reason that proper simpliciatmodulesk, are computationally useful is
that one can use the simplicial filtration to construct a well-behaved spectral sequence
that converges tar,.(E A K) for any spectrumt [4, Theorem X.2.9]. In particular, if
f K. — L, is a map of proper simpliciah-modules which is a weak equivalence level-
wise, then the geometric realizatipfi| of f is also a weak equivalence.

Lemma 2.2.For a cofibrantA — NUCAN, B, N is a proper simplicialA-module.

Proof. The condition of properness involves only the degeneracy operators (and not the
face maps) of a simplicial-module. The degeneracies are obtained from the unit map
n:N — P1N. Of course, this map has a sectibBpN — N which is a map ofA-modules.

Thus, it satisfies the homotopy extension property. The same argument proves that all
degeneracies are c-cofibrationsa

In addition, observe that we can considerB,N — N an augmented simpliciad-
module and using the unijt: N — P3N one can easily construct a contraction to it.

By [4, Chapter 7, 3.3] we have that the geometric realization in the category of
A — NUCASs is isomorphic to the geometric realizationM 4, and thug B, N| andN are
homotopy equivalent ioM 4 and weakly equivalent in.

Note that even whemv is cofibrant|B,.N| is not necessarily cofibrant. Instead, if
we form a simplicial object” B, N, where the cofibrant replacement functor is applied
level wise, then I’ B, N| itself is the cofibrant approximation 08, N|. This is the case
because botli" B, N and B, N are proper and thus the fact that they have weakly equivalent
simplices implies that their geometric realizations are weakly equivalent.

The strategy will be to precompose all our functors with the fung£tBi I". We make a
definition to ease the notation.
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Definition 2.3. For any functorF : Ay — M4 we defineF* (N) to be F(I"B,I"N). Note
that F¥ is now a functor from the category of — NUCASs to the category M, of
simplicial A-modules.

Now we are ready to produce the desired tower. First, for all1 we define a functor
0y : Na — My by the following pushout in the category afmodules

NN ——— %

F
N——0,(V)

andsetl /1" (N) def 0,(I'B,I'N), whereQ,, is applied degree-wise, and lastly,

1"/ 1" (N) Ehofibe{ 1/1" 1 (N) — 1/1(N)].

Proposition 2.4.For everyA — NUCAN there is a weak equivalence of simplicial objects

n

[/\ I/I2(N)} ~ 1"/ 1"TY(N).

hXy,

Proof. We begin by showing that/1" (N) is weakly equivalentt@, (B.I"N). Forn = 2
this is also proved in [1, Proposition 5.4]. We will need a key result from [1]:

If N is a cofibrantA —NUCA andy : Y — P] N is a cell A-module approximation then
Y'/Zi Y/ X — (PIN)/%; is a weak equivalence for all> 0.

Nowlety :Y — P’iN be a cellA-module approximation dP’{N, whereN is a cofibrant
A — NUCA As an immediate corollary of the result above we have that:P1Y —
IP’llP”iN is a weak equivalence. Hence soli®1Y — FIP’l]P”{N, in fact this last map is a
homotopy equivalence since the two algebras involved are cofibrant.

Consider the following commutative diagram:

Qn(I'P1Y) —— Q,(I'P1P;N)

l

0n(P1Y) —— 0, (P1PAN)

The top horizontal arrow is a homotopy equivalence by the above discussion, and so is
the left vertical map. To see that the bottom arrow is a weak equivalence, observe that
0n(P1Y) =Y VY2/Sov .- v Y 1/5, 1 and Q,(P1PAN) = (PAN) v (PAN)2/ 20 v
v (PAN)""1/ %, 1, and hence the equivalence ©f, (P1Y) and Q, (P1P4N) follows
from the result from [1] stated above. Thus, since three of the maps in the diagram are
weak equivalences, so is the fourth one, which provesithét(N) and Q, (B.I" N) have
equivalent simplices.

Hence we are entitled to conclude that the nigp"+t1(N) — 1/1"(N) is weakly
equivalent to a fibration which on the level @+ 1)-simplices is given by the evident map
PEN)V (PEN)Y2/ Zov - v (PENYY Z, — (PEN) Vv (BEN)2/ 2o v - v (PENY Y/ 2,0
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This implies that/” /1"T1(N) is equivalent to a simpliciak-module whose(k + 1)-
simplices are{IP”iFN)A”/Zn. In particular,/ /I%(N) is weakly equivalent to an object with
(k+ 1)-simplice§P>’iFN. Thus to complete the proof we need to show that the natural map
@rN™/ hE, — (PsIN)M /2, is a weak equivalence.

Theorem 5.1 in Chapter 3 of [4] states that for a ¢elnoduleY, Y/ /hX; — Y/ X; is
a weak equivalence. Of course, this is not quite good enough, since as we indicated earlier,
PAIN is not cofibrant even whel N is. However, if we lety: Y — PAI'N be a cell
A-module approximation, then we can form the following commutative diagram:

(EZp)4 As, YN ——(EX))4 Ax, PSTN)M

| |

Y g, —————=PirN /5,

where the left vertical arrow is a weak equivalence sikics a cell A-module, and the
bottom horizontal arrow is a weak equivalence by the above stated result from [1].

To see that the top horizontal arrow is also a weak equivalence, we simply observe that
using the skeletal filtration of X, one can set up a pair of natural spectral sequences

H, (En» Ty (Y/\n)) = JT*((EE”)+ Nz, Y/\n),
Hy(Z, m(PSTN))) = m((EZ0)4 A, (PSTN)™M).

Now the desired weak equivalence follows from the isomorphismrgfy*") and
m.(PEIN)™). One needs to be careful here, as even when we are given a weak
equivalenceT — S, the induced ma@”" — S may not be an equivalence
or S is not cofibrant. However, this is not an issue in our case, side cofibrant
and }P”{FN (being equal to a wedge of objects of the fo(iiN)" /H where H is a
subgroup¥;) belongs to a class of objects (denotedfyin [1]) whose smash powers are
weakly equivalent to the smash powers of their cofibrant replacements (see Definition 3.3,
Theorem 9.5 and Proposition 9.9 of [1]).

Thus, we get that the right vertical arrow(ig X,)+ Ax, (PAIN)M — (PET N/ 5,
is also a weak equivalence which completes the proaf.

Next we discuss the question of convergence of the inverse limit sygteH}.
Proposition 2.5. AssumeA is a connective commutativiealgebra. Then for everg-
connectedd — NUCAN, the natural map

¢ :Exp”(N) — holim1/1"(N)
is a weak equivalence.
Proof. We start by observing that iV is 0-connectedthen Exf (N) — I/I"*(N) is at
least(n — 1)-connectedTo prove this, it is enough to show th@ B, " N)"\" is (n — 1)-

connectedSince A is connective, by Cellular Approximation Theorem [4, Chapter 3]
I'B.I'N can be functorially replaced by a weakly equivalent GAAmodule M. Using
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the argument presented at the end of the proof of the previous proposition we can claim
that(I"B,I" N)"" is weakly equivalent ta/"". SinceM is 0-connectedit has no cells in
dimensions below 1, hendg”" has no cells in dimensions less thanThus,M”*" (and
hence alsdI" B,I' N)"") is (n — 1)-connected.

Thus, for eachi we have an isomorphism fromm; (Exp” (N)) to lim, ; (I/1" (N)).
To complete the proof of the proposition we observe that by Mittag—Leffler [2],
w; (holim, I /1" (N)) is isomorphic to lim z; (1 /1" (N)), and hence induces an isomor-
phism onr;, for eachi. O

Remark 2.6.We would like to point out that the homotopy inverse limit system constructed
above is nothing else but the Taylor tower of the functor ‘Exjglore precisely, we can
prove the following.

Claim. P"EXp(N) et 1/I"TY(N), whereP”Exp(N) is thenth Taylor polynomial ofExp
evaluated at" B, "' N.

The following easy observation is at the root of this statement:
croEXp(M, N) = EXp(M) A EXp(N).

In general, functors satisfying the above identity along with a commutativity condition
are called exponential, which explains our choice of notation for the forgetful functor
N — M 4. For a precise definition and a structure lemma for exponential functors into
chain complexes we refer to [5].

Proof. By induction we need only to show that the induced maps
D,EXp(I" B,I'N) — hofibef1/1"TX(N) — 1/1"(N)]

are weak equivalences, whebg are the layers of the Taylor towé¥,” Exp.
To do this, we use some equivalences from Gooduwillie’s Calculus to obtain a description
of the layersD,, (for a detailed discussion on differentilof a functor we refer to [5]):

VEXp” (N, M) L' Dy[crExp” (—, M) v Exp” (—)](N)
= Dy[EXp” (=) A EXp (M) v EXp”(—)](N)
= D1[Exp”(—) A (Exp” (M) v A)](N)
= D1l (=)(N) A [Exp” (M) v A],

whereM andN areA — NUCAs and the smash products as always are taken oviiow
from [5, Propositions 5.9, 5.11] it follows that

V'EXp” (N, M) = /\ D1EXp” (=) (N;) A [Exp” (M) v A]
i=1
and

n
D, Exp” = (/\ DlExp“’)

"2
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Hence, the result follows immediately from the previous proposition by observing that
D1Exp” is weakly equivalenttd /2. O

The promised spectral sequence for Topological Hochschild Homology follows as a
corollary of the two propositions above.

Corollary 2.7. There is a spectral sequence with
Ey' = n,_S(Expw)s_l/ (Exp”)* fort>s>0,

whered; : E5" — E5 ™ is the composite

i (Exp”) ™/ (Exp”)’ — moo(Exp”) / (Exp”)’
— m—s—1(Exp”)" / (Exp“’)”l.

When evaluated at the augmentation ida&| of A-algebraA ® ST with A a cofibrant
connective S-algebra, this spectral sequence converges to the reduced Topological
Hochschild Homology and is the topological analogue of the fundamental spectral
sequence for André—Quillen homology

s—1

Ei”zm_s[</\2TAQ(A)>h2 } fort>s>0.
s—1

Proof. The first part of the corollary is trivial as it is simply the spectral sequence
associated with the homotopy inverse limit system hglifi” 1 (for a reference see [2,
Chapter 9], for example).

For the second part, first observe that by Proposition 2.3 the canonical map

Exp”(N4) — holim,1/I"*(N4) = holim, 0, B,I"(N,)

is a weak equivalence. The Proposition 2.3 applies because the connectidiiyngiies
that N4 is O-connectedThus, the above spectral sequence converges@®xp” (N4)) =
7+(N4), and since by a theorem of McClure, Schwénzle and Vodji(B) = B ® S [6],
N4 is thereducedTopological Hochschild Homology of.

To recognize the Topological André—Quillen Homology in this set up, we note that

02(I'Ny) >~ X Q2(I"'14) wherel 4 is the fiber of the multiplication mag A A £ A.This
implies thatQ»>|B.(I"N4)| and X Q2|B.(I"14)| are weakly equivalent. To see this, we
observe that for ang — NUCAN, the weak equivalencés B, I"(N)| — |B.'(N)| > N
induce a composite weak equivalence

L Q2|B.I"(N)| = Q2| B.I"(N)| — Q2|B.I"(N)| - Q2I'N =L Q>N.

The first map is a weak equivalence, singg commutes with realizations, which follows
from the fact thatQ, has a right adjoinZ : M 4 — N4, which takes a modulé/ to an

A — NUCAM with a O-multiplication (for a detailed proof see [1, Section 3], and thus,
0> preserves colimits. A proof of existence of the total derived funtt@n using the
above adjoint pair can also be found in [1]. Hence, the second @dpB.I"(N)| —
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0>I' N is also a weak equivalence, which proves the desired result. Thus, we have a
sequence of isomorphisms:

T [1/12(N2)] = 7.[ Q2 BoI'(Np)| = 7.[ Q2B T (Np)] = 7.[ Q2| B T (Na)|]
[ £ Q2| Bu T (Ip)|] Z [ X Q2T 4] = 7, STAQA) .

12

Hencer. (I /1Y) = m [((A\* 1/1%)1 5,1 = m[(\® ETAQA))1 5,1 which completes the
proof. O

Corollary 2.8. For a cofibrant connective-algebra A, TAQA) =~ % < ﬁ-\iFi(A) ~ %
(whereTHH is the reduced Topological Hochschild Homolpgy

Proof. If ﬁ—TI:I(A) ~ %, than N4y >~ x. HenceQ2I" N4 >~ *. Thus, using the observation
made in the above corollarf TAQ(A) >~ %, which implieSTAQ(A) = .

Now supposdAQ(A) >~ . Then using Propositions 2.4 and 2.5 we can claimahais
weakly equivalent to the homotopy inverse limit of a directed system whose first element
is TAQ(A) and is thus contractible and whose layers (or fibers) are the homotopy orbits of
smash powers ofAQ(A) and as a result are also contractible. HeNge~ x. O

In conclusion, we would like to consider our spectral sequence for the special case, of
algebrasA over Eilenberg—MacLane spectidk, with k£ a field. For the remainder both
TAQandTHH will be taken overH k. By [4, Chapter IX] we have a spectral sequence

HH ¢ (74 (A)) = 7p14 THH(A).

Rationally, we have an analogous spectral sequdiAg¢@. Thus, in characteristic O,
for the case ofH k-algebras the spectral sequence of the Corollary 2.7 can be obtained
from its analogue in discrete algebra by simply using the above two spectral sequences.
In particular, if A itself is an Eilenberg—MacLane spectrum, then our spectral sequence
coincides with its discrete analogue.

References

[1] M. Basterra, André—Quillen cohomology of commutatSsalgebras, J. Pure Appl. Algebra 144 (1999) 111—
143.

[2] A.K. Bousfield, D.M. Kan, Homotopy Limits, Completions and Localizations, in: Lecture Notes in Math.,
Vol. 304, Springer-Verlag, Berlin, 1972.

[3] W.G. Dwyer, J. Spalinski, Homotopy theories and model categories, in: .M. James (Ed.), A Handbook of
Algebraic Topology, Elsevier Science, Amsterdam, 1995.

[4] A.D. EImendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, Modules, and Algebras in Stable Homotopy Theory,
in: Math. Surveys Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1996.

[5] B. Johnson, R. McCarthy, Deriving calculus with cotriples, preprint.

[6] J. McClure, R. Schwénzl, R. VogtHH(R) = R ® SLfor Eoo ring spectra, J. Pure Appl. Algebra 121 (1997)
137-159.

[7] D.G. Quillen, On the (co-)homology of commutative rings, AMS Proc. Sympos. Pure Math. 17 (1970) 65-87.



