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Abstract

We produce a topological analogue of André–Quillen’s spectral sequence and prove t
connective spectra,TAQ� ∗ if and onlyT̃HH � ∗, whereT̃HH is the reduced topological Hochschi
Homology.
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1. Introduction and notations

In [7] Quillen introduced a homology theory for commutative algebras (André–Qu
homology) and discussed its relationship with Hochschild homology. In particula
observed that ifA → B is a morphism of commutative rings, then the homology oB
as just an associativeA-algebra may be calculated as certain Tor groups in the homo
category of simplicial modules overBL ⊗ B, where−L ⊗ B is the left derived functor o
− ⊗ B. In other words,BL ⊗ B is the objectR ⊗ B, whereR is a simplicialA-algebra
resolution ofB which in every dimension is flat as anA-module. In addition, Quillen
produced a spectral sequence

E2
pq =Hp

(
B∧
q

LB/A

)
�⇒ TorB

L ⊗B
p+q (B,B)

which therefore may be regarded as a relation between the homologies as a comm
A-algebra and as just an associativeA-algebra. This spectral sequence leads t
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decomposition of Hochschild homology in the rational case and is frequently referred to
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as thefundamental spectral sequence for André–Quillen homology.
The main objective of this paper is to develop an analogue of this spectral seque

topological setting in the framework provided in [4]. We start by listing the categori
which our work takes place.

• MA is the category ofA-modules, whereA is a cofibrantS-algebra.
• CA is the category of commutativeA-algebras.

Another description ofCA is obtained by observing that it coincides withMA[P] the
category ofP-algebras whereP :MA → MA is the monad given byPM =∨

j�0M
j/Σj .

HereMj denotes thej -fold smash power overA andM0 = A. Clearly,P can viewed
as a functor fromMA to the category ofA-algebras augmented overA with the obvious
augmentation map. A related construction is the monadP1 given byP1M =∨

j>0M
j/Σj .

It leads to the next category of interest.

• NA is the category of commutative non-unitalA-algebras which coincides wit
MA[P1]. We adopt the terminology of [1] and call the objects ofNAA− NUCA’s.

• CA/B is the category of commutativeA-algebras overB, i.e., the objects ofCA/B are
A-algebrasC equipped with an algebra mapC → B and the morphisms are maps
algebras overB.

Note that all of these categories are closed model categories [3] and for a discus
their homotopy categories we refer to [4,1].

To obtain the desired spectral sequence we produce a tower of functors that a
mates the forgetful (exponential) functor Exp :NA → MA. Using this tower we arrive to
certain inverse limit systems, and it is the second quadrant spectral sequences as
to these systems that provide the topological analogue of Quillen’s fundamental s
sequence.

2. André–Quillen spectral sequence

First we construct a tower of functors (denoted by{I/In+1}n�1) which approxi-
mates Exp. However, before we begin we list some of the properties we would lik
tower to have.

One frequently wants to work withNA (or CA/A, orMA) not only up to isomorphism
but up to a weak equivalence as well, i.e., often it is essential that functors pre
weak equivalences. This can frequently be achieved by considering the derived v
of functors. In other words, we evaluate our functors not at the objects themselv
rather at their cofibrant replacement, or equivalently, we precompose our functors w
functorΓ , which is the cofibrant replacement functor inNA (see [4, Chapter 7]).

In addition, we want to build a tower which is computationally friendly. The follow
construction is a step in this direction. Recall that(P1,µ,η) is the free non-unita
commutative algebra triple in the categoryMA and for a cofibrantA − NUCAN define
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B∗N = B∗(P1,P1,N) to be the simplicial object withn-simplicesBn = P
n+1 and face and
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degeneracy maps operators given by

di = P
i
1µP

n−i−1
1

0 � i < n, dn = P
n
1ε,

si = P
i+1
1 η

P
n−i
1

0 � i � n.

This construction (along with a discussion of its properties) can be found in [4,1].
Of course,B∗N is a simplicial A − NUCA. For this construction to be usef

calculationally, the simplicial spectrumB∗N must be proper in the following sense.

Definition 2.1. Let K∗ be a simplicial spectrum and letsKq ⊂ Kq be the ‘union’ of the
subspectrasjKq−1, 0� j < q . A simplicial A-moduleK∗ is proper if the canonical ma
of A-modulessKq →Kq is a c-cofibration for eachq � 0.

In the above definition we use the term ‘c-cofibration’ (for classical cofibration
distinguish it from cofibrations that are part of the model category structure. Th
c-cofibration ofA-modules is simply a mapi :M → �M of A-modules that satisfies th
homotopy extension property in the category ofA-modules. Of course, all cofibrations a
c-cofibrations, but not conversely.

The main reason that proper simplicialA-modulesK∗ are computationally useful i
that one can use the simplicial filtration to construct a well-behaved spectral seq
that converges toπ∗(E ∧ K) for any spectrumE [4, Theorem X.2.9]. In particular, i
f :K∗ → L∗ is a map of proper simplicialA-modules which is a weak equivalence lev
wise, then the geometric realization|f | of f is also a weak equivalence.

Lemma 2.2.For a cofibrantA− NUCAN , B∗N is a proper simplicialA-module.

Proof. The condition of properness involves only the degeneracy operators (and n
face maps) of a simplicialA-module. The degeneracies are obtained from the unit
η :N → P1N . Of course, this map has a sectionP1N →N which is a map ofA-modules.
Thus, it satisfies the homotopy extension property. The same argument proves
degeneracies are c-cofibrations.✷

In addition, observe that we can considerε :B∗N → N an augmented simplicialA-
module and using the unitη :N → P1N one can easily construct a contraction to it.

By [4, Chapter 7, 3.3] we have that the geometric realization in the catego
A− NUCA’s is isomorphic to the geometric realization inMA, and thus|B∗N | andN are
homotopy equivalent inMA and weakly equivalent inNA.

Note that even whenN is cofibrant |B∗N | is not necessarily cofibrant. Instead,
we form a simplicial objectΓ B∗N , where the cofibrant replacement functor is app
level wise, then|Γ B∗N | itself is the cofibrant approximation of|B∗N |. This is the case
because bothΓ B∗N andB∗N are proper and thus the fact that they have weakly equiva
simplices implies that their geometric realizations are weakly equivalent.

The strategy will be to precompose all our functors with the functorΓ B∗Γ . We make a
definition to ease the notation.
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Definition 2.3.For any functorF :NA →MA we defineFw(N) to beF(Γ B∗ΓN). Note
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that Fw is now a functor from the category ofA − NUCA’s to the categorysMA of
simplicialA-modules.

Now we are ready to produce the desired tower. First, for alln > 1 we define a functo
Qn :NA →MA by the following pushout in the category ofA-modules

N∧n

µ

∗

N Qn(N)

and setI/In(N)
def= Qn(Γ B∗ΓN), whereQn is applied degree-wise, and lastly,

In/In+1(N)
def= hofiber

[
I/In+1(N)→ I/In(N)

]
.

Proposition 2.4.For everyA− NUCAN there is a weak equivalence of simplicial obje[ n∧
I/I2(N)

]
hΣn

� In/In+1(N).

Proof. We begin by showing thatI/In(N) is weakly equivalent toQn(B∗ΓN). Forn= 2
this is also proved in [1, Proposition 5.4]. We will need a key result from [1]:

If N is a cofibrantA− NUCA andγ :Y → Pn
1N is a cellA-module approximation the

γ i/Σi :Y i/Σi → (Pn
1N)i/Σi is a weak equivalence for alli > 0.

Now letγ :Y → Pk
1N be a cellA-module approximation ofPk

1N , whereN is a cofibrant
A − NUCA. As an immediate corollary of the result above we have thatP1γ :P1Y →
P1P

k
1N is a weak equivalence. Hence so isΓ P1Y → Γ P1P

k
1N , in fact this last map is a

homotopy equivalence since the two algebras involved are cofibrant.
Consider the following commutative diagram:

Qn(Γ P1Y ) Qn(Γ P1P
k
1N)

Qn(P1Y ) Qn(P1P
k
1N)

The top horizontal arrow is a homotopy equivalence by the above discussion, and
the left vertical map. To see that the bottom arrow is a weak equivalence, observ
Qn(P1Y ) = Y ∨ Y 2/Σ2 ∨ · · · ∨ Yn−1/Σn−1 andQn(P1P

k
1N) = (Pk

1N) ∨ (Pk
1N)2/Σ2 ∨

· · · ∨ (Pk
1N)n−1/Σn−1, and hence the equivalence ofQn(P1Y ) andQn(P1P

k
1N) follows

from the result from [1] stated above. Thus, since three of the maps in the diagra
weak equivalences, so is the fourth one, which proves thatI/In(N) andQn(B∗Γ N) have
equivalent simplices.

Hence we are entitled to conclude that the mapI/In+1(N) → I/In(N) is weakly
equivalent to a fibration which on the level of(k+1)-simplices is given by the evident ma
(Pk

1N)∨(Pk
1N)2/Σ2∨· · ·∨(Pk

1N)n/Σn → (Pk
1N)∨(Pk

1N)2/Σ2∨· · ·∨(Pk
1N)n−1/Σn−1.
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This implies thatIn/In+1(N) is equivalent to a simplicialA-module whose(k + 1)-
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simplices are(Pk
1ΓN)∧n/Σn. In particular,I/I2(N) is weakly equivalent to an object wit

(k+1)-simplicesPk
1ΓN . Thus to complete the proof we need to show that the natural

(Pk
1ΓN)∧n/hΣn → (Pk

1ΓN)∧n/Σn is a weak equivalence.
Theorem 5.1 in Chapter 3 of [4] states that for a cellA-moduleY,Y i/hΣi → Y i/Σi is

a weak equivalence. Of course, this is not quite good enough, since as we indicated
Pk

1ΓN is not cofibrant even whenΓN is. However, if we letγ :Y → Pk
1ΓN be a cell

A-module approximation, then we can form the following commutative diagram:

(EΣn)+ ∧Σn Y
∧n (EΣn)+ ∧Σn (P

k
1ΓN)∧n

Y∧n/Σn (Pk
1ΓN)∧n/Σn

where the left vertical arrow is a weak equivalence sinceY is a cellA-module, and the
bottom horizontal arrow is a weak equivalence by the above stated result from [1].

To see that the top horizontal arrow is also a weak equivalence, we simply obser
using the skeletal filtration ofEΣn one can set up a pair of natural spectral sequences

H∗
(
Σn,π∗

(
Y∧n))⇒ π∗

(
(EΣn)+ ∧Σn Y

∧n),
H∗
(
Σn,π∗

((
Pk

1Γ N
)∧n))⇒ π∗

(
(EΣn)+ ∧Σn

(
Pk

1ΓN
)∧n)

.

Now the desired weak equivalence follows from the isomorphism ofπ∗(Y∧n) and
π∗((Pk

1Γ N)∧n). One needs to be careful here, as even when we are given a
equivalenceT → S, the induced mapT ∧n → S∧n may not be an equivalence ifT
or S is not cofibrant. However, this is not an issue in our case, sinceY is cofibrant
and Pk

1ΓN (being equal to a wedge of objects of the form(Γ N)∧i/H whereH is a
subgroupΣi ) belongs to a class of objects (denoted by�FA in [1]) whose smash powers a
weakly equivalent to the smash powers of their cofibrant replacements (see Definitio
Theorem 9.5 and Proposition 9.9 of [1]).

Thus, we get that the right vertical arrow is(EΣn)+ ∧Σn (P
k
1Γ N)∧n → (Pk

1Γ N)∧n/Σn

is also a weak equivalence which completes the proof.✷
Next we discuss the question of convergence of the inverse limit system{I/In}.

Proposition 2.5. AssumeA is a connective commutativeS-algebra. Then for every0-
connectedA− NUCAN , the natural map

φ : Expw(N)→ holimI/In(N)

is a weak equivalence.

Proof. We start by observing that ifN is 0-connected, then Expw(N) → I/In(N) is at
least(n− 1)-connected.To prove this, it is enough to show that(Γ B∗ΓN)∧n is (n− 1)-
connected.SinceA is connective, by Cellular Approximation Theorem [4, Chapter
Γ B∗ΓN can be functorially replaced by a weakly equivalent CWA-moduleM. Using
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the argument presented at the end of the proof of the previous proposition we can claim
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that(Γ B∗Γ N)∧n is weakly equivalent toM∧n. SinceM is 0-connected, it has no cells in
dimensions below 1, henceM∧n has no cells in dimensions less thann. Thus,M∧n (and
hence also(Γ B∗Γ N)∧n) is (n− 1)-connected.

Thus, for eachi we have an isomorphism fromπi(Expw(N)) to limn πi(I/I
n(N)).

To complete the proof of the proposition we observe that by Mittag–Leffler
πi(holimnI/I

n(N)) is isomorphic to limn πi(I/In(N)), and henceφ induces an isomor
phism onπi , for eachi. ✷
Remark 2.6.We would like to point out that the homotopy inverse limit system constru
above is nothing else but the Taylor tower of the functor Expw . More precisely, we can
prove the following.

Claim. Pw
n Exp(N)

�→ I/In+1(N), wherePw
n Exp(N) is thenth Taylor polynomial ofExp

evaluated atΓ B∗ΓN .

The following easy observation is at the root of this statement:

cr2Exp(M,N)∼= Exp(M)∧ Exp(N).

In general, functors satisfying the above identity along with a commutativity cond
are called exponential, which explains our choice of notation for the forgetful fun
NA → MA. For a precise definition and a structure lemma for exponential functors
chain complexes we refer to [5].

Proof. By induction we need only to show that the induced maps

DnExp(Γ B∗ΓN)→ hofiber
[
I/In+1(N)→ I/In(N)

]
are weak equivalences, whereDn are the layers of the Taylor towerPw

n Exp.
To do this, we use some equivalences from Goodwillie’s Calculus to obtain a descr

of the layersDn (for a detailed discussion on differential∇ of a functor we refer to [5]):

∇Expw(N,M)
def= D1

[
cr2Expw(−,M)∨ Expw(−)

]
(N)

∼= D1
[
Expw(−)∧ Expw(M)∨ Expw(−)

]
(N)

∼= D1
[
Expw(−)∧ (Expw(M)∨A

)]
(N)

∼= D1I
w(−)(N)∧ [Expw(M)∨A

]
,

whereM andN areA−NUCA’s and the smash products as always are taken overA. Now
from [5, Propositions 5.9, 5.11] it follows that

∇nExpw(N,M)∼=
n∧

i=1

D1Expw(−)(Ni)∧ [Expw(M)∨A
]

and

DnExpw ∼=
( n∧

D1Expw
)
hΣn

.
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Hence, the result follows immediately from the previous proposition by observing that
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D1Expw is weakly equivalent toI/I2. ✷
The promised spectral sequence for Topological Hochschild Homology follows

corollary of the two propositions above.

Corollary 2.7. There is a spectral sequence with

E
s,t
1 = πt−s

(
Expw

)s−1 / (Expw
)s

for t � s � 0,

whered1 :Es,t
1 →E

s+1,t
1 is the composite

πt−s

(
Expw

)s−1 / (Expw
)s → πt−s

(
Expw

) / (
Expw

)s
→ πt−s−1

(
Expw

)s / (Expw
)s+1

.

When evaluated at the augmentation idealNA of A-algebraA ⊗ S1 with A a cofibrant
connectiveS-algebra, this spectral sequence converges to the reduced Topolo
Hochschild Homology and is the topological analogue of the fundamental spe
sequence for André–Quillen homology:

E
s,t
1 = πt−s

[( s−1∧
ΣTAQ(A)

)
hΣs−1

]
for t � s � 0.

Proof. The first part of the corollary is trivial as it is simply the spectral seque
associated with the homotopy inverse limit system holimnI/I

n+1 (for a reference see [2
Chapter 9], for example).

For the second part, first observe that by Proposition 2.3 the canonical map

Expw(NA)→ holimnI/I
n+1(NA)= holimnQnΓ B∗Γ (NA)

is a weak equivalence. The Proposition 2.3 applies because the connectivity ofA implies
thatNA is 0-connected.Thus, the above spectral sequence converges toπ∗(Expw(NA))∼=
π∗(NA), and since by a theorem of McClure, Schwänzle and VogtTHH(B)∼= B ⊗ S1 [6],
NA is thereducedTopological Hochschild Homology ofA.

To recognize the Topological André–Quillen Homology in this set up, we note

Q2(Γ NA)�ΣQ2(Γ IA) whereIA is the fiber of the multiplication mapA∧A
µ→A. This

implies thatQ2|B∗(Γ NA)| andΣQ2|B∗(Γ IA)| are weakly equivalent. To see this, w
observe that for anyA−NUCAN , the weak equivalences|Γ B∗Γ (N)| → |B∗Γ (N)| →N

induce a composite weak equivalence

LQ2
∣∣B∗Γ (N)

∣∣∼=Q2
∣∣Γ B∗Γ (N)

∣∣→Q2
∣∣B∗Γ (N)

∣∣→Q2ΓN ∼= LQ2N.

The first map is a weak equivalence, sinceQ2 commutes with realizations, which follow
from the fact thatQ2 has a right adjointZ :MA → NA, which takes a moduleM to an
A − NUCAM with a 0-multiplication (for a detailed proof see [1, Section 3], and th
Q2 preserves colimits. A proof of existence of the total derived functorLQ2 using the
above adjoint pair can also be found in [1]. Hence, the second mapQ2|B∗Γ (N)| →
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Q2ΓN is also a weak equivalence, which proves the desired result. Thus, we have a
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sequence of isomorphisms:

π∗
[
I/I2(NA)

] ∼= π∗
[
Q2Γ B∗Γ (NA)

]∼= π∗
[
Q2B∗Γ (NA)

]∼= π∗
[
Q2
∣∣B∗Γ (NA)

∣∣]
∼= π∗

[
ΣQ2

∣∣B∗Γ (IA)
∣∣]∼= π∗[ΣQ2Γ IA] ∼= π∗

[
ΣTAQ(A)

]
.

Henceπ∗(I s/I s+1) ∼= π∗[(∧s
I/I2)hΣs ] ∼= π∗[(∧s

ΣTAQ(A))hΣs ] which completes the
proof. ✷
Corollary 2.8. For a cofibrant connectiveS-algebraA, TAQ(A) � ∗ ⇐⇒ T̃HH(A) � ∗
(whereT̃HH is the reduced Topological Hochschild Homology).

Proof. If T̃HH(A) � ∗, thanNA � ∗. HenceQ2Γ NA � ∗. Thus, using the observatio
made in the above corollary,ΣTAQ(A)� ∗, which impliesTAQ(A)� ∗.

Now supposeTAQ(A)� ∗. Then using Propositions 2.4 and 2.5 we can claim thatNA is
weakly equivalent to the homotopy inverse limit of a directed system whose first ele
is TAQ(A) and is thus contractible and whose layers (or fibers) are the homotopy orb
smash powers ofTAQ(A) and as a result are also contractible. HenceNA � ∗. ✷

In conclusion, we would like to consider our spectral sequence for the special ca
algebrasA over Eilenberg–MacLane spectraHk, with k a field. For the remainder bot
TAQandTHH will be taken overHk. By [4, Chapter IX] we have a spectral sequence

HHp,q

(
π∗(A)

)�⇒ πp+qTHH(A).

Rationally, we have an analogous spectral sequenceTAQ. Thus, in characteristic 0
for the case ofHk-algebras the spectral sequence of the Corollary 2.7 can be obt
from its analogue in discrete algebra by simply using the above two spectral sequ
In particular, ifA itself is an Eilenberg–MacLane spectrum, then our spectral sequ
coincides with its discrete analogue.
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