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Abstract Multinuclear osteoclasts are derived from CD11b-po-
sitive mononuclear cells in bone marrow and in circulation.
FACS sorting experiments showed impaired osteoclastogenesis
in RAW264.7 cells with low CD11b expression. Neutralizing
antibodies and siRNA against CD11b inhibited osteoclastogene-
sis induced by RANKL. Although primary cultured mouse bone
marrow macrophages expressed CD11a and CD11b, osteo-
clastogenesis induced by M-CSF and RANKL was inhibited in
the presence of anti-CD11b or anti-CD18 but not anti-CD11a
antibodies. Furthermore, anti-CD11b antibodies inhibited
NFATc1 expression induced by M-CSF and RANKL in BMMs.
These findings suggest, at least partly, an important role of
CD11b in osteoclastogenesis.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Osteoclasts are multinucleated bone-resorbing cells formed

by the fusion of mononuclear cells derived from the mono-

cyte/macrophage lineage (osteoclast precursors (pre-OCs)).

Pre-OCs in the peripheral circulation or within the bone mar-

row are separated from the bone surface by endothelial cells

lining the blood vessels [1]. Therefore, the extravasation and

the migration under osteoblasts are necessary for pre-OCs to

reach the surface of the bone matrix [2]. After pre-OCs differ-

entiate into tartrate-resistant acid phosphatase (TRAP)-posi-

tive mononuclear cells, these cells differentiate into

multinucleated osteoclasts by cell fusion [3].

Adhesion molecules are necessary for leukocyte trafficking

and differentiation. Integrins are one of the most important

adhesion molecule family involved in trafficking of mono-

cyte/macrophage. Integrins are non-covalentry linked ab het-

erodimers. Four a subunits and b2 subunit were expressed

on macrophages (aLb2, CD11a/CD18; aMb2, CD11b/CD18;
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aXb2, CD11c/CD18; aDb2, CD11d/CD18 integrin pairs) [4].

Among them, CD11a/CD18 integrin pair (leukocyte func-

tion-associated antigen-1, LFA-1) and CD11b/CD18 integrin

pair (macrophage antigen 1, Mac-1) were expressed on pre-

OCs and play important roles during osteoclastogenesis. Inter-

cellular adhesion molecule-1 (ICAM-1, CD54) on endothelial

cells is reported to play an important role in the extravasation

of pre-OCs [1], and the candidates of counter receptors against

ICAM-1 are LFA-1 and Mac-1, which are expressed on

pre-OCs. As for the interaction between osteoblasts and pre-

OCs, the involvement of ICAM-1 and LFA-1 in osteoclasto-

genesis has been reported [5–8]. In addition to the interactions

between heterologous cells via integrin, it was also reported

that direct interactions mediated by ICAM-1/LFA-1 among

pre-OCs contribute to osteoclastogenesis [5,8,9]. Although

one of the best markers of osteoclast precursors is Mac-1

[10,11], to our knowledge there have been no studies to exam-

ine the role of Mac-1 in osteoclastogenesis.

This study examined the possible role of Mac-1 in osteo-

clastogenesis using RAW264.7 cells and primary cultured bone

marrow macrophages (BMMs). It is reported here that Mac-1

may play an important role in the early stage of osteoclasto-

genesis via the communication between pre-OCs.
2. Materials and methods

2.1. RAW264.7 cell culture and induction of osteoclast formation
The RAW 264.7 cell line used in this study was kindly provided by

Dr. T. Suda (Showa University) and grown in a-MEM supplemented
with 10% fetal calf serum (FCS) (growth medium) in a CO2 incubator.
RAW264.7cells were seeded in the center of the wells of a 48-well plate
for spot culture (3–100 ll of 105 cells/ml) and incubated for 30 min.
Then the medium was replaced with 0.5 ml of growth medium contain-
ing 10% FCS and 50 ng/ml of soluble RANKL (sRANKL, Oriental
Yeast Co. Ltd.) and the cultures were incubated for 5 days. For uni-
form cell cultures, cells with different densities (6–200 · 102 cells/ ml)
were prepared, and 0.5 ml of cell suspension was seeded into the wells
of a 48-well plate and incubated for 30 min. Osteoclast formation was
induced by medium replacement with growth medium containing
50 ng/ml of sRANKL. Functional blocking experiments were carried
out in spot culture conditions (1000 cells/ 10 ll) with 10 lg/ml of rat
IgG2b, IgG2a (Functional Grade, eBioscience) or antibodies (anti-
CD11a, M17/4; anti-CD11b, M1/70; or anti-CD18, M18/2, Functional
Grade, eBioscience). Tartrate-resistant acid phosphatase positive
(TRAP+) multinuclear cells were detected using TRAP staining at 5
days after sRANKL treatment.
blished by Elsevier B.V. All rights reserved.
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2.2. RAW264.7 cell sorting by fluorescence-activated cell-sorter (FACS)
CD11bLow, CD11bMed, and CD11bHigh RAW264.7 cell populations

were individually isolated by FACS (FACS Aria, BD Bioscience).
Briefly, RAW264.7 cells were stained with PE-labeled anti-CD11b
and FITC-labeled anti-CD54 antibodies (clone M1/70, clone YN/
1.7.4, eBioscience). After washing the cells three times with phosphate
buffered saline (PBS) containing 2 mM EDTA, the cells were separated
by the degree of CD11b expression using FACS.

2.3. Knockdown of CD11b in RAW264.7 cells
RAW264.7 cells (1.5 · 106) were cultured in a 6 cm dish (Falcon)

with growth medium for 24 h. An expression plasmid encoding a short
hairpin RNA against CD11b and green fluorescent protein
(GFP)(SureSilencing� shRNA plasmid for Mouse Itgam, clone 2, for
control clone NC, SuperArray) was transiently transfected into the
cells using Lipofectamine 2000 Reagent (Invitrogen). Two days after
transfection, the cells were stained with PE-labeled anti-CD11b (clone
M1/70, eBioscience) to confirm CD11b knockdown. CD11b expression
of cells was analyzed and GFP positive cells were isolated using FACS.

2.4. Mouse bone marrow macrophage culture and induction of osteoclast
formation

Male mice were euthanized, and femurs and tibias were obtained.
Sterile bone marrow preparations were obtained by flushing the femurs
and tibias with PBS using a 27-gauge needle. After washing, red blood
cells were lysed using 0.83% ammonium chloride solution. The sus-
pended cell solution was passed through a 70 lm cell strainer (BD Fal-
con) to remove large cell debris. The mononuclear cells obtained were
seeded in a 48-well plate at a density of 106 cells/well and cultured with
macrophage colony-stimulating factor-containing (M-CSF, 10 ng/ml,
Peprotech) growth medium. Osteoclast formation was induced by
medium replacement with growth medium containing M-CSF (10 ng/
ml) and sRANKL (100 ng/ml) at 24 h after the start of bone marrow
macrophage (BMM) culture. TRAP+ multinuclear cells were detected
using TRAP staining at 3 days after M-CSF and sRANKL treatment.

2.5. Quantification of NFATc1 mRNA by real-time RT-PCR
Total RNA was extracted from the BMMs at 24 h after the start of

treatment of the cells with M-CSF and sRANKL in the presence of rat
IgG or anti-CD11b antibody using TRIZOL Reagent according to the
manufacturer�s protocol (Invitrogen). Two micrograms of total RNA
was subjected to reverse-transcription (ReveTra Ace, TOYOBO).
The cDNA samples were amplified with Platinum SYBR Green qPCR
SuperMix-UDG with ROX (Invitrogen). All the data were analyzed by
the comparative Ct Method (7500 Fast Real-Time PCR System, Ap-
plied Biosystems, Foster City, CA, USA). NFATc1-specific primers
were 5 0- CAACGCCCTGACCACCGATAG-3 0 (forward) and 5 0-
GGCTGCCTTCCGTCTCATAGT-3 0 (reverse); GAPDH-specific
primers were 5 0- TACAGCAACAGGGTGGTGGAC-3 0 (forward)
and 5 0- GTGGGTGCAGCGAACTTTATT-3 0 (reverse).
Fig. 1. Cell density dependent differentiation of RAW264.7 cells. (A) RAW
wells (0.785 cm2). (B) RAW264.7 cells were seeded with four different numbe
TRAP+ multinuclear cells at 5 days after sRANKL (50 ng/ml) treatment. B
2.6. Tartrate-resistant acid phosphatase (TRAP) staining
Osteoclast formation was evaluated using TRAP staining because it

is well known that TRAP expression gradually increases during osteo-
clast differentiation. After the cells were washed with phosphate buf-
fered saline (PBS), they were fixed with ethanol/acetone (4:1) for
1 min. The cultures were then dried and stained for TRAP by incubat-
ing them in 0.05 M sodium acetate buffer (pH 5.0) containing naphthol
AS-BI phosphoric acid sodium salt (Sigma) and fast red ITR salt (Sig-
ma) in the presence of 10 mM sodium tartrate (Sigma). TRAP-positive
cells with three or more nuclei formed in the culture system were con-
sidered to be osteoclast-like multinuclear cells. The area occupied by
osteoclast-like cells in low-power field (2.18 mm · 1.8 mm) was ana-
lyzed and represented by OC area.
3. Results

3.1. Differentiation of RAW264.7 cells into multinuclear

osteoclasts is cell density dependent

According to a previous report, osteoclastogenesis induced

by sRANKL is dependent on the cell density of the precursor

cells [12]. Firstly, it was examined whether the sRANKL in-

duced osteoclastogenesis was dependent on the cell density of

RAW264.7 cells. When RAW264.7 cells were seeded in the

wells of a 48-well plate at different densities, osteoclastogenesis

was found to be dependent on cell-density (Fig. 1A). On the

other hand, when the RAW264.7 cells were seeded in the wells

at the same density but with different cell numbers, osteoclasto-

genesis was induced independently the number of RAW264.7

cells (Fig. 1B). These results suggest that the osteoclastogenesis

induced by sRANKL is dependent on the initial cell density.

3.2. Impaired osteoclastogenesis in CD11bLow RAW 264.7 cells

It was hypothesized that the cell density-dependent osteo-

clastogenesis may be the result of impairment of cell–cell con-

tact at low cell density at the early stage of osteoclastogenesis.

Usually, cell communication is achieved by intercellular adhe-

sion. It was reported that RAW264.7 cells and macrophages

express the cell adhesion molecules ICAM-1 and Mac-1 [5,8–

10,13]. Therefore, the expression of ICAM-1 and Mac-1 in

RAW264.7 cells was analyzed using FACS. Although the

ICAM-1 expression level was not different among

RAW264.7 cells, there were heterogeneous populations with

varying expression levels of CD11b (Fig. 2A). After these pop-
264.7 cells were seeded at four different densities in equal sized culture
rs of cells but the same density (100 cells/ll). Representative images of

ar = 300 lm.



Fig. 2. The relationship Mac-1 expression and osteoclast differentiation in RANKL-stimulated RAW264.7 cells. (A) FACS analysis of RAW264.7
cells. Heterogeneity of CD11b expression was noted. Three populations (CD11bLow, CD11bMed, and CD11bHigh) were isolated. (B) Osteoclast
differentiation was induced with sRANKL (50 ng/ml) in each population. Values are presented as means ± S.E., n = 4, *P < 0.05 vs parent group.
Analysis of variance followed by Dunnett 0s test. (C) Representative images of TRAP+ multinuclear cells at 5 days after sRANKL treatment.
Bar = 300 lm.
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ulations were sorted (CD11bLow, CD11bMed, and CD11bHigh,

Fig. 2A), osteoclastogenesis was induced by sRANKL. As

shown in Fig. 2B, osteoclastogenesis was severely impaired

in the population with low CD11b expression. This result

may indicate an important role of CD11b on osteoclastogene-

sis in RAW264.7 cells.

3.3. Osteoclastogenesis was attenuated by Mac-1 blockage in

RAW264.7 cells

A previous study demonstrated that the expression level of

Mac-1 was dependent on the stage of osteoclast differentiation

[3]. Therefore, the differentiation stages of osteoclastogenesis

among the FACS sorted populations may reflect their ability

for osteoclastogenesis. To exclude this possibility, the effect

of neutralizing antibodies on osteoclastogenesis was examined

in RAW264.7 cells. Osteoclastogenesis was not affected by the

treatment of the cells with rat IgG2b or IgG2a (IgG2a, data

not shown). Not only an anti-CD11b antibody but also an

anti-CD18 antibody significantly inhibited the osteoclasto-

genesis induced by sRANKL. On the other hand, an anti-

CD11a antibody did not affect the osteoclastogenesis

(Fig. 3A and B). This result strongly suggests an important

role of Mac-1 on osteoclastogenesis in RAW264.7 cells.

3.4. CD11b knockdown and osteoclastogenesis

To confirm the important role of Mac-1 in osteoclastogene-

sis, specific knockdown of CD11b by RNA interference was

performed. FACS analysis showed an approximately 50% de-

crease in CD11b expression was achieved in GFP positive

RAW264.7 cells (data not shown). Osteoclastogenesis tended

to decrease in CD11b knockdown cells in comparison to con-

trol RAW264.7 cells (Fig. 4).

3.5. Role of Mac-1 in osteoclastogenesis in bone marrow

macrophages

The role of Mac-1 in osteoclastogenesis in primary cultured

BMMs was examined. Osteoclastogenesis was not affected by
the treatment of the cells with rat IgG2b or IgG2a (IgG2a,

data not shown). As shown in Fig. 5, osteoclastogenesis of

BMMs induced by M-CSF and sRANKL was inhibited by

treatment of the cells with antibodies against CD11b and

CD18. Anti-CD11a antibody did not affect osteoclastogenesis

in BMMs.

3.6. Blockage of CD11b by a neutralizing antibody inhibited

mRNA expression of nuclear factor of activated T cells c1

To clarify the involvement of the inhibitory effect of the anti-

CD11b antibody on osteoclastogenesis in the early stage of dif-

ferentiation, the mRNA expression level of nuclear factor of

activated T cells c1 (NFATc1) in BMMs was examined at

24 h after M-CSF and sRANKL treatment. More than a 3-

fold increase in NFATc1 mRNA levels was detected in the

cells treated with M-CSF and sRANKL. This NFATc1 up-

regulation was significantly inhibited by treatment of the cells

with the anti-CD11b antibody (Fig. 6). This result suggests, at

least in part, an important role of Mac-1 in osteoclastogenesis

in the early differentiation stage.
4. Discussion

A decade ago, the first step in the molecular elucidation of

osteoclast differentiation was achieved with the discovery of

RANKL (also known as OPGL, ODF, or TRANCE)

[14,15]. RANKL binds to its receptor, RANK, which is ex-

pressed in pre-OCs and induces the osteoclast differentiation

of pre-OCs via TNF receptor-associated factor 6 (TRAF6)

activation. Genome-wide screening and gain/loss of function

experiments revealed the important role of NFATc1, a master

regulator of osteoclastogenesis, following induction by

RANKL [16,17]. In addition to RANK/RANKL signaling,

it has been revealed that immunoreceptor tyrosine-based acti-

vation motif (ITAM)-dependent co-stimulatory signals are in-

volved in osteoclastogenesis by the elevation of cytosolic Ca2+



Fig. 3. Effect of antibodies on osteoclast differentiation in RAW264.7 cells. (A) Representative images of TRAP+ multinuclear cells at 5 days after
sRANKL treatment. (a) sRANKL (�); (b) sRANKL+ (control); (c) sRANKL+IgG (IgG2b); (d) sRANKL+anti-CD18 Ab (anti-CD18); (e)
sRANKL+ anti-CD11a Ab (anti-CD11a); and (f) sRANKL+ anti-CD11b Ab (anti-CD11b). Bar = 300 lm. (B) Quantification of TRAP+ osteoclast
differentiation at 5 days after treatment with sRANKL (50 ng/ml) and antibodies (10 lg/ml). Values are presented as means ± S.E., n = 4, *P < 0.05
vs IgG group. Analysis of variance followed by Dunnett 0s test.

Fig. 4. Effect of CD11b knockdown by shRNA on RAW264.7 cell
differentiation. (A) Representative images of TRAP+ multinuclear cells
at 5 days after sRANKL treatment. (a) negative-shRNA (GFP+) and
(b) CD11b-shRNA (GFP+). Bar = 300 lm. (B) Quantification of
TRAP+ osteoclast differentiation at 5 days after treatment with
sRANKL (50 ng/ml). Values are presented as means ± S.E., n = 4.
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for the nuclear transport of NFATc1 [18,19]. It has been

shown that mice lacking ITAM-harboring adaptors, Fc recep-

tor c subunit (FcRc) and DNAX-activating protein (DAP) 12,

exhibit severe osteopetrosis owing to impaired osteoclast dif-
ferentiation. It was supposed that the phosphorylation of

ITAM results in the recruitment of spleen tyrosine kinase

(Syk), and subsequently Syk activates calcium signaling via

phospholipase C (PLC).

In this study, it was found that functional impairment of

Mac-1 resulted in inhibition of osteoclast differentiation in

both RAW264.7 cells and BMMs using neutralizing antibodies

and a gene silencing technique. The essential role of Syk in

integrin-mediated leukocyte activation and Syk co-localization

with CD18 have been reported [20–25]; therefore, the inhibi-

tion of osteoclastogenesis might be the result of the attenua-

tion of Syk signaling by the functional blockage of Mac-1.

Interestingly, Mócsai et al. reported that the activation of

Syk by integrins required DAP12 and FccR [26]. Conversely,

the osteopetrotic phenotype of double knockout mice

(DAP12�/� and FccR�/�) may be partly due to a lack of inte-

grin signaling in these mice. In this study, RANKL-induced in-

creases in NFATc1 mRNA levels were inhibited by the

treatment of BMMs with a neutralizing antibody against

CD11b. This result suggests that integrin signaling plays an

important role as a co-stimulatory molecule in the early osteo-

clast differentiation of BMMs induced by M-CSF and

sRANKL.

The counter receptors for Mac-1 were thought to be ICAM-

1 and -2, which are expressed in pre-OCs and macrophages

[5,8,9,27]. BMMs expressed both ICAM-1 and -2, and



Fig. 5. Effect of antibodies on osteoclast differentiation in BMMs. (A) Representative images of TRAP+ multinuclear cells at 3 days after M-CSF
(10 ng/ml) and sRANKL (100 ng/ml) treatment. (a) M-CSF; (b) M-CSF + sRANKL (control); (c) M-CSF+ sRANKL+IgG (IgG2b); (d) M-
CSF + sRANKL + anti-CD18 Ab (anti-CD18); (e) M-CSF + sRANKL + anti-CD11a Ab (anti-CD11a); (f) M-CSF + sRANKL + anti-CD11b Ab
(anti-CD11b). Bar = 300 lm. (B) Quantification of TRAP+ osteoclast differentiation at 3 days after treatment with sRANKL (100 ng/ml), M-CSF
(10 ng/ml), and antibodies (10 lg/ml). Values are presented as means ± S.E., n = 6, *P < 0.05 vs IgG group. Analysis of variance followed by
Dunnett�s test.

Fig. 6. Effect of anti-CD11b antibody on NFATc1 expression in
BMMs. Quantification of NFATc1 mRNA expression at 24 h after
treatment of sRANKL (100 ng/ml), M-CSF (10 ng/ml), and antibody
(10 lg/ml). Control, M-CSF; IgG, M-CSF + sRANKL + IgG2b, anti-
CD11b, M-CSF + sRANKL + anti-CD11b Ab. Values are presented
as means ± S.E., n = 7, *P < 0.05 vs control group. #P < 0.05 vs IgG
group. Analysis of variance followed by Tukey–Kramer multiple
comparison test.
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RAW264.7 cells expressed ICAM-1 (data not shown). In the

current experiment, RANKL-induced osteoclastogenesis was

dependent on the cell density of pre-OCs but not on the num-
ber of pre-OCs. In addition to RANKL signaling, Mac-1 occu-

pancy with ICAMs may trigger the differentiation of pre-OCs

via ITAM-harboring adaptors as mentioned above. This

hypothesis may explain the advantage of cell–cell communica-

tion in the differentiation of pre-OCs, because pre-OCs must

recognize the existence of other pre-OCs to fuse with each

other before the beginning of osteoclast differentiation. A re-

cent report showed that the phosphorylation of CD11b was re-

quired for integrin activation to bind to ICAMs [28], but the

molecule that triggers the phosphorylation of CD11b remains

to be determined.

In conclusion, this study showed the importance of the den-

sity of pre-OCs in osteoclast differentiation induced by

sRANKL. This observation led to the hypothesis that commu-

nication among pre-OCs plays an important role in the begin-

ning of osteoclast differentiation. Integrin blockage

experiments revealed the involvement of Mac-1 in osteoclast

differentiation induced by sRANKL. Moreover, the expression

of NFATc1 mRNA induced by RANKL was, at least in part,

dependent on integrin occupancy. Collectively, the current

findings demonstrate the possible role of integrin in early

osteoclast differentiation. These results will contribute to the

molecular understanding of osteoclastogenesis.

Acknowledgements: This work was supported in part by research
Grants 20390470, 20659306, and 20390463 from the Japan Society
for the Promotion of Science, Tokyo, Japan.



3248 H. Hayashi et al. / FEBS Letters 582 (2008) 3243–3248
References

[1] Kindle, L., Rothe, L., Kriss, M., Osdoby, P. and Collin-Osdoby,
P. (2006) Human microvascular endothelial cell activation by IL-1
and TNF-a stimulates the adhesion and transendothelial migra-
tion of circulating human CD14+ monocytes that develop with
RANKL into functional osteoclasts. J. Bone. Miner. Res. 21,
193–206.

[2] Brandi, M.L. and Collin-Osdoby, P. (2006) Vascular biology and
the skeleton. J. Bone. Miner. Res. 21, 183–192.

[3] Takeshita, S., Kaji, K. and Kudo, A. (2006) Identification and
characterization of the new osteoclast progenitor with macro-
phage phenotypes being able to differentiate into mature osteo-
clasts. J. Bone. Miner. Res. 15, 1477–1488.

[4] Smith, CW. (2008) Adhesion molecules and receptors. J. Allergy.
Clin. Immunol. 121, S375–379.

[5] Kurachi, T., Morita, I. and Murota, S. (1993) Involvement of
adhesion molecules LFA-1 and ICAM-1 in osteoclast develop-
ment. Biochim. Biophys. Acta 1178, 259–266.

[6] Okada, Y., Morimoto, I., Ura, K., Watanabe, K., Eto, S.,
Kumegawa, M., Raisz, L., Pilbeam, C. and Tanaka, Y. (2002)
Cell-to-Cell adhesion via intercellular adhesion molecule-1 and
leukocyte function-associated antigen-1 pathway is involved in
1alpha, 25(OH)2D3, PTH and IL-1alpha-induced osteoclast
differentiation and bone resorption. Endocr. J. 49, 483–495.

[7] Tani-Ishii, N., Penninger, J.M., Matsumoto, G., Teranaka, T.
and Umemoto, T. (2002) The role of LFA-1 in osteoclast
development induced by co-cultures of mouse bone marrow
cells and MC3T3–G2/PA6 cells. J. Periodontal Res. 37, 184–
191.

[8] Garcia-Palacios, V., Chung, H.Y., Choi, S.J., Sarmasik, A.,
Kurihara, N., Lee, J.W., Galson, D.L., Collins, R. and Roodman,
G.D. (2007) Eosinophil chemotactic factor-L (ECF-L) enhances
osteoclast formation by increasing in osteoclast precursors
expression of LFA-1 and ICAM-1. Bone 40, 316–322.

[9] Harada, H., Kukita, T., Kukita, A., Iwamoto, Y. and Iijima, T.
(1998) Involvement of lymphocyte function-associated antigen-1
and intercellular adhesion molecule-1 in osteoclastogenesis: a
possible role in direct interaction between osteoclast precursors.
Endocrinology 139, 3967–3975.

[10] Blair, H.C. and Zaidi, M. (2006) Osteoclastic differentiation and
function regulated by old and new pathways. Rev. Endocr.
Metab. Disord. 7, 23–32.

[11] Xing, L., Schwarz, E.M. and Boyce, B.F. (2005) Osteoclast
precursors, RANKL/RANK, and immunology. Immunol. Rev.
208, 19–29.

[12] Gardner, C.R. (2007) Morphological analysis of osteoclastogene-
sis induced by RANKL in mouse bone marrow cell cultures. Cell
Biol. Int. 31, 672–682.

[13] Hubbard, A.K. and Giardina, C. (2000) Regulation of ICAM-1
expression in mouse macrophages. Inflammation 24, 115–125.

[14] Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosa-
ki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M.,
Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa,
N., Takahashi, N. and Suda, T. (1998) Osteoclast differentiation
factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory
factor and is identical to TRANCE/RANKL. Proc. Natl. Acad.
Sci. USA 95, 3597–3602.

[15] Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R.,
Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S.,
Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli,
A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi,
G., Guo, J., Delaney, J. and Boyle, W.J. (1998) Osteoprotegerin
ligand is a cytokine that regulates osteoclast differentiation and
activation. Cell 93, 165–176.

[16] Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M.,
Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J.,
Wagner, E.F., Mak, T.W., Kodama, T. and Taniguchi, T. (2002)
Induction and activation of the transcription factor NFATc1
(NFAT2) integrate RANKL signaling in terminal differentiation
of osteoclasts. Dev. Cell 3, 889–901.

[17] Ikeda, F., Nishimura, R., Matsubara, T., Hata, K., Reddy, S.V.
and Yoneda, T. (2006) Activation of NFAT signal in vivo leads to
osteopenia associated with increased osteoclastogenesis and bone-
resorbing activity. J. Immunol. 177, 2384–2390.

[18] Mócsai, A., Humphrey, M.B., Van Ziffle, J.A., Hu, Y., Burg-
hardt, A., Spusta, S.C., Majumdar, S., Lanier, L.L., Lowell, C.A.
and Nakamura, M.C. (2004) The immunomodulatory adapter
proteins DAP12 and Fc receptor gamma-chain (FcRgamma)
regulate development of functional osteoclasts through the Syk
tyrosine kinase. Proc. Natl. Acad. Sci. USA 101, 6158–6163.

[19] Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi,
E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi,
T., Takayanagi, H. and Takai, T. (2004) Costimulatory signals
mediated by the ITAM motif cooperate with RANKL for bone
homeostasis. Nature 428, 758–763.

[20] Lin, T.H., Rosales, C., Mondal, K., Bolen, J.B., Haskill, S. and
Juliano, R.L. (1995) Integrin-mediated tyrosine phosphorylation
and cytokine message induction in monocytic cells. A possible
signaling role for the Syk tyrosine kinase. J. Biol. Chem. 270,
16189–16197.

[21] Zarbock, A., Lowell, C.A. and Ley, K. (2007) Spleen tyrosine
kinase Syk is necessary for E-selectin-induced alpha(L)beta(2)
integrin-mediated rolling on intercellular adhesion molecule-1.
Immunity 26, 773–783.

[22] Vines, C.M., Potter, J.W., Xu, Y., Geahlen, R.L., Costello, P.S.,
Tybulewicz, V.L., Lowell, CA., Chang, P.W., Gresham, H.D. and
Willman, C.L. (2001) Inhibition of beta 2 integrin receptor and
Syk kinase signaling in monocytes by the Src family kinase Fgr.
Immunity 15, 507–519.

[23] Schymeinsky, J., Sindrilaru, A., Frommhold, D., Sperandio, M.,
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