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Protein kinase C (PKC) and galectin-3 are two important mediators that play a key pathogenic role in cardiac
hypertrophy and heart failure (HF). However, the molecular mechanisms and signaling pathways are not fully
understood. In this study, we explored the relationship between and roles of PKC-α and galectin-3 in the devel-
opment of HF. We found that activation of PKC by phorbol dibutyrate (PDB) increased galectin-3 expression by
~180%, as well as collagen I and fibronection accumulation in cultured HL-1 cardiomyocytes. Over-expression
of galectin-3 in HL-1 cells increased collagen I protein production. Inhibition of galectin-3 by β-lactose blocked
PDB-induced galectin-3 and collagen production, indicating that galectin-3 mediates PKC-induced cardiac fibro-
sis. In rats subjected to pulmonary artery banding (PAB) to induce right ventricular HF, galectin-3 was increased
by ~140% in the right ventricle and also by ~240% in left ventricle compared to control. The elevated galectin-3 is
consistent with an increase of total and activated (phosphorylated) PKC-α,α-SMA and collagen I. Finally, we ex-
tended our findings to examine the role of angiotensin II (Ang II), which activates the PKC pathway and contrib-
utes to cardiac fibrosis and the development of HF. We found that Ang II activated the PKC-α pathway and
increased galectin-3 expression and collagen production. This study provides a new insight into the molecular
mechanisms of HF mediated by PKC-α and galectin-3. PKC-α promotes cardiac fibrosis and HF by stimulation
of galectin-3 expression.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Heart failure (HF), which is primarily characterized by a loss of
cardiac function, afflicts approximately 5 million people and causes
300,000 deaths per year in the United States alone [1]. The prognosis
of patients with HF is poor, with a 50% 4-year mortality [2]. HF that
affects the left side of the heart is more common, but the incidence of
HF affecting the right side of the heart is increasing due to the increased
incidence of pulmonary hypertension and increased survival of children
with congenital heart disease into adulthood [3–5]. HF is a complex
disorder in which a number of physiological systems participate, acting
on both the cardiomyocytes and interstitial cells. Although significant
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therapeutic progress has beenmade over the past decades, themolecu-
lar mechanisms and signaling events that lead to HF remain unsolved.

Protein kinase C (PKC) is a group of serine/threonine kinases.
Approximately 15 different isozymes comprise the PKC family. Increas-
ing evidence demonstrates the association of PKC activation with cardi-
ac hypertrophy, HF, ischemic injury, or agonist stimulation [6–10].
Among the PKC family, PKC-α is the most abundant isoform and is
expressed in mouse, human, and rabbit hearts, whereas PKC-β and
PKC-γ are both detectable but expressed at substantially lower levels
[10,11]. Activation of PKC-α has been shown to be necessary and suffi-
cient to induce cardiomyocyte hypertrophy in cultured neonatal
cardiomyocytes [12]. The critical impact of PKC-α in heart disease has
been demonstrated in PKC-α knock-out mice where genetic deletion
of PKC-α protects against HF induced by pressure overload [13] as
well as against dilated cardiomyopathy [6]. In contrast, PKC-α transgen-
icmice showed reduced ventricular performance at 4months of age and
increased cardiac hypertrophy at 6 months [6].

Acting as a crucial HF mediator, PKC-α has gained tremendous
attention as a potential novel therapeutic target for the treatment
of HF [1,10,14]. Pharmacological inhibition of PKC-α in rodents or
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utilization of a dominant negative PKC-α mutant, was beneficial and
antagonized the development of HF [1,11]. Clinical trials utilizing
ruboxistaurin to inhibit PKC activity have shown promise in treating
heart disease [1,15–17]. Furthermore, Connelly et al. [17] also demon-
strated that ruboxistaurin attenuated diastolic dysfunction, myocyte
hypertrophy, collagen deposition, and preserved cardiac contractility
in a rat diabetic HF model. Blockade of PKC-α/βwith ruboxistaurin en-
hanced cardiac contractility and attenuated HF induced by myocardial
infarction in pigs [18].

Galectin-3 is a small lectin-like protein that is emerging as a key
player with a substantial role in the process of HF development.
Galectins are a family of soluble β-galactoside-binding lectins that
are involved in the regulation of inflammation, immunity, and cancer.
Notably, in a comprehensive microarray study, Sharma et al. utilized
the homozygous transgenic Ren-2 ratmodel that develops HF and iden-
tified cardiac galectin-3 as the most strongly overexpressed gene [19].
Galectin-3 is the only chimeric protein in the galectin family based on
its special structure. It is found in a wide range of species and tissues
and can interact with cell surface receptors and glycoproteins to initiate
transmembrane signaling pathways for different cellular functions. As a
mediator of cardiac fibrosis, galectin-3 has been documented as signifi-
cantly up-regulated in several experimental studies [19–21]. In a rat
model of HF, galectin-3 expression is increased at an early stage of
hypertrophy, prior to the development of HF [19]. Additionally, Liu
et al. showed that infusion of the galectin-3 inhibitor As-SDKP into the
pericardial sac, not only inhibited fibrosis and inflammation, but also
improved cardiac function [20]. Disruption of the galectin-3 gene also
prevents fibrosis formation in heart [21]. In a large study in patients
with HF, circulating levels of galectin-3 were found to be a marker of
cardiac fibrosis and were associated with an increased risk for incident
HF [22]. Furthermore, clinical data shows that plasma galectin-3 is
increased in acute and chronic HF [22,23], suggesting that galectin-3
may be of particular value as a biomarker for HF severity.

Although both PKC-α and galectin-3 have been recognized as im-
portant players in the development and progress of HF, the molecular
mechanism of how PKC-α and galectin-3 participate in these processes
remains largely unknown. In addition, it is not clearwhether PKC-α and
galectin-3, which are very disparate types of molecules, work synergis-
tically or have separate modes of action. Thus, in this study, we present
newfindings showing that these two important HF factors act in concert
in the development of HF. We found that activation of the PKC pathway
increases galectin-3 expression and also that inhibition of galectin-3
blocks PKC-stimulated collagen production. This study demonstrates
that PKC-α promotes cardiac fibrosis and HF by altering galectin-3
expression.

2. Materials and methods

2.1. Plasmid constructs

A 789-bp coding region gene of rat galectin-3 was PCR amplified
from kidney cDNAs and subcloned into a p3xFLAG-CMV-10 vector
(Sigma). Oligonucleotide primers were designed based on the rat
galectin-3 gene (accessory number NM_031832). The forward primer
including Hind III site: 5′-CAAGCTTATGGCAGACGGCTTCTCACTTAATG-
3′; the reverse primer including XbaI site: 5′-CTCTAGACTTAGATCATG
GCGTGGGAAGCGCT-3′. The constructed p3xFlag-galectin-3 was veri-
fied by nucleotide sequence analysis. pcDNA3-PKC-α has been de-
scribed previously [24].

2.2. Cardiomyocyte culture

Mouse HL-1 cardiomyocytes were kindly provided by Dr.William C.
Claycomb from Louisiana State University Health Sciences Center. HL-1
cell medium has been optimized by Dr. Claycomb's group. Claycomb
medium (Sigma, 51800C) was supplemented with 10% fetal bovine
serum (Sigma, F2442), 4 mM L-glutamine, 0.1 mM norepinephrine
(Sigma, A0937) and 1% penicillin/streptomycin. Cells were grown in
culture flasks, dishes or plates pre-coated with 1 mg/mL fibronectin
(Sigma, F1141) dissolved in a 0.02% gelatin solution at 37 °C in a humid-
ified atmosphere of 95% air and 5%CO2. Themediumwas changed every
24–48 h.

2.3. Cell transfection and treatment

For plasmid transfection, HL-1 cells were grown into 6-well plates at
90% confluence and transfected with p3xFLAG-galectin-3 or pcDNA3-
PKC-α with Lipofectamine 2000 (Invitrogen). After 48 h, cells were
collected for western blot analysis. For pharmacologic cell treatment,
HL-1 cells were grown to confluence and serum starved for 12 h. The
cells were then treated with 2 μM PKC activator phorbol dibutyrate
(PDB, Sigma, P1269), 2 μM PKC inhibitor chelerythrine (Sigma,
C2932), 1 μM angiotensin II (Sigma, A9525), or galectin-3 inhibitor
β-lactose (Sigma, L3750) for the indicated time.

2.4. HF animal model creation

All animal protocols were approved by the Emory University Institu-
tional Animal Care and Use Committee. A rat model of right ventricular
HF was created by banding of the pulmonary artery (PAB) as described
with slight modifications [25]. Male Sprague Dawley rats with an initial
weight of 150–200 g were utilized. Anesthesia was induced and main-
tainedwith isoflurane; the rats were intubated and placed on an adjust-
able heating pad. The chest was open via a left thoracotomy through the
fourth intercostal space, and the ribs and pectoral muscles were gently
retracted to expose the heart. The pericardium was opened and the
pulmonary trunk was carefully separated from the aorta. The main
pulmonary artery was partially ligated over an 18 gauge angiocatheter
to ensure consistent stenosis. The sizer was promptly removed to
allow for antegrade flow through the banded area. The thoracotomy
was closed in multiple layers under positive pressure ventilation to
evacuate pleural air. Similarly, sham operated animals underwent the
same procedure with exposure of the pulmonary artery but without
banding. Echocardiography under isoflurane anesthesia was performed
12–17 weeks post-surgery for both PAB and sham animals, prior to
sacrifice. Hearts were collected for Western blot analysis.

2.5. Echocardiography

To evaluate the heart function, echocardiography was performed
on PAB and sham rats 12–17 weeks after surgery. Transthoracic echo-
cardiography was performed by the Emory Children's Animal Physiolo-
gy Core utilizing a Vevo 2100 digital high-frequency ultrasound
system (FujiFilm Visualsonics Inc, Toronto, Canada) equipped with
a probe suited for rat imaging. The system includes capabilities for
standard echocardiographic exams including pulsed-wave (PW) and
color Doppler. Pulmonary artery pressure gradient and myocardial
performance index (MPI) were measured using PW Doppler. Left ven-
tricular ejection fraction and tricuspid annular plane systolic excursion
(TAPSE) were determined in M mode. Right ventricular wall thickness
and diastolic dimension were measured in B mode.

2.6. Western blot analysis

Total proteins were prepared from either HL-1 cell extracts or cardiac
homogenates fromHF and control rats. Protein concentration was deter-
mined by the Bradford method using BioRad protein assay. Equal
amounts of proteins (50–100 μg/lane) were loaded and separated by
SDS-PAGE gels and transferred to Nitrocellulose Membranes (Bio-Rad).
After blocking with 5% non-fat milk in PBST, membranes were incubated
with primary antibodies overnight at 4 °C, followed by HRP-conjugated
secondary antibody. The protein abundancewas detectedusing enhanced
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chemiluminescence ECL system (Amersham Biosciences). Band density
was analyzed with ImageJ software (National Institutes of Health). The
results were expressed as percentage of control group.

The following antibodies were used in this study: galectin-3 hybrid-
oma (TIB-166; ATCC), PKC-α (sc-8393; Santa Cruz), PKC-α (phospho
Thr497) (GTX61959; GeneTex), PKC-α (phospho Thr638/641) (9375;
Cell signaling), α-SMA (A2547; Sigma), Col Iα1 (sc-8784; Santa Cruz),
fibronectin (F3648; Sigma), FLAG (F1804; Sigma), HRP anti-rabbit IgG
(NA934; Fisher), and HRP-goat anti-mouse IgG (115-036-062; Jackson
Immuno Research).

2.7. Statistical analysis

The protein levels quantified by densitometry were expressed as
mean ± SD. The statistically significant differences were assessed
by ANOVA with post-hoc Tukey HSD test for three or more groups and
Student's t-test for two groups.
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3. Results

3.1. PKC stimulation promotes galectin-3 expression in cardiomyocytes

Both PKC and galectin-3 are implicated in the development of
cardiac hypertrophy and HF [6,19]. To explore the possible linkage
of PKC and galectin-3, we explored the galectin-3 expression in
mouse cardiomyocyte HL-1 cells when the cells were treated with
the PKC activator phorbol dibutyrate (PDB). As seen in Fig. 1A, HL-1
cardiomyocytes expressed galectin-3 (Gal-3) and following PDB
treatment (24 h) galectin-3 was significantly increased by 179 ± 16%
(P b 0.01). PKC inhibitor chelerythrine (Chel) treatment slightly reduced
basal galectin-3 protein levels by 30 ± 13%. To investigate the time
course of galectin-3 upregulation, HL-1 cells were treated with 2 μM
PDB for increasing durations of 0, 4, 8, and 24 h. PDB treatment time-
dependently increased galectin-3 expression and this effect started as
early as 4 h (Fig. 1B).
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3.2. Activation of PKC stimulates collagen I and fibronectin expression in
HL-1 cells

Chronic HF has increased matrix accumulation. To confirm the role
of PKC in HL-1 cardiomyocyte matrix synthesis, we examined collagen
I and fibronectin production after PDB treatment. As demonstrated in
Fig. 1C, PDB treatments led to increased collagen I and fibronectin by
32 ± 8% (p b 0.01) and 54 ± 12% (p b 0.01), respectively. In contrast,
PKC inhibitor chelerythrine treatment decreased collagen I by 15 ± 6%
and fibronectin by 79 ± 7%.

3.3. PKC-α increases galectin-3 expression in HL-1 cells

To ensure that PDB treatment indeed activated PKC and stimulated
galectin-3 expression, HL-1 cells were pre-incubatedwith PKC inhibitor
chelerythrine for 30min prior to treatment with PDB. Chelerythrine re-
duced PDB-stimulated galectin-3 protein expression (Fig. 2A). PKC-α is
the major isoform expressed in heart [10–12]. To examine the direct
role of PKC-α in the regulation of galectin-3 expression, PKCα cDNA
was transfected into HL-1 cells. Overexpression of PKC-α increased
galectin-3 expression by 65 ± 3% (P b 0.01) and collagen I abundance
by 107 ± 15% (P b 0.01) (Fig. 2B).

3.4. Galectin-3 promotes collagen I protein production

Galectin-3 is thought to augment fibrosis, a pivotal process in
both maladaptive cardiac remodeling and HF [19]. To directly show
that galectin-3 affects cardiac fibrosis, HL-1 cells were transfected with
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α or vector alone. Two days later, cells were lysed and PKC-α, galectin-3, and collagen I expres
(compared to control, ** P b 0.01, n = 4).
p3xFLAG-galectin-3. Galectin-3 expression was verified by Western
blot using FLAG antibody. Overexpression of galectin-3 enhanced colla-
gen I production (Fig. 3A).

To determinewhether PKC-stimulated collagen accumulation isme-
diated through galectin-3, HL-1 cells were pre-treated with galectin-3
inhibitor β-lactose followed by PDB treatment. As shown in Fig. 3B,
β-lactose blocked PDB-induced collagen I production (68 ± 6% vs
136 ± 9, p b 0.01).

3.5. Echocardiographic assessment of cardiac function inHF induced by PAB

To further explore our in vitro findings in experimental heart dis-
ease, we generated right ventricular HF in rats by PAB which induces
pressure overload of the right ventricle (RV). This model does not just
induce RV hypertrophy but also induces overt HF [25]. Cardiac function
was assessedwith echocardiographyprior to sacrifice and a summary of
these findings is shown in Fig. 4. PAB resulted in a pulmonary artery
pressure gradient of 63.5 ± 15.1 mm Hg, demonstrating RV pressure
overload. This resulted in a ~100% increase in RV wall thickness and a
~60% increase in RV diastolic dimension. In addition, TAPSE, a measure
of RV dysfunction, was significantly decreased compared to sham (by
~33%). Although there were no changes in left ventricular (LV) ejection
fraction, therewas indication of LVdysfunction asmeasured by LVmyo-
cardial performance index (MPI). MPI has been shown to correlate with
invasive measures of cardiac function in a spontaneously hypertensive
rat model [26]. We found that MPI was increased in HF rats nearly
~50% compared to sham. These data show that both RV and LV function
was diminished in this model of RV failure.
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Fig. 4. Abnormal cardiac function in HF rats. A. M-mode echocardiographic images taken from Sham and PAB rats using a Vevo 2100 high frequency ultrasound system. Tricuspid annular
plane systolic excursion (TAPSE) measurements are shown in blue, with decreased TAPSE in PAB indicating decreased right ventricular (RV) function. B. Summary of echocardiographic
measures of cardiac function.White bars are data from shamoperated rats (Sham) and gray bars are data from ratswithHF induced by pulmonary artery banding (PAB). Dimensions of RV
wall thickness (RVWT) and RV diastolic dimension (RVDD)weremeasured in Bmode. TAPSEwasmeasured inMmode.Myocardial performance index (MPI)wasmeasuredwith pulsed-
wave (PW) Doppler. Data were analyzed using the Vevo 2100 software (compared to control, * P b 0.05, ** P b 0.01, n = 5–7).
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3.6. Increased galectin-3 expression in HF

LV and RV were dissected from control and PAB HF rats and proc-
essed for western blot analysis of galectin-3 protein expression.
Galectin-3 was significantly increased in both RV and LV (Fig. 5A).
Galectin-3 often forms dimers. Interestingly, galectin-3 expressed in
heart tissue showed significant amounts of the dimerized form and
this was dramatically increased by ~130% in HF RV relative to the
control ventricles. Similarly, galectin-3 expression was increased by
~240% in LV from HF animals. Consistent with increased galectin-3 ex-
pression, the cardiomyocyte activation marker α-smooth muscle actin
(α-SMA), and actin as well as fibrotic protein collagen I were increased.
The marked increase in galectin-3, collagen type I and fibronectin
expression reflects the development of cardiac fibrosis in the HF rats.

3.7. Enhanced PKC-α expression in HF

PKC-α is the predominant PKC isoform expressed in heart and a key
player in the development of HF [6]. We examined PKC-α expression in
PAB HF. As illustrated in Fig. 6, total PKC-α protein levels were dramat-
ically increased in both LV (by 130 ± 8.7%) and RV (by 117 ± 10.3%) in
HF compared to controls. We then specifically investigated activated
PKC-α with antibodies to specific phosphorylated threonine sites of
PKC-α. Phospho-PKC-α at Thr497 and phospho-PKC-α at Thr638/641
were increased in the HF group in both LV and RV.

3.8. Angiotensin II promotes galectin-3 and collagen expression inHL-1 cells

Angiotensin II (Ang II) is a well-known hormone that activates the
PKC pathway and increases in Ang II levels are critical to myocardial re-
modeling and progression of HF [27,28]. Thus, we tested the hypothesis
that galectin-3 might mediate Ang II-induced cardiac fibrosis. Treatment
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0.01). Interestingly, Ang II predominantly activated phospho-PKC-α at
Thr638/641 by 79 ± 12.6% (p b 0.01) but had little effect on phospho-
PKC-α (Thr497) activation (Fig. 7A). As expected, Ang II-treatment
stimulated HL-1 cell galectin-3 expression and this increase is consistent
with increased collagen I accumulation. This effectwas prevented by pre-
treatment with PKC inhibitor chelerythrine (Fig. 7B), suggesting that
Ang II may promote heart fibrosis, at least in part, through activating
the PKC–galectin-3 pathway.

4. Discussion

PKC is a family of protein kinase enzymes that are involved in many
cellular physiological and pathological processes. Cardiomyocytes
express multiple PKC isoforms, of which PKC-α is the most abundant
in heart. In fetal and neonatal hearts, the level of PKC expression is
high and decreases with age [29]. However, PKC expression and activity
are increased by cardiac injury suggesting a critical role for PKC in the
development of cardiac disease [1]. The increased activity of PKC
isozymes has been observed in multiple types of experimental heart
disease including agonist-induced cardiomyocyte hypertrophy, ische-
mic heart disease, myocardial infarction, and HF [1,6–9,30]. Belin et al.
first reported upregulation of PKC-α expression and activity in a rat
model of end-stageHF [11]. Deletion of PKC-α can prevent cardiomyop-
athy and increase cardiac function in experimental HF [6]. In the current
study,we discovered that PKC-αwasupregulated in rat heartswith PAB
induced HF. By utilizing antibodies specific for phosphorylated PKC-α,
we detected increased phosphorylation of PKC-α phosphorylated
at Thr497, Thr638 and Thr641 in the HF rats, reflecting an increase in
both PKC-α expression and PKC-α activation in PAB HF.

The role for PKC-α in cardiac hypertrophy andHF is substantial. How-
ever, the signaling pathways and the underlying mechanisms remain
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unclear. A number of specific molecules, such as sarcoplasmic reticulum
Ca2+ ATPase (SERCA2), G-protein-coupled receptor kinase 2 (GRK2),
and myofilament protein cardiac troponin I (cTnI), have all been identi-
fied as targets of PKC-α. It is notable that all of these targets are associated
with modulation of cardiac contractility [1,14]. In this study, for the first
time, we report that activation of PKC promotes galectin-3 expression
in HL-1 cardiomyocytes and in HF hearts. This finding suggests that
galectin-3 may act as an important effector in PKC-α-stimulated cardio-
myocyte hypertrophy and the development of HF. Indeed, inhibition of
galectin-3 using β-lactose blocked PDB-induced collagen type I synthesis.
Therefore, elevated PKC-αmay affect cardiac remodeling and fibrosis by
stimulating expression of galectin-3.

Galectin-3 is an active contributor to cardiac remodeling, including
myocardial fibrogenesis, and the development of HF [21,22,31]. The
important role for galectin-3 in HF was first recognized when Sharma
et al. identified galectin-3 as the strongest HF predictor among 48
genes in HF [19]. In normal rat, murine and human hearts, the expres-
sion of galectin-3 is low, but expression is rapidly and significantly
up-regulated in response to injury [32]. Patients with HF had markedly
elevated serum galectin-3 values as compared to normal controls [31].
Therefore, galectin-3 has been examined as a potential diagnostic and
prognostic marker for HF in humans [2,22,31,33], but the myocardial
localization of galectin-3 had not previously been elucidated. Immuno-
histochemistry and confocal microscopy analyses of hypertrophied
rat myocardium revealed that galectin-3 binding sites were localized
predominantly to the myocardial matrix, in fibroblasts and macro-
phages [19,21,32,34]. In the present study, we demonstrate that cul-
tured cardiomyocyte HL-1 cells express galectin-3 and its expression
is dramatically increased in the presence of PKC activation (Fig. 1A).
We postulate that cardiomyocytes may also serve as the major source
of galectin-3 in heart, at least in diseased conditions.

Myocardial galectin-3 is upregulated in a number of rodent models
of heart disease, such as HF-prone hypertensive rats [19], interferon
γ-induced murine chronic active myocarditis and cardiomyopathy
[35], rat streptozotocin-induced diabetic cardiomyopathy [36], and
rat angiotensin II-induced hypertension [37]. In the current study, we
found that galectin-3 protein expression is also significantly increased
in PAB-induced HF in both LV and RV (Fig. 5A).

Recent studies indicating that galectin-3 promotes HF development
suggest involvement of multiple mechanisms including stimulatory ef-
fect of galectin-3 onmacrophagemigration, cardiac fibroblast prolifera-
tion, collagen deposition, and the development of fibrosis [19,33,36,37].
Of these, galectin-3 shows a tremendous effect on fibrosis. Indeed,
increased circulating galectin-3 has been correlated with an increase
in fibrogenesis eventually leading to organ failure including chronic kid-
ney disease [38], chronic liver disease [39], and pulmonary fibrosis [40].
We have shown direct evidence that overexpression of galectin-3
by transfection of exogenous galectin-3 enhanced HL-1 cell collagen I
production (Fig. 3A). This is in agreementwith our in vivo data showing
that increased galectin-3 expression was accompanied by increased
collagen I expression in PAB HF (Fig. 5B).

Angiotensin II (Ang II), the principal mediator of the renin-
angiotensin system, exerts both short-term and long-term effects in
the pathophysiology of cardiovascular disease. With HF, Ang II levels
are often increased. Inwild-typemice, Ang II causes LVhypertrophy, de-
creased fractional shortening, and increased LV end-diastolic pressure
and fibrosis [27,28]. Furthermore, Ang II has been shown to activate
the PKC signaling pathway. Activation of AT1 receptor by Ang II
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stimulates phospholipase C (PLC) and subsequently activates PKC [27,
28]. Our results are in agreement in that we found Ang II treatment
increased galectin-3 expression and collagen I synthesis in HL-1 cells
and this effect was prevented by PKC inhibition, suggesting that PKC–
galectin-3 pathway might mediate Ang II-induced heart hypertrophy
and the development of HF.
5. Conclusions

Numerous animal and human studies have demonstrated that
PKC-α activation or an increase in PKC-α expression is associated
with HF and that inhibition of PKC-α is cardioprotective. In this study,
we report the new finding that PKC-α regulates galectin-3, another
crucial mediator of cardiac remodeling, cardiac fibrosis and HF, inde-
pendent of contractility regulation. The distinction of the current
study is the reconciliation of these two important but different kinds
of HF mediators and the discovery that they work synergistically in
the process of HF development. We thus propose that with the onset
of heart disease, augmented PKC-α increases galectin-3 expression
which subsequently promotes cardiac fibrosis and HF. We also found
that the action of Ang II, a well-known stimulator of cardiac hypertro-
phy and remodeling, may be mediated, in part, by the activation of the
PKC–galectin-3 pathway.
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