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To investigate the influence of brain mediated functions on control of ocular growth, young chicks were 
treated monocularly with intravitreally injected tetrodotoxin (TTX) to block retinal ganglion cell 
action potentials. TTX injections (0.7/~g in 7/ll) were given on day 6 after hatching in both binocularly 
open and monocularly deprived chicks. Injections were repeated every 48 hr for a period of 8 days 
(TTX-open; TTX-MD). Control groups of animals received intravitreally injected phosphate buffered 
saline (PBS-open; PBS-MD) to one eye on the same schedule. There was a minimum of eight animals 
in each group. Recovery from form-deprivation myopia during blockade of retinal cell action potentials 
was also investigated. Results demonstrate that blockade of retinal cell action potentials by TTX 
produces reduced growth of the anterior segment of the eye and crystalline lens in both binocularly 
open and MD chicks. Blockade of retinal cell action potentials does not prevent form-deprivation 
induced vitreous chamber elongation and myopia. Form deprived myopic eyes were found to 
emmetropize despite blockade of retinal ganglion cell action potentials giving further evidence for local 
ocular control of emmetropization. Blockade of retinal ganglion cell action potentials did not prevent 
changes in choroidal thickness in eyes developing axial myopia or eyes recovering from induced 
myopia. 

Ocular development Hyperopia Myopia Tetrodotoxin Choroid Retina Emmetropization 

INTRODUCTION 

Despite the fact the eye continues to grow from birth to 
adult age, increasing in size considerably, the ocular 
components are usually so precisely regulated that the 
image of distant objects continue to be focused on the 
photoreceptor layer of the retina. This coordinated 
growth and precise spatial arrangement of the ocular 
components of the eye results in the majority of eyes 
having no appreciable refractive error (i.e. emmetropia). 
This process has been termed emmetropization and 
occurs in humans and animals (e.g. Van Alphen, 1961; 
Wallman, Adams & Trachtman, 1981). There is con- 
siderable evidence that this regulated growth of the eye 
is guided by the clarity of the retinal image. Deprivation 
of pattern vision in the developing eye of humans and 
animals results in a breakdown of the coordinated 
growth, with the eye undergoing axial elongation and 
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developing myopia (e.g. Hoyt, Stone, Fromer & Bilson, 
1981; Wiesel & Raviola, 1977; Wallman & Adams, 
1987). In chicks it has recently been shown that altering 
the focal plane of the eye, using either positive or 
negative lenses, results in the eye adjusting its growth of 
the vitreous chamber in the appropriate direction to 
reduce defocus (Schaeffel, Glasser & Howland, 1988; 
Irving, Callender & Sivak, 1991). 

Although the presence or absence of a clear image on 
the retina has been shown to be important in guiding the 
growth and refractive development of the eye, the mech- 
anisms by which this is achieved are uncertain. Until 
recently it was assumed that visual information pro- 
ceeded from the eye via central visual pathways to bring 
about changes in cortical or subcortical controlled func- 
tions, such as accommodation (e.g. McKanna & 
Casagrande, 1981; Schaeffel et al., 1988). However, 
recent studies on animal models of form-deprivation 
myopia have reported findings which suggest that visual 
signals may proceed directly from the retina to the 
choroid and/or sclera without the need for central 
communication (Hodos & Kuenzel, 1984; Wallman, 
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Gottlieb, Rajaram & Fugate Wentzek, 1987; Troilo, 
Gottlieb & Wallman, 1987; Wildsoet & Pettigrew, 1988; 
Schaeffel, Troilo, Wallman & Howland, 1990; Norton, 
Essinger & McBrien, 1994). These studies indicate that 
structures within the eye itself (i.e. the retina) can detect 
the degraded visual image without the need for central 
communication, and adjust its development. 

What is not particularly clear from these studies is the 
role of central visual pathways on normal ocular growth 
and emmetropization. Troilo et al. (1987) found that in 
open eyes, sectioning of the optic nerve in chick resulted 
in reduced vitreous chamber development (measured by 
in rico A-scan ultrasonography) and consequently high 
degrees of hypermetropia, which did not significantly 
remit with time. Wildsoet and Pettigrew (1988) also 
found an increase in hypermetropia in open eyes with 
optic nerve section, although they did not observe an 
obvious structural correlate using in vitro measures. It is 
uncertain whether the reduced vitreous chamber 
development noted by Troilo et al. (1987) was as a result 
of disrupting the brain's influence on eye growth and 
refractive development or due to the ganglion cell death 
that follows optic nerve section (Muchnick & Hibbard, 
1980). In tree shrew eyes treated with tetrodotoxin 
(TTX), a voltage dependent sodium channel blocker, to 
prevent retinal ganglion cell action potentials, it was not 
possible to assess the effects of blocking central 
communication on normal ocular growth as the 
procedure of intravitreal injection itself produced a 
shorter vitreous chamber. By blocking afferent 
communication between the eye and higher visual 
processing pathways in chick, and efferent effects within 
the eye, with intravitreally injected TTX, the primary 
aim of the present study was to assess the role of 
centrally mediated mechanisms on normal ocular growth 
and emmetropization. This approach avoids the major 
surgical intervention of optic nerve section, thus avoid- 
ing possible complications of retinal ganglion cell death. 
It has been demonstrated in chicks that the technique of 
intravitreal injection itself, on an alternate day schedule, 
does not cause vitreous chamber reduction (McBrien, 
Moghaddam & Reeder, 1993). By observing the effects 
of retinal impulse blockade in both binocularly open and 
monocularly deprived chick eyes and also recovery from 
any induced changes, it is hoped to further understand 
the role of local and central mechanisms involved in the 
control of ocular growth and refractive development. 

MATERIALS AND METHODS 

Experimental subjects 

Day-old chicks (Rhode-Island cross) were obtained 
from a local source. The chicks were maintained in a 
temperature controlled environment on 12 hr light/12 hr 
dark cycle. Illumination at food level was 250 Ix. Food 
and water were supplied ad libitum. Animals were 
assigned to one of six groups on the basis of whether 
they were monocularly occluded (MD) and whether they 
received intravitreal injections of either TTX or phos- 

phate buffered saline (PBS). Each group contained a 
minimum of eight subjects. 

Experimental protocol 

On day 6 after hatching, chicks were given an intra- 
vitreal injection of 7 ~l of either TTX (0.1 #g/# l) or PBS 
in the left eye. The procedure employed for intravitreal 
injections in chicks has been described previously 
(McBrien et al., 1993). All intravitreal injections were 
carried out under halothane (2-3.5%) anaesthesia, while 
the animal was maintained on a temperature controlled 
heating pad, the procedure taking approx, l0 min per 
animal. To assess the effect of blocking retinal action 
potentials on normal ocular growth two groups of 
animals received intravitreal injections of TTX or PBS 
but no occlusion of vision (TTX-open and PBS-open). 
To assess the effect of blocking retinal action potentials 
on induced myopia in the chick, two groups of animals 
(TTX-MD and PBS-MD) underwent MD in combi- 
nation with intravitreal injection. Monocular depri- 
vation of form vision was achieved by fixing a 
translucent occluder over the injected eye. The injection 
procedure was repeated every 48 hr over an 8-day 
period, resulting in four intravitreal injections per ani- 
mal. The occluders were replaced immediately after 
every injection for MD animals. 

To control for the effects of intravitreal injections in 
both open and deprived eyes a further two groups of 
chicks were included in the study. One group of chicks 
(sham-injected MD) underwent halothane anaesthesia, 
opening of the palpebral aperture and mechanical press- 
ure from, but without insertion of, the needle on the 
sclera on exactly the same experimental procedure as 
MD chicks who underwent intravitreal injections. 
Another group of chicks were housed in identical 
conditions as experimental chicks, but underwent no 
experimental manipulations except a complete set of 
optical and structural measures at the same time as 
treated animals. 

Duration of  T T X  effect 

During the treatment period, an indication of the 
efficacy of the TTX effect was monitored by testing the 
chick's pupillary response to light and visual behaviours. 
Prior to each injection a comparison of both the resting 
pupil diameter and the direct pupil response to light in 
the treated and contralateral control eyes was made. 
This has been reported to give a reliable indication of the 
efficacy of effect (Wong-Riley, Tripathi, Trusk & Hoppe, 
1989). In addition to pupil measures, startle and orien- 
tation tests (Troilo et al., 1987) in the treated eye of 
TTX-open chicks were conducted prior to each injection. 
When the contralateral eye was covered no response 
could be elicited from the chick indicating functional 
blindness in the TTX treated eye. 

To further evaluate the duration of effect of the TTX 
dose used a control study was conducted. Age matched 
chicks were given a single intravitreal injection of either 
TTX (n = 5) or PBS (n = 3) employing the same dose as 
above. Horizontal and vertical pupil diameters were 
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measured using an operating microscope with a measur- 
ing graticule eyepiece at 10 x magnification with lumi- 
nances of 250 and then 12501x for both injected and 
contralateral control eyes. Readings were taken before 
the injection, 20 min after the injection and then at 
intervals from 44 hr after injection until 76 hr. For these 
pupil measures the chick was gently restrained without 
anaesthesia. Results indicate that the duration of effect 
of the TTX, as measured by pupillary responses, is 
between 52 and 56 hr with full recovery between 68 and 
72 hr (Fig. 1). 

Optical and structural measures were taken on all 
chicks 8 days after the initial injection. Animals were 
anaesthetized with ketamine (50mg/kg) and xylazine 
(3.5 mg/kg), supplementary doses of anaesthetic were 
given as required. All refractive and structural measures 
were taken under cycloplegic conditions. Due to the 
predominantly striated nature of chick intraocular 
muscles, the neuromuscular blocking agent vecuronium 
bromide (2 mg/ml) was applied topically to the cornea 
(5 × 25/~1 drops) to produce cycloplegia. The cornea was 
pre-treated with topical proxymetacaine HC1 (0.5%) to 
enhance penetration of the drug. Measurements of 
corneal curvature (keratometry), ocular refraction 
(retinoscopy) and intraocular dimensions (A-scan ultra- 
sonography) were taken. Measurement procedures were 
identical to those described previously (McBrien et al., 
1993). 

On completion of all in vivo optical and structural 
measures the animal was given an overdose of sodium 
pentobarbitol (45mg/kg) and the eyes enucleated. 
Digital caliper measurements of the medial/lateral and 
dorsal/ventral equatorial diameters and axial length 
were taken to the nearest 0.01 mm. The eye was weighed 

to the nearest 10/~g. The eyes of some TTX and PBS 
treated animals then had an incision made through the 
sclera in the equatorial region and were placed in fixative 
(phosphate buffered 2.5% glutaraldehyde) for 24hr 
before a 1.5mm trephine was punched out at the 
posterior pole and at the nasal and temporal equatorial 
regions. This tissue was dehydrated and embedded in 
epoxy resin using standard procedures for histologic 
evaluation. Semi-thin sections were cut and examined at 
the light microscope level to assess the physical integrity 
of the retina. 

Recovery from induced myopia 

To determine whether the eye was able to 
emmetropize when communication between the eye and 
higher visual processing pathways was blocked, chicks 
(n = 8) were made myopic by monocular deprivation 
from day 5 after hatching for a period of 5 days. At this 
time the occluder was removed and a full set of optical 
and in vivo ocular component measures were taken on 
both eyes (without cycloplegia). On completion of the 
measures the previously form-deprived eye was treated 
with intravitreal TTX (0.7/~g in 7/~1) and then allowed 
to recover from the anaesthesia (ketamine/xylazine) and 
returned to the brooder without an occluder. The TTX 
injections were repeated on an alternate day schedule for 
8 days as described previously, after which time a further 
set of optical and structural measures were taken to 
determine if the previously form-deprived myopic eye 
could emmetropize despite blockade of retinal ganglion 
cell action potentials. 

To determine whether any changes in ocular com- 
ponent dimensions observed in TTX treated chick eyes 
show recovery after cessation of treatment a further two 
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FIGURE 1. The reduction in average pupil diameter [(vertical + horizontal)/2] in the chick eye in response to an increase in light 
of 1000 Ix (250 to 1250 Ix). Measurements were recorded under a small operating microscope with a graticule eyepiece under I0 x 
magnification. Measures were taken immediately prior to an intravitreal injection of TTX (n = 5) or phosphate buffered saline 
(n = 3) and then at the intervals indicated. Measurements were taken on the treated and contralateral control eye in each animal. 

Error bars = __+ 1 SEM. 
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groups of chicks were treated with TTX on exactly the 
same schedule as the main part of the study (start day 
6, four injections over an 8 day period). One group 
(TTX-open-recovery, n = 8) with the treated eye left 
open and another group (TTX-MD recovery, n = 8) 
with the injected eye deprived. Optical and structural 
measures were taken at the end of the injection period 
and the animals were allowed to recover from anaesthe- 
sia and returned to the brooder. In the previously MD 
animals, the occluder was not replaced. After a further 
14 days the animals underwent another full set of optical 
and structural measures to examine recovery from any 
TTX induced changes in ocular component dimensions. 

Changes in choroidal thickness 

Due to recent reports that have implicated choroidal 
thickness changes in both the development of induced 
myopia and particularly in the recovery from induced 
myopia (Wal. lman, Xu, Wildsoet, Krebs, Gottlieb, 
Marran & Nickla, 1992) it was of interest to determine 
if blockade of retinal ganglion cell action potentials 
prevented this choroidal mechanism. The eyes from 
chicks that were recovering from induced myopia while 
undergoing intravitreal TTX injections and also chicks 
who were monocularly deprived and receiving intra- 
vitreal TTX were frozen in liquid nitrogen immediately 
after enucleation. The eyes were sectioned on a cryostat 
until the maximum lens thickness was reached and then 
photographed and the choroidal thickness of TTX 
treated and contralateral control eyes were compared. 

Data analysis 

Data on structural component measures were entered 
into a spreadsheet and transferred to a statistical pack- 
age (Minitab). Analysis of variance was used to examine 
overall effects and multiple comparison tests were used 
to assess individual group differences. Dependent or 
independent t statistics were used to examine specific 
differences within groups. 

RESULTS 

Eyes treated with TTX had significantly reduced 
anterior segment and lens development. This induced 
significant hyperopia in TTX treated open eyes and 
reduced the observed myopia in TTX treated MD eyes. 
Monocular deprivation of pattern vision in all exper- 
imental groups was associated with significant 
elongation of the vitreous chamber in the deprived eye 
(both axially and equatorially) when compared to the 
contralateral control eye. These results indicate that 
TTX blockade of retinal cell action potentials altered 
normal ocular growth but did not prevent form- 
deprivation induced elongation of the eye in chick. 

Effect of retinal impulse blockade on normal eye growth 

Although important structural and refractive changes 
occurred in MD chicks, it is the changes in ocular 
development in binocularly open animals which is of 
primary concern in this study. 

Open eyes treated with TTX had significantly flatter 
corneal curves than their contralateral control eye 
(P < 0.01), whereas neither PBS treated or normal bin- 
ocular chicks had significant interocular differences in 
corneal curvature (Table 1). TTX injected open eyes 
developed a significantly shallower anterior segment 
depth compared to the contralateral control eye 
(P<0.001). No significant differences in anterior 
segment depth between eyes was found for PBS-open 
or untreated binocular chicks [Fig. 2(A)]. Significant 
interocular differences in lens thickness were also ob- 
served between binocularly open groups ( F =  13.9, 
P <0.001). This difference was due to TTX injected 
open eyes having thinner lenses than their contralateral 
control eyes (P <0.001), a finding not observed in 
PBS-open (P = 0.25) or normal (P = 0.69) chicks [see 
Fig. 2(B)]. In contrast to the reduction in ocular com- 
ponent dimensions in the anterior eye, TTX treated 
open eyes had significantly longer vitreous chamber 
depths than their contralateral control eye 
(5.66__0.14mm vs 5.45__0.15mm, P<0.01).  No 
differences were observed in interocular vitreous 
chamber depth in PBS-open or normal binocular 
chicks [Fig. 2(C)]. The effect of reductions in anterior 
segment depth and lens thickness outweighed the in- 
crease in vitreous chamber depth in TTX injected open 
eyes, producing an eye with a smaller axial length 
compared to its contralateral control eye 
[-0.17 +0.03mm, P <0.001; see Fig. 2(D)]. 

TTX-injected open eyes were significantly more hyper- 
opic than their contralateral control eyes (+ 6.6 + 1.1 D 
vs + 3.2 + 0.4 D). PBS-open (0.1 ___ 0.4 D) and untreated 
chicks (-0.1 +0.2D) had no significant interocular 
difference in ocular refraction [see Fig. 2(E)]. 

TTX-injected open eyes also had increased equatorial 
diameters when compared to the uninjected contralateral 
eyes [P < 0.002; see Fig. 2(F), Table 1]. A significant 
increase in whole eye weight of TTX-injected open eyes 
was also observed when compared with non-injected 
contralateral eyes (P < 0.01). 

Ocular dimensions and refraction & MD chicks 

All three MD groups (TTX-MD, PBS-MD and sham- 
injected MD) showed a similar relative elongation of the 
vitreous chamber in the deprived eye of 0.96 ___ 0.07, 
0.89 ___ 0.05 and 0.86 + 0.10 mm respectively when com- 
pared to the contralateral control eye [F = 0.37, P = 0.7; 
see Fig. 2(C)]. 

In contrast to the similar changes found in the 
posterior segment due to monocular deprivation, 
significant differences were noted in the anterior segment 
dimensions of deprived eyes of TTX-MD chicks when 
compared to control MD groups. The TTX treated 
deprived eye of TTX-MD chicks had significantly flatter 
corneal curves (P < 0.02), shallower anterior segments 
(P < 0.001), thinner crystalline lenses (P < 0.001) and 
consequently developed significantly less myopia 
(P < 0.01) than deprived eyes of PBS-MD and sham- 
injected-MD chicks (see Table 1 and Fig. 2). 
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TABLE 1. Ocular refraction and axial dimensions of all treated (LE) and control eyes in binocularly open and monocularly 
deprived chicks 

Sham-injected 
TTX-open PBS-open Normal TTX-MD PBS-MD MD 

(n = 10) (n = 12) (n = I1) (n = 9) (n = 10) (n = 8) 

RE LE RE LE RE LE Open Dep Open Dep Open Dep 

Retinoscopy Mean 
(D) SEM 

T - C  
SEM 

Corneal Mean 
radius SEM 
(mm) T - C 

SEM 

Anterior Mean 
segment SEM 
(mm) T - C 

SEM 

Lens Mean 
thickness SEM 
(mm) T - C 

SEM 

Vitreous Mean 
chamber SEM 
(mm) T - C 

SEM 

Axial Mean 
length SEM 
(mm) T - C 

SEM 

Equatorial Mean 
dimensions SEM 
(mm) T - C 

SEM 

Eye Mean 
weight SEM 
(g) T - C 

SEM 

3.2 6.6 3.0 3.1 3.0 2.9 4.4 -3.2 3.5 - 17.0 3.2 - 15.4 
0.4 1.1 0.2 0.4 0.1 0.3 0.5 1.2 0.7 1.2 0.6 2.6 

3.4t 0.1 -0.1 -7 .6t  20.5t - 18.5t 
+ 1.1 -I-0.4 __+0.2 + 1.1 ± 1.1 __+2.9 

3.17 3.28 3.17 3.17 3.22 3.22 3.17 3.23 3.23 3.22 3.18 3.15 
0.04 0.04 0.02 0.03 0.02 0.03 0.04 0.04 0.03 0.03 0.02 0.04 

0.11t 0.00 0.00 0.06* -0.01 --0.03 
__+0.03 +0.02 0 .01  +0.02 +0.01 +0.04 

1.46 1.15 1.53 1.49 1.52 1.50 1.59 1.36 1.54 1.61 1.57 1.70 
0.04 0.04 0.00 0.02 0.01 0.01 0.03 0.03 0.02 0.04 0.04 0.08 

-- 0.31 t -- 0.04 -- 0.02 -- 0.23t 0.07 0.13t 
+0.03 +0.01 + 0.01 +0,02 +0.04 +0.06 

2.30 2.23 2.20 2.22 2.19 2.19 2.38 2.26 2.25 2.25 2.33 2.34 
0.07 0.06 0.03 0.04 0.02 0.02 0.07 0.06 0.06 0.06 0.07 0.08 

-0.07"{" 0.02 --0.01 -0.1 If 0.01 0.01 
4-0.01 4-0.01 __+0.01 +0.01 +0.02 +0.02 

5.45 5.66 5.24 5.22 5.30 5.29 5.48 6.44 5.45 6.34 5.50 6.39 
0.15 0.14 0.08 0.09 0.04 0.04 0.11 0.16 0.11 0.15 0.14 0.17 

0.21t - 0.02 - 0.01 0.96t 0.89t 0.86t 
_+0.05 _+0.02 4-0.02 _+0.07 4-0.05 +:0.10 

9.20 9.04 8.97 8.93 9.01 8.98 9.45 10.05 9.24 10.21 9.40 10.40 
0.24 0.23 0.12 0.12 0.05 0.05 0.19 0.24 0.17 0.19 0.23 0.27 

O. 17-i" - 0.04 - 0.03 0.61 ? 0.97t 1.00t 
+0.03 +0.02 _+0.02 4-0.07 +0.07 4-0.14 

11.96 12.27 12.06 12.09 12.33 12.27 12.03 12.72 12.25 12.81 12.11 12.56 
0.I0 0.10 0.08 0.08 0.07 0.08 0.15 0.21 0.10 0.14 0.09 0.15 

0.31 + 0.03 - 0.06 0.707 0.567 0.45t 
4-0.05 4-0.06 +0.02 +0.10 ___0.06 +0.08 

0.61 0.66 0.63 0.63 0.67 0.67 0.62 0.74 0.65 0.80 0.64 0.76 
0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.01 0.03 

0.05t 0.00 0.00 0.12t 0.15~" 0.12~" 
_+ 0.01 4- 0.02 + 0.01 4- 0.03 4- 0.03 _+ 0.02 

T - C, treated - control. *P < 0.05; tP < 0.01. 

Changes in crystalline lens curvature 

A schematic  eye p r o g r a m m e  (O 'Keefe  & Coile,  1988) 

was used to evaluate  the extent  to which changes in 

ocular  c o m p o n e n t  d imensions  in T T X  treated eyes 

accounted  for the refract ive errors observed.  Some 

discrepancy between observed and predicted refractive 

errors  was found.  In T T X - M D  eyes the changes in 

corneal  curvature ,  anter ior  segment  depth  and lens 

thickness reduced the myopic  effect o f  vi t reous chamber  

e longa t ion  and predicted a relat ive myopic  refract ive 

er ror  in T T X - M D  chicks o f  - 1 2 . 0 D ,  instead o f  the 

observed error  o f  - 7 . 6  + 1.2 D. In T T X  treated open 

eyes there was found to be less hyperopia  predicted than 

was observed,  a l though  the discrepancy was less. Thus,  

in deprived and open T T X  treated eyes the schematic  

model l ing  predicted more  myop ia  or  less hyperopia  

respectively than was actual ly measured.  To  address the 

possibili ty that  these differences may  be accounted  for by 

changes in crystall ine lens curva ture  that  may  have 

accompan ied  changes in lens thickness (especially in light 

o f  the observed equator ia l  en largement  in T T X  treated 

open eyes), & vitro measures  o f  lens curva ture  were taken 

on three T T X  treated chicks using a previously described 

technique (McBrien  & N or ton ,  1992). Findings  revealed 

that  the T T X  treated eyes not  only had thinner  lenses 

(0.14 + 0.02 mm,  n = 3) but  also lenses with flatter an- 

terior  (3.96 _+ 0.3 m m  vs 3.50 _+ 0.2 ram, n = 3) and pos- 

ter ior  curvatures  (2.5 + 0.3 m m  vs 2.1 + 0.1 mm,  n = 3) 

when compared  to the contra la tera l  cont ro l  eye lenses. 

When  the measured  values for crystall ine lens curva ture  

for the contra la tera l  cont ro l  eyes and T T X  treated eyes 

were input  into the schematic  model ,  on average a fur ther  

5.5 D o f  hyperopia  was predicted.  Thus  when changes in 

crystall ine lens curva ture  are also incorpora ted  into the 

model  the observed refractive changes closely match  

predicted values. 

Time-course of structural changes in TTX treated animals 

A group  o f  age ma tched  chicks (n = 6) were given 

intravi t real  injections o f  T T X  on the same al ternate  day 

schedule as the main  study, but  had ocular  d imensions  

measured  using A-scan u l t r a sonography  pr ior  to each 

inject ion in order  to de termine  the sequence o f  s tructural  
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changes occurring in TTX treated open eyes. It was 
found that just prior to the second TTX injection (i.e. 
48 hr after first injection) the reduction in lens thickness 
was already 71% ( -  0.05 mm) of that observed after the 
full treatment period of four injections (-0.07 mm), 

whereas the vitreous chamber elongation was 56% 
(+0.13 mm vs +0.24 mm) of that observed at the end 
of the treatment period. The reduction in anterior seg- 
ment depth was only 10% of the final reduction 
(-0.03 mm vs -0.3 mm, n = 6). The findings indicate 
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FIGURE 2. Differences in ocular dimensions (A-scan ultrasonography) and ocular refraction (cycloplegic retinoscopy) between 
treated and contralateral control eyes. (A) Differences in anterior segment depth (anterior chamber depth + corneal thickness). 
Eyes treated with TTX have significantly shallower anterior segment depths (P < 0.01). (B) Differences in crystalline lens 
thickness. Eyes treated with TTX had thinner lenses than their contralateral control eye (P < 0.01). (C) Differences in vitreous 
chamber depth. Eyes undergoing form-deprivation showed significant vitreous chamber elongation. Open eyes treated with TTX 
also underwent significant elongation of the vitreous chamber (P < 0.01). (D) Differences in axial length. (E) Differences in ocular 
refraction. Open eyes treated with TTX were relatively hyperopic and deprived eyes treated with TTX developed significantly less 
myopia than MD control chicks (P < 0.001). (F) Differences in equatorial diameter. Open eyes treated with TTX had significantly 

enlarged equatorial diameters than their contralateral control eyes (P < 0.001). Error bars = 1 SEM. 
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FIGURE 3. The effect of retinal impulse blockade on recovery from induced myopia and axial elongation in chicks. Chicks (n = 8) 
were deprived of form vision for 5 days and then the occluder was removed and ocular and refractive measures taken. Chicks were 
then intravitreally injected with TTX on an alternate day schedule over the 8-day recovery period. (A) Differences in ocular 
refraction (retinoscopy) immediately after removal of the occluder (MD---solid bars) and after a further 8 days during which time 
retinal impulses were blocked (recovery--hatched bars). There is almost complete recovery from induced myopia despite blockade 
of central communication. (B) Differences in ocular component dimensions (A-scan ultrasonography). Previously deprived eyes 
recovered from deeper anterior segments and developed shallower anterior segments and thinner lenses due to TTX treatment. 
There is a significant reduction in vitreous chamber differences (P < 0.01), but complete recovery does not occur presumably in 

order to offset the hyperopia induced by anterior segment changes and thus maintain emmetropia. Error bars = 1 SEM. 

that lenticular changes precede the reduction in anterior 
segment depth, but it is not proven that the lenticular 
changes precede (and thus possibly initiate) the 
elongation of the vitreous chamber depth. Ultrasonogra- 
phy measures taken at 12hr after the first injection 
demonstrated no consistent changes in ocular dimen- 
sions, arguing against the possibility that lenticular 
changes were due to the alteration of tonic accommo- 
dation produced by intraocular TTX, as this would 
occur within 1 or 2 hr after the injection. 

Recovery from ocular component changes 
Animals made myopic by MD were found to show 

recovery from vitreous chamber elongation (difference 
between treated eye and contralateral eye: 
+0 .66_0 .07mm vs +0.17+0.06mm, n = 8 )  and 
induced myopia ( - 1 9 . 1 ± 2 . 2 D  vs - 1 . 7 ± 1 . 7 D )  
even though retinal cell action potentials were blocked 
(Fig. 3). It should be noted that although emmetropiza- 
tion was nearly complete there was still a significant 
relative elongation of the vitreous chamber 
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(+ 0.17 ___ 0.06 mm) in the previously myopic eye which 
offset the hyperopia induced by the shallower anterior 
segment depth and thinner and flatter lens (see Table 2 
and Fig. 3). 

It was also found that chick eyes treated with TTX for 
8 days were able to recover from the induced hyperopia 
(TTX-open) and myopia (TTX-MD) indicating that no 
functional damage resulted from TTX treatment. In 
TTX-open animals the recovery from hyperopia was 
achieved predominantly by a relative deepening of the 
anterior segment depth and thickening of the lens in the 
previously treated eye (Table 2). In TTX-MD animals 
recovery was achieved by a slowing of vitreous chamber 
growth in the previously myopic eye, accompanied by a 
relative deepening of the anterior segment depth, 
thickening of the lens and choroidal thickening (Table 2). 

Retinal histology 

Further evidence indicating that at the dose used TTX 
did not cause any toxic damage to the retina is given by 

histological evaluation of retina (posterior pole) at the 
light microscope level. Findings revealed no observable 
toxic effects to the retina of TTX treated eyes when 
compared to control eyes at the dose used (Fig. 4). 

Choroidal thickness changes 

It was found that the choroid of eyes recovering from 
induced myopia were thicker (both posteriorly and 
equatorially) than the choroid in the contralateral con- 
trol eye, irrespective of whether the eye had received TTX 
during the recovery period or not (see Fig. 5). Although 
the myopia induced from 5 days MD was similar in both 
standard recovery animals ( -25  D, n = 2) and TTX 
treated recovery animals ( - 2 0  D, n = 8), it should be 
noted that the relative thickening of the choroid was less 
in recovering eyes treated with TTX (154 # m posteriorly; 
206 p m equatorially) than eyes not treated with TTX 
(375/~m posteriorly; 357/~m equatorially). This could be 
due to either inter-animal variability or the fact that the 
TTX induced anterior segment changes, which reduced 

TABLE 2. Ocular refraction and axial dimension of  all deprived and open control eyes of  monocularly deprived chicks 
and right and left eyes o f  binocularly open chicks (in all cases it was the left eye that received the intravitreal injection and/or 

deprivation) 

M D  + recovery (TTX) T T X - M D  + recovery TTX-open + recovery 
(n=8) (n =8) (n=8) 

Treatment  Recovery Treatment  Recovery Treatment  Recovery 
period period period period period period 

RE LE RE LE RE LE RE LE RE LE RE LE 

Retinoscopy Mean 2.5 - 16.6 1.8 0.1 2.2 - 7 . 4  2.0 1.4 2.0 6.2 2,4 1.7 
(D) SEM 0.2 2.1 0.2 1.7 0.3 1.7 0.1 0.4 0.1 1.4 0.4 0.3 

T - C - 19.1t - 1.7 - 9 . 6 t  - 0 . 6  4.2* - 0 . 7  
SEM _+2.2 + 1.7 __+ 1.6 +0.4  + 1.4 +0.3 

Corneal Mean 3.04 3.01 3.30 3.26 3.05 3.08 3.66 3.70 3.07 3.11 3.65 3.68 
radius SEM 0.04 0.04 0.05 0.06 0.02 0.02 0.06 0.06 0.04 0.03 0.05 0.04 
(mm) T - C - 0 . 0 3 *  -0.04I" 0.03 0.04t 0.03 0.03I" 

SEM _0.01 __+0.01 +0.03 +0.01 +0.04 +0.01 

Anterior  Mean 1.36 1.49 1.52 1.41 1.41 1.25 1.70 1.68 1.39 1.18 1.68 1.63 
segment SEM 0.01 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.01 0.02 0.02 0.03 
(mm) T - C 0.131" - 0 . 1  I t  - 0 . 1 6 t  - 0 . 0 2  - 0 . 2 1 t  - 0 . 0 5  

SEM +0.02 +0.03 _+0.03 +0.01 __+0.02 +0.02 

Lens Mean 2.14 2.14 2.40 2.30 2.26 2.14 2.61 2.57 2.24 2.12 2.61 2.58 
thickness SEM 0.01 0.02 0.06 0.06 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 
(mm) T - C 0.00 -0.101" -0.12I" - 0 . 04*  - 0 . 1 2 I  - 0 . 0 3  

SEM _0.01 +0.04 +0.02 +0.02 +0.02 +0.02 

Vi t r eous  Mean 4.99 5.65 5.36 5.53 5.01 5.72 5.84 6.07 4.99 5.31 5.75 6.01 
chamber  SEM 0.07 0.10 0.09 0.12 0.07 0.11 0.14 0.14 0.07 0.12 0.12 0.07 
( r am)  T - C  0.66t 0.17" 0.71I" 0.23t 0.32t 0.26t 

SEM + 0.07 + 0.06 + 0.08 + 0.06 + 0.07 + 0.07 

Axial Mean 8.48 9.28 9.28 9.24 8.68 9.10 10.20 10.32 8.63 8.62 10.05 10.23 
length SEM 0.08 0.12 0.10 0.12 0.09 0.13 0.17 0.15 0.09 0.14 0.13 0.14 
(mm) T - C 0.80t - 0 . 0 4  0.42t 0.12" -0 .01  0.18" 

SEM _+ 0.08 ___ 0.07 + 0.08 + 0.04 + 0.07 + 0.05 

Equatorial  Mean 13.85 13.89 13.77 13.88 
dimensions  SEM 0.17 0.15 0.18 0.17 
(mm) T -  C 0.04 0.11t 

SEM + 0.06 + 0.02 

Eye Mean 0.94 0.98 0.93 0.98 
weight SEM 0.03 0.03 0.11 0.23 
(g) T - C 0.04 0.05 

SEM ___ 0.08 + 0.09 

T - C, treated - control. *P < 0.05; t P  < 0.01. 
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FIGURE 4. Histological appearance of the retina at the posterior pole from (A) a control untreated eye and (B) a TTX treated MD 
chick eye. No signs could be observed, at the light microscope level, of toxic damage to the retina of the TTX treated eye when 
compared to the untreateo ~ control eye. The thinner retina in the TTX-MD eye is due to the axial elongation and myopia in this 

eye. Stained with toluidine blue 1%. Scale bar = 50/~m. 

the amount of myopia, may have also reduced the 
amount of choroidal thickening required. It was also 
found that a form-deprived eye treated with TTX during 
deprivation had a thinner choroid both posteriorly 
( - 9 2 # m )  and equatorially [-61 #m; see Fig. 5(C)]. 

DISCUSSION 

The primary objectives of this study were to determine 
if blockade of action potentials from the retina interfered 
with either normal ocular growth and/or form depri- 
vation induced vitreous chamber elongation in chick. 
The findings indicate that ocular development of the 
anterior segment of the eye is altered in all TTX treated 
chicks but form-deprivation induced vitreous chamber 
elongation still occurs despite blockade of retinal cell 
action potentials to higher visual processing pathways. 

Effects o f  T T X  on normal ocular growth 

There were significant changes in anterior ocular 
dimensions in all TTX treated eyes. These changes 
resulted in TTX treated open eyes developing significant 
degrees of hyperopia when compared to their contralat- 
eral untreated eye. Although it has previously been 
reported that open chick eyes that undergo optic nerve 
section also develop significant degrees of hyperopia 

(Troilo et al., 1987), the structural cause of the hyperopia 
in such cases was due to reduced vitreous chamber depth. 
The fact that blockade of ganglion cell output to central 
visual pathways by TTX does not cause reduced vitreous 
chamber depth, but optic nerve section does, supports 
the suggestion that this reduction in vitreous chamber 
depth is related to the ganglion cell degeneration associ- 
ated with optic nerve section and not due to a lack of the 
brain's influence on ocular growth (Troilo, 1989, 1990). 
The finding that chick eyes treated with TTX showed 
recovery from refractive and structural changes indicates 
that prior treatment with TTX did not interfere with the 
normal recovery process. Of greater importance was the 
finding that the eye was able to emmetropize and recover 
from the induced myopia while communication with 
higher visual pathways was blocked by TTX. This 
supports previous reports (Schaeffel et al., 1990; Troilo 
& Wallman, 1991) indicating that emmetropization can 
occur under local ocular control. 

The consistent finding of reduced development of the 
anterior segment in TTX treated eyes is of considerable 
interest. As TTX blocks accommodation it could be 
argued that sustained blockade of accommodation re- 
sults in reduced anterior segment and lens development. 
However, ablation of the Edinger-Westphal nucleus in 
chick eyes does not result in reduction of anterior 
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segment or lens dimensions (Schaeffel et al., 1990). 
Similarly it is difficult to reconcile the possibility that 
some other brain mediated function could be responsible 
for the observed anterior eye changes as again no such 
changes are reported in ONS treated chick eyes. Another  
possible mechanism could be that TTX blockade of  
retinal impulses alters the release or production of  retinal 
derived growth factors involved in development of  the 
anterior part  of  the eye. It  has been known for some time 
that the retina contains factors (e.g. FGF,  I G F  and 
E D G F )  which can promote  or inhibit the growth and 
development of  corneal and lens cells (e.g. Chamberlain 
& McAvoy,  1987; Richardson, Chamberlain & McAvoy, 
1993). It  is feasible that while TTX blockade of retinal 
impulses does not block the retinal signals involved in 
form-deprivation induced vitreous chamber elongation 
it may alter release of  other retinal factors which are 
involved in the development of  the anterior segment of  
the eye. 

The structural changes in the anterior segment of  the 
eye due to TTX treatment in chick differ from that found 
in tree shrew (Norton et al., 1994). In TTX treated open 
tree shrew eyes there was only a small reduction in 
anterior segment depth ( - 0 . 0 3 + 0 . 0 1  mm) and no 
change in corneal radius. However,  as the procedure of  
intravitreal injection in tree shrew eyes produced a 
significantly shallower vitreous chamber depth 
( - 0 . 0 7  ___ 0.01 mm), the anterior segment changes may 
have been modified in an at tempt to offset the potential 
hyperopia of  the shallower vitreous chamber. 

Effects o f  T T X  on MD-induced  ocular changes 

Despite the blockade of  action potentials from the eye 
to central visual pathways by injection of  TTX, chick 
eyes deprived of form vision still underwent vitreous 
chamber elongation of  a similar magnitude as PBS 
treated M D  chicks. Thus the retinal signals that detect 
form-deprived images and induce vitreous chamber 
elongation are not appreciably altered by blockade of  
retinal cell action potentials which suggests that these 
signals proceed directly from the retina to the choroid 
and/or  sclera by some, as yet, undetermined route. These 
results are in general agreement with previous studies 
that have investigated the role of  communication be- 
tween the eye and central visual pathways on the devel- 

opment  of  form-deprivation myopia  (e.g. Troilo et al., 
1987; Raviola & Wiesel, 1985; Wildsoet & Pettigrew, 
1988; Norton,  et al., 1994), and give further support  to 
a role for local control of  ocular growth and direct 
retino-scleral communication. 

Local control o f  emmetropization? 

An important  finding in TTX treated open eyes was 
that not only was there a reduction in anterior segment 
depth, lens thickness and curvature, there was also a 
small but significant elongation (0.21 + 0.05 mm) of the 
vitreous chamber when compared to the contralateral 
control eye. A possible explanation is that this vitreous 
chamber elongation occurred in an at tempt by the eye to 
maintain emmetropia by offsetting the hyperopia in- 
duced by the reductions in anterior segment depth, lens 
thickness and curvature and corneal power. Further 
evidence is given by the finding that eyes made axially 
myopic by form deprivation are able to emmetropize 
despite blockade of  ganglion cell action potentials. This 
recovery process in TTX treated eyes was found to be, 
in part  at least, produced by choroidal thickening which 
resulted in pushing the retina forward. This emmetropiz- 
ing mechanism has previously been observed in both 
chicks with functional central communication and in 
chicks with optic nerve section (Wallman et al., 1992; 
Wildsoet & Wallman, 1992). It  was also found that in 
chick eyes recovering from induced myopia while retinal 
impulses were blocked with TTX, that although at the 
end of the recovery period the previously myopic eyes 
had significantly shallower anterior segment depths and 
thinner lenses, the eyes emmetropized by maintaining a 
slightly longer vitreous chamber depth (Fig. 3). These 
findings give strong support for local ocular control of  
an active emmetropization mechanism. 

In summary the findings show that blockade of retinal 
cell action potentials does interfere with normal ocular 
growth, in particular the anterior segment of  the eye. 
The possibility that this is due to blocking the brain's 
influence on ocular growth is not supported by previous 
findings utilizing optic nerve section, in which no 
changes in anterior segment were noted. Evidence is 
presented for local ocular control of  emmetropization, 
based on recovery from induced refractive errors in the 
absence of central communication, choroidal thickness 

FIGURE 5 (opposite). Frozen section photographs of chicks eyes taken at the maximum crystalline lens thickness. (A) Treated and 
control eyes from a chick that had been monocularly deprived of form vision for 5 days and then the occluder was removed and 
the animal was returned to the brooder for a further 8 days. After optical and in vivo structural measures the eyes were enucleated, 
frozen and then sectioned on a cryostat. The treated eye has a markedly thicker choroid than its contralateral open control eye both 
posteriorly (560/~m vs 185/~m) and equatorially (640 ~m vs 283 #m). (B) Treated and control eyes from a chick who had 
undergone MD for 5 days and then the occluder was removed and the previously deprived eye treated with TTX on an alternate 
day schedule for 8 days. Again the choroid in the treated (recovery) eye was considerably thicker than the contralateral open 
control eye in both the posterior (308/~ m vs 154/~ m) and equatorial (403 p m vs 197 # m) regions. It should be noted that the 
choroidal thickening in the TTX treated animal was less than the standard MD recovery chick even though both animals had 
similar degrees of induced myopia at the start of the recovery period (~ 25 D). This could be due to inter-animal variation or the 
fact that the structural changes to the anterior segment of the TTX treated eye reduced the need for as much choroidal thickening 
to aid emmetropization. (C) Treated and control eyes of a chick undergoing 8 days of MD during which time the deprived eye 
received T r x  on an alternate day schedule. Thinning of the choroid in the myopic ( -  6 D) eye was observed both posteriorly 

(154/~ m vs 246/~ m) and equatorially (170 # m vs 231 # m) despite blockade of ganglion cell action potentials. 
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c h a n g e s  a n d  is a l so  s u p p o r t e d  by  v i t r e o u s  c h a m b e r  

e l o n g a t i o n  in T T X - o p e n  eyes  to  offset  the  r e f r ac t ive  

effect  o f  a n t e r i o r  s e g m e n t  changes .  
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