
B

G

e

g
p
c
t
e
a
i
c
s
p

V A L U E I N H E A L T H 1 5 ( 2 0 1 2 ) 6 8 0 – 6 8 9

Avai lable onl ine at www.sc iencedirect .com

journal homepage: www.elsevier .com/ locate / jva l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Preference-Based Assessment

Combining Individual-Level Discrete Choice Experiment Estimates and
Costs to Inform Health Care Management Decisions about Customized
Care: The Case of Follow-Up Strategies after Breast Cancer Treatment
Tim M. Benning, PhD1,*, Merel L. Kimman, PhD2,3, Carmen D. Dirksen, PhD4, Liesbeth J. Boersma, MD, PhD3,5,

enedict G.C. Dellaert, PhD6

1Institute of Health Policy & Management, Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands; 2The
eorge Institute for Global Health, Sydney, Australia; 3Department of Radiation Oncology (Maastro Clinic)/GROW Research Institute, Maastricht University

Medical Centre, Maastricht, The Netherlands; 4Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical
Centre, Maastricht, The Netherlands; 5MAASTRO Clinic, Maastricht, The Netherlands; 6Department of Business Economics, Erasmus School of Economics,

Erasmus University Rotterdam, Rotterdam, The Netherlands
A B S T R A C T
l
u
p
p
f
f
s
a
p
p
K
e
c

C

Objective: Customized care can be beneficial for patients when pref-
erences for health care programs are heterogeneous. Yet, there is little
guidance on how individual-specific preferences and cost data can be
combined to inform health care decisions about customized care.
Therefore, we propose a discrete choice experiment–based approach
that illustrates how to analyze the cost-effectiveness of customized
(and noncustomized) care programs to provide information for hospi-
tal managers. Methods: We exploit the fact that choice models make it
possible to determine whether preference heterogeneity exists and to
obtain individual-specific parameter estimates. We present an ap-
proach of how to combine these individual-specific parameter esti-
mates from a random parameter model (mixed logit model) with cost
data to analyze the cost-effectiveness of customized care and demon-
strate our method in the case of follow-up after breast cancer
treatment. Results: We found that there is significant preference het-

rogeneity for all except two attributes of breast cancer treatment fol- O
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ow-up and that the fully customized care program leads to higher
tility and lower costs than the current standardized program. Com-
ared with the single alternative program, the fully customized care
rogram has increased benefits and higher costs. Thus, it is necessary
or health care decision makers to judge whether the use of resources
or customized care is cost-effective. Conclusions: Decision makers
hould consider using the results obtained from our methodological
pproach when they consider implementing customized health care
rograms, because it may help to find ways to save costs and increase
atient satisfaction.
eywords: breast cancer, customized care, discrete choice experiment,
conomic evaluation, individualized care, process-related aspects of
are, preference heterogeneity.

opyright © 2012, International Society for Pharmacoeconomics and

utcomes Research (ISPOR). Published by Elsevier Inc.
Introduction

Heterogeneity in taste is prominent in health care, for example, in
variations in preferences between individuals for different treatment
programs [1,2]. Furthermore, the rise of consumerism and the
rowth in available information through the Internet have raised
atients’ expectations about care and increasingly patients demand
are that is more in line with their own individual preferences. This
rend emphasizes the importance for health care organizations to
valuate the possibility of offering customized care (also referred to
s custom-made care). Customized care is defined as health care that is
ndividually tailored on a patient-by-patient basis [3]. We distinguish
ustomized care from personalized medicine, which involves the
ystematic use of genetic or other information about an individual
atient to select that patient’s preventative and therapeutic medi-

* Address correspondence to: Tim M. Benning, Institute of Health
Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam

E-mail: benning@bmg.eur.nl.
1098-3015/$36.00 – see front matter Copyright © 2012, Internation

Published by Elsevier Inc.
ine or medical intervention [4,5]. Rather, we operationalize custom-
zed care more broadly as any type of health care that offers individ-
alized programs that reflect each patient’s own preferences. This
ontrasts customized care with standardized care, which offers the
ame health care program to all patients, thereby largely ignoring
ifferences in patients’ preferences. We note that in daily health care
ractice intermediate approaches are often followed, for example, on
he basis of patient stratification or with clinical practice guidelines
hat offer doctors the possibility to partially take patients’ prefer-
nces into account.

Although customized care is potentially beneficial to pa-
ients, it is not commonly implemented in practice, possibly
ecause of the fear for high additional communication, cogni-
ion, coordination, and capability costs (i.e., the fixed cost in
aving a capability available, the equivalent of an up-front in-
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vestment cost) [3]. The concept of customized care fits well with
the principles of shared decision making, in which a doctor and
a patient jointly come to a decision about treatment [6,7]. Cus-
tomized care may potentially generate efficiency gains, because
there may be circumstances in which a large proportion of in-
dividuals prefer a less costly health care program above a more
expensive one. In such a case, introducing customized health
care programs that better serve patients’ preferences may be an
option. It is of paramount importance to determine whether
customized care leads to a cost-effective use of resources before
it is implemented in practice. For this purpose, insights into
individuals’ specific health care program preferences are
needed, and perhaps even more importantly, a method should
be available that allows one to use these preferences in combi-
nation with corresponding cost data to inform health care de-
cision makers (e.g., hospital managers) about customized care.
To our knowledge, such a method is not available in the health
care literature. Yet, when individual-specific preferences are
not accurately measured, this can lead to biased utility (welfare)
measures and erroneous evaluations of customized care [8,9].

Including individual-specific preferences in cost-effectiveness
analysis to inform health care decision making

Traditionally, the focus of cost-effectiveness analysis has lain
on identifying average costs and benefits in the population and
on the identification of subgroups of patients for which a health
care program may be more or less cost-effective. Research,
however, has shown that it is also valuable to identify cost-
effectiveness on the individual level [10 –12]. Therefore, in this
article we incorporate individual benefits, instead of average
benefits, in cost-effectiveness analysis. More specifically, we
provide a method to combine individual-specific preference
data, which can flexibly include aspects of care related to health
and process (i.e., nonhealth), with health care program–specific
cost data to inform health care decision makers about (the cost-

Table 1 – Attributes and attribute levels.

Attributes Attribute levels

Attendance at educational
group program

Yes
No

The
br
pa
di

Frequency of visits Every 3 mo
Every 4 mo
Every 6 mo
Every 12 mo

The
up
al

Waiting time in minutes 5
30
60
90

This
T
fa

Contact mode Face to face
Telephone

A vi
ex
re
ab
h
fa

Health care provider Medical specialist
Breast care nurse/

nurse practitioner
General practitioner
Breast care nurse

and medical
specialist

The
ra
sp
m
n
pr

Reprinted from Acta Oncologica, 49(3), Kimman ML, Dellaert BGC, Boe
all? An investigation of patient preferences using a discrete choice ex
effectiveness of) customized care. t
Our approach combines individual-specific preferences
identified from a discrete choice experiment (DCE) with health
care program–specific cost data. A DCE is a method based on
stated preferences in which respondents are asked to choose
between hypothetical alternatives constructed on the basis of
an experimental design. A large number of DCE applications can
be found in the health economics literature, and the trend
shows that DCEs have been used more widely for health eco-
nomics research in recent years [13,14]. Traditionally, DCEs are
used to elicit patient preferences and to quantify trade-offs be-
tween alternative treatments [15–18]. Although there is growing
recognition that DCEs have the potential to contribute more
directly to outcome measurement for use in economic evalua-
tions [19], the question how DCE data can be used to inform
health policy [20] is still relatively unexplored. For example,

cIntosh [21] proposed an initial framework for cost-benefit
nalysis using DCEs and McCormack et al. [22] review different
ypes of benefit measures that can be analyzed to support
ealth policy decisions including DCE-derived welfare esti-
ates as one of the options. However, in these articles, the

ocus has been on estimating average preferences.
In contrast, we used DCE data to estimate choice models

e.g., the random parameters logit or generalized mixed logit
odel) that reflect individual-level preferences. Appropriate

nalysis of DCE data determines whether preference heteroge-
eity exists, and if so, individual-specific utility estimates for
ifferent health care programs can be obtained. More specifi-
ally, DCE-based choice models offer utility estimates for all
ttribute levels of a health care program (including health- and
rocess-related aspects), making it possible to investigate the
ost-effectiveness of a wide range of possible programs.

Thus, this article contributes to the literature by presenting a
ethodological approach of how to combine individual-specific
CE-based preference information with health care program–
pecific cost data to inform health care decision makers about

Explanations

tional group program consists of two group meetings of 2 h, led by a
are nurse and a health care psychologist, in which patients (and their
s) are informed of the physical and psychosocial consequences of the
and its treatment, and possible signs of recurrence.
ency of visits determines whether a patient has scheduled follow-

ts every 3, 4, 6, or 12 mo. Regardless of the frequency, patients can
make additional appointments whenever they feel the need.

e time a patient has to wait after the set time of the appointment.
n thus be at the hospital or general practitioner’s office (face-to-
ntact) or at home (telephone contact).

ce-to-face) to a health care provider consists of a short physical
ation and open discussion about general well-being and the
y process. A telephone follow-up consists of an open discussion
eneral well-being and the recovery process only. If the patient or
care provider feels the need, an additional appointment (face-to-
n be made.
cal specialist is (preferably) the patient’s surgeon, oncologist, or
erapist. They may alternate. The breast care nurse is a nurse
ized in breast cancer; a nurse practitioner is a nurse with advanced
l training (master’s level). They are both referred to as breast care
n the survey. In all cases, the last contact with the health care
r is with a medical specialist to conduct a mammography.

LI, et al, Follow-up after treatment for breast cancer: one strategy fits
ent, 328–337, 2010, with permission from Informa Healthcare.
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its rising importance and the possibility to offer customized
care, the introduction of such an approach is both relevant and
topical [23].

We demonstrate our method for the case of follow-up pro-

grams after breast cancer treatment. Patients were found to

have heterogeneous preferences for this type of care [24]. Indi-

idual preferences for breast cancer follow-up [24] and associ-

ated follow-up program– specific costs [25] were combined to

illustrate how they can guide decisions on implementing cus-

tomized care. The analysis is based on process-related aspects

of follow-up (e.g., the frequency of follow-up visits and type of

health care professional) and the costs associated with several

follow-up strategies recently reported in the MaCare trial per-

formed in The Netherlands. The DCE focused on process-related

aspects of care (see Table 1) because no differences were found

in health benefits between the different follow-up programs

[26]. The proposed principles can, however, be applied to health

care programs that (also) have different health consequences.

The remainder of this article is structured as follows. First,
we outline the proposed DCE-based approach. To do so, we pro-
vide a brief overview of the random utility model we use. This is
followed by a description of how to combine individual-specific
DCE estimates with follow-up program–specific costs. Next, we
present analyses in an application in which we report the cost-
effectiveness of different breast cancer follow-up programs as
well as a (fully) customized care program relative to the current
standardized program and show how the results of our ap-
proach can help hospital decision makers in evaluating the im-
plementation of customized care. Note that effectiveness is
measured in terms of utility in this article. We close with a
discussion of our findings and provide suggestions for future
research.

The Individual-Level Preference Model

We obtain individual-level estimates for attributes of follow-up

Table 2 – Utility calculations for specialist-led* face-to-face
specific DCE estimates.

Respondent EGP Coding Waiting
time

Coding Telephon

1 �0.239 0 �0.012 5 �1.398

2 �0.708 0 �0.015 5 �0.945

3 �2.419 0 �0.002 5 �0.621

4 �1.176 0 �0.012 5 0.335

5 �0.152 0 �0.007 5 �4.463

6 �2.393 0 �0.004 5 �1.351

7 �1.091 0 �0.003 5 �0.122

8 �1.402 0 �0.009 5 �2.731

9 �1.850 0 �0.007 5 �2.772

10§ �1.138 0 �0.000 5 �3.077

DCE, discrete choice experiment; EGP, educational group program.
* Note that the medical specialist is used as reference category in our

table.
† There is no standardized scale on which utilities are measured in

cannot be compared over studies.
‡ The total utility of respondent 1 is calculated as follows: [(�0.239 �
§ For practical reasons, calculations for only 10 respondents are illus
� The total utility is calculated by summing the utilities of all individ
care by means of a random parameter logit (RPL) model (also i
known as the mixed logit model) based on DCE data. The model is
based on random utility theory, which assumes that an individual
n’s utility for choice alternative j in observation t (Unjt) consists of a
ystematic utility component (Vnj), an error scale parameter (�),
nd a random component (�njt).

Unjt � �Vnj � �njt (1)

To further specify the individual-level differences in prefer-
ences, the model is extended by explicitly allowing for individual-
specific variations in taste:

Vnj � ��n ’ xj

�n � � � �n

(2)

Here the utility component is described in terms of the vector
f observed attributes for the health care program (xj) and an in-
ividual-specific vector of preference coefficients (�n). The prefer-

ence vector is separated in a mean preference component shared
by all individuals (�) and an individual-specific error component
that captures differences in individuals’ taste (�n). The individ-
ual-specific error components are assumed to be independently
normally distributed and are allowed to have different vari-
ances. In this way, the RPL model takes into account variations
in respondents’ taste (i.e., preference heterogeneity). It is worth
noting that this model provides unbiased individual-level esti-
mates only if the correct distributions are used in modeling
preferences.

The probability that alternative j is chosen, given that a respon-
dent has to choose between alternatives j and i, is specified as
follows:

Pnjt � Pr(Unjt � Unit) � Pr(�Vnj � �njt � �Vni � �nit) �

Pr(�Vnj � �Vni � �nit � �njt) (3)

If we assume that the error terms (� , � ) are identically and

w-up (4 times a year) and no EGP based on individual-

oding Frequency Coding Frequency
squared

Coding Utility†

0 1.275 4 �0.217 16 1.568‡

0 1.725 4 �0.220 16 3.305

0 1.334 4 �0.222 16 1.774

0 1.557 4 �0.237 16 2.376

0 1.492 4 �0.222 16 2.381

0 1.537 4 �0.225 16 2.528

0 1.331 4 �0.228 16 1.661

0 1.948 4 �0.220 16 4.227

0 1.763 4 �0.220 16 3.497

0 1.394 4 �0.221 16 2.04
25.357�

lations; therefore, the type of health care provider is not shown in the

across studies. Therefore, they are not scaled between 0 and 1 and

(�0.012 � 5) � (�1.398 � 0) � (1.275 � 4) � (�0.217 � 16)] � 1.568.

d in this table.

i.e., 1.568 � 3.305 � . . . � . . . � 25.357).
follo

e C

calcu

DCEs

0) �

trate
njt nit

ndependently Gumbel distributed, and the error scale parameter
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is set to 1, this results in the standard binary logit specification for
any given individual n:

nj � exp(Vnj) ⁄ [exp(Vnj) � exp(Vni)] (4)

A major advantage of the RPL model is that posterior esti-
mates for each individual’s preference parameters for the attri-
butes of a health care program can be obtained on the basis of
the individual’s observed choices and the random parameter
distribution estimates [27,28]. This property is shared with the
recently introduced generalized multinomial logit model [29],
but it is different from, for example, the traditional multinomial
logit model that estimates average population parameters for
the attributes of a health care program or the latent class anal-
ysis logit model that allows for heterogeneity between patients
at the segment but not at the individual level [30].

The individual-specific preference parameter estimates
from the RPL model can be used to calculate—for each individ-
ual— utilities for the full range of possible follow-up programs,
including each individual’s most preferred one. Assuming that
utilities are all measured on the same utility scale, the total
utility for the sample can be calculated for each possible fol-
low-up program. This can be done by adding the individual-
specific utilities of a follow-up program for all individuals in the
sample (see Table 2 for an illustration of these calculations for
10 patients of our sample).

Combining individual-specific DCE estimates and costs

Once the utility of a specific follow-up program is calculated,
this utility can be combined with cost data for the specific pro-
gram j provided to each individual n (Cnj) to allow for compari-
ons across programs. A cost-utility comparison with other
noncustomized) health care programs can be made to analyze

hether offering a customized program leads to greater utility
nd/or lower costs for the total sample. For example, if a suffi-
iently large number of patients choose a less costly follow-up
rogram in the customization process compared with the stan-
ardized follow-up program, this leads to both higher total util-

ty and lower costs. Finally, to inform hospital decision makers
bout the cost-effectiveness of customized care, the incremen-
al utility and costs of each follow-up strategy have to be com-
ared with the incremental utilities and costs of other strategies

Important! Before choosing between scenar
Regardless of the scenario you will have an an
physical examination) to the medical specialist
appointments whenever you feel the need. Dise
both scenarios.

Scenario A
- Your scheduled appointments are every 4 months
- The appointment is with a medical specialist 
- The appointment is face-to-face in hospital 
- You have to wait for 60 minutes in hospital 
- You do not attend an Educational Group Program

Choice 
For the first year after treatment, would you pr

Fig. 1 – Example of a choice task. Reprinted from Acta Oncol
Follow-up after treatment for breast cancer: one strategy fits
choice experiment, 328–337, 2010, with permission from In
r current practice to decide which strategy to implement. In
ractice, it is important for a decision maker to know whether a
ustomized follow-up program dominates the standardized
rogram and other programs to make an informed decision
bout implementing customized care.

Implementing customized care or not: two approaches of
total utility calculation

The calculation of the total utility of the sample depends on the
approach that is taken by the management to implement the
customization program. First, customization can be imple-
mented by assigning patients directly to their predicted (indi-
vidually) most preferred program. This approach is in line with
how treatments are commonly assigned in health care, when
doctors aim to offer patients treatments on the basis of the
expected benefit for the patient. In this case, by using the RPL
estimates of each patient’s individual-level utilities, one can
first calculate the utility for each patient’s most preferred pro-
gram and then add up the utilities across all patients of their
most preferred program to obtain the total utility. We use this
approach in our application as it is most in line with current
practice in most hospitals. A prerequisite for this approach is
that individual-level preference estimates are available as is the
case in the proposed DCE-based approach.

An alternative approach to customization would be to allow
patients to choose their own most preferred program from a set
of health program modules (e.g., after providing them with a
brief description of each program). This approach is more in line
with the way customization is implemented, for example, in
most consumer goods markets, where consumers can compose
their own products by selecting their most preferred options for
each set of available modules. A critical distinction between this
alternative approach and the proposed previous one is in how
the total utility of a health care program needs to be calculated.
In particular, while in the first approach it is known with cer-
tainty what treatment is assigned to which patient (because the
doctor assigns each patient), in the second approach the actual
choice that the patient will make is uncertain and needs to be
predicted by the researcher (on the basis of available preference
data). Hence, there is an inherent uncertainty about which pro-
gram the patient will actually choose [18]. In this latter case, the
utility of each program needs to be weighted in the analysis by

and B, please be aware of the following: 
mammography combined with a visit (with 
o, you can always make additional 
ree and overall survival are identical for 

Scenario B
- Your scheduled appointments are every 6 months 
- The appointment is with a breast care nurse 
- The nurse will contact you at home, by telephone 
- You have to wait for 90 minutes, at home 
- You can attend an Educational Group Program

cenario A or B? 

, 49(3), Kimman ML, Dellaert BGC, Boersma LI, et al,
An investigation of patient preferences using a discrete
a Healthcare.
io A 
nual 
. Als
ase f

efer s

ogica
all?

form
the probability that the program is chosen by each patient to
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calculate the total utility of a customized program (e.g., this
implies that even relatively less attractive programs are as-
signed a small probability of being selected in the model be-
cause of the error term in the patient utility model).

Methods: An Application to the Case of Follow-Up
Strategies after Breast Cancer Treatment

In this section, we conduct the proposed analysis to investigate
whether offering customized programs can be cost-effective in the
case of breast cancer follow-up care.

Data and analysis

Experimental design, survey, and data
Details of the DCE that we used are described elsewhere [24] and
we provide only a brief overview. Attributes and attribute levels
(Table 1) were based on a review of the literature [31], new local
policy initiatives [26], and expert opinions [32]. An orthogonal frac-
tional factorial design with 32 hypothetical choice tasks was cre-
ated from a full factorial (256 scenarios). Two surveys, each pre-
senting 16 choice tasks to a patient, were used. All respondents
were randomly assigned to one of the two surveys, and in the
analysis there was no significant main effect of survey version.
The survey started with a short introduction of the purpose and
effectiveness of follow-up after breast cancer treatment followed
by a description of the attributes, their levels, and the choice tasks
(Fig. 1). The data collection took place between May and July 2008.
In total 331 patients (from five hospitals) completed the DCE (re-
sponse rate of 59%). Their average age was 58 years (ranging from
34 to 83 years), and the mean time since finalizing breast cancer
treatment was 14 months (ranging from 2 to 24 months).

Model
We analyzed the DCE data by estimating the proposed RPL model
by using 500 Halton draws in NLOGIT 3.0 (Econometric Software,
Inc.). Because the main aim of our study was to explore the cost-
effectiveness of introducing customized care when there is pref-
erence heterogeneity, we deemed it important to freely allow re-
spondents to have negative or positive preferences for an attribute
level in our model. Therefore, in the analysis, results are based on
normal distributions for the random parameters. The utility func-
tion of our model is specified as follows (the error scale parameter
[�] is fixed to 1 for identification):

Unjt � ��1 � �1n�EGPj � ��2 � �2n�FREQj � ��3 � �3n��FREQj�2
�

��4 � �4n�WTj � ��5 � �5n�TELj � ��6 � �6n�BCNj � ��7 � �7n�GPj �

��8 � �8n�MS ⁄ BCNj � �njt (5)

where Unjt is individual n’s utility associated with a specific
follow-up scenario j in choice observation t, �1to �8 are the mean

arameter estimates of the model that indicate the preference for
ach attribute as it occurs in follow-up scenario j. �1n to �8n corre-

spond to the individual-specific error terms for every preference
parameter. EGP is a dummy variable for educational group pro-
gram attendance or not. FREQ and FREQ2 represent the frequency
and squared frequency, respectively, of follow-up visits in a year.
WT represents the waiting time during follow-up interaction with
the hospital. TEL is a dummy variable for telephone versus face-
to-face contact and BCN (breast care nurse), GP (general practitio-
ner), and MS/BCN (i.e., alternating between medical specialist and
breast care nurse) are dummy variables reflecting the different
health care providers of follow-up, with medical specialist–only

visits as a base level. The base levels reflect current practice levels
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in the Netherlands, and �njt is an error term that captures any
remaining unobserved error.

Follow-up program costs

The costs of (alternative) follow-up programs (Tables 3 and 4) were
ased on a hospital management perspective and the program to
hich each individual patient was assigned. Therefore, we in-

luded only those costs that were related to the attributes used in
he DCE that are relevant in cases in which hospital managers
ather than health care policymakers wish to evaluate whether or
ot to offer customized care for breast cancer follow-up. The total
osts for each specific follow-up program are made up of the costs
er program component, as defined by the attributes and their

evels. Cost prices were primarily obtained from the Dutch govern-
ental manual for health care cost analysis [33]. Costs for hospital

isits were based on cost prices for academic hospitals. All cost
rices were converted to 2008 euros by means of price index num-
ers [34]. The time horizon used was 12 months, consistent with

Table 5 – Random parameter model estimations.

Variable � Standard
error

Significance
level

Random parameters (�n)
TEL �2.15 .12 .00
Telephone contact

mode
EGP �.14 .08 .08
Educational group

program
WT �.01 .00 .00
Waiting time
FREQ 1.56 .19 .00
Frequency
FREQ2 �.22 .04 .00
Frequency squared
BCN �.47 .10 .00
Breast care nurse
GP �2.24 .16 .00
General practitioner
MS/BCN .13 .09 .16
Medical specialist and

breast care nurse

SD estimates/
heterogeneity
component (�n)

TEL 1.62 .12 .00
Telephone contact

mode
EGP 1.20 .10 .00
Educational group

program
WT .01 .00 .00
Waiting time
FREQ .45 .05 .00
Frequency
FREQ2 .01 .02 .47
Frequency squared
BCN 1.08 .12 .00
Breast care nurse
GP 1.83 .15 .00
General practitioner
MS/BCN .31 .20 .12
Medical specialist and

breast care nurse
the time frame of the follow-up scenarios in the DCE. For a detailed

T F C S S C C F *



t
p
s
g

p
l
e
c
l
i
C
a
u
d
i
t

a
f
s
t
t
n
a
l
c

l
g
a

686 V A L U E I N H E A L T H 1 5 ( 2 0 1 2 ) 6 8 0 – 6 8 9
overview and precise description of the cost-price calculations, we
refer to Tables 3 and 4, and Appendix A in the Supplemental Ma-
terial found at http://dx.doi.org/10.1016/j.jval.2012.04.007.

Results

Model estimates

The model estimation results (Table 5) show significant mean
preference parameters for all but two of the attributes and with
signs as expected. Significant preference heterogeneity for the at-
tributes of follow-up is evidenced by the significant estimates for
the SDs for the individual-specific error terms (�n) for all but two of
the preference parameters (i.e., FREQ2 and MS/BCN). These esti-
mates show that the size of the preference heterogeneity compo-
nent is relatively large, leading to a number of different follow-up
programs being most preferred by different groups of patients. For
example, about 21% of patients prefer a program that offers 3
times specialist-/nurse-led face-to-face follow-up in a year and no
EGP (see Fig. 2). Therefore, it is especially relevant to investigate
the cost-effectives of customized follow-up strategies compared
with standardized follow-up and other follow-up strategies.

A key element in the use of RPL modeling is the assumption regard-
ing the distribution of each of the random parameters. In our analysis,
all parameters were assigned as normally distributed random parame-
ters to allow for a high flexibility in possible heterogeneity. To ensure
that our results were robust for distributions, however, we also per-
formed a secondary analysis, in which the attribute levels general prac-
titioner, telephone contact, and frequency were assigned a lognormal
distribution (because of the observed relatively limited heterogeneity in
preferences in these attributes). This led to highly similar effects and
only a marginal improvement in model fit but restricted respondents’
preferences to be either all positive or all negative for a given attribute
level. Given the only marginal improvement in fit and because the main
aim of our study was to explore the cost-benefits of preference hetero-
geneity by introducing customization, we deemed it more appropriate
to allow respondents to have either a negative preference or a positive
preference for an attribute level. Therefore, we report the further policy
analysis results with normal distributions for the random parameters.

Follow-up program evaluations: policy evaluations

To inform health care decision makers about the cost-effectiveness of
customized care, the utility and costs of each follow-up strategy (across
all patients) are compared with the utilities and costs of the other pos-
sible strategies as well as the current standardized program to decide

21.15%
19.64%

15.71%
13.60%

5.74% 5.74%
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 o
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nt
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No EGP, specialist-nurse-led face-to-face follow-up, 3 times a year
No EGP, specialist-nurse-led face-to-face follow-up, 4 times a year
EGP, specialist-nurse-led face-to-face follow-up, 3 times a year
EGP, specialist-nurse-led face-to-face follow-up, 4 times a year
EGP, 3× nurse led face-to-face follow-up and 1× specialist-led face-to-face follow-up
No EGP, 2× nurse led face to face follow-up and 1× specialist-led face to face follow-up

Programs that have the highest utility for more than 5% of the patients
are shown.

Fig. 2 – Patients’ highest utility programs with full

hcustomization.
whichstrategyto implement. InFigure3weshowtheevaluationresults
for several follow-up programs relative to the current standardized pro-
gram (“S”). Note that waiting time is assumed to be constant across
programs and was set at 5 minutes in the evaluations. These programs
represent two “best in class” alternative programs and programs that
were evaluated in the MaCare trial. They are 1) a single alternative pro-
gramthatleadstomuchloweraveragecoststhanthestandardprogram
and an approximately equal average utility level (“A”), 2) the least ex-
pensive single alternative program (“C”), 3) a strategy in which patients
are assigned to their preferred follow-up program from the four pro-
grams that were evaluated in the MaCare trial (“4M”), 4) a strategy in
which patients are assigned to their preferred follow-up program from
the four programs of the MaCare trial or a reduced version of one of
these programs with one follow-up visit less (“8M�”), and 5) a fully cus-
omized (FC) program in which all patients are assigned to their most
referred (highest utility) follow-up program (“FC”). Table 6 provides a
ummary description of the programs and indicates whether a pro-
ram’s cost and utility values are strictly dominated by other programs.

The results demonstrate that full customization of care according to
atients’ preferences would be a very good option in the case of fol-

ow-up after breast cancer treatment. The average utility of such a strat-
gy is higher than that of all alternative programs, while its average
osts are below that of the current standardized program, and also
ower than those of programs 4M and 8M�. Thus, the FC program dom-
nates programs S, 4M, and 8M� (Table 6). The single alternatives A and

are not dominated by the FC program because they have lower aver-
ge costs. In instances such as this, where the FC program has a higher
tility and higher costs than do other programs, it is necessary for a
ecision maker to judge what a cost-effective use of resources is. The

mplementation of programs A and C may be more likely in case hospi-
al managers are willing to trade-off a lower utility for a cost saving.

Because full customization may not be practical in all settings, we
lso investigate alternative follow-up programs that offer some, but
ewer options (partially customized follow-up). In these alternative
trategies, patients receive their preferred program from the programs
hat are offered by the hospital. For instance, in program “8M�,” pa-
ients could get programs with a frequency of two, three, or four visits,
urse-led telephone follow-up or specialist-led face-to-face follow-up,
nd an EGP or not. Assigning patients to these eight follow-up programs
eads to a higher average utility level and higher average costs than the
urrent standardized follow-up program (Fig. 3).

In summary, our analysis indicates that in the case of fol-
ow-up after breast cancer treatment, customized follow-up pro-
rams can be cost-effective alternatives to a one-strategy-for-all
pproach, especially when current cost levels are acceptable to
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Fig. 3 – Cost-utility comparisons of follow-up programs
with current standardized program.
ospital management.

http://dx.doi.org/10.1016/j.jval.2012.04.007


e
p
t
i
p
b
g

l

687V A L U E I N H E A L T H 1 5 ( 2 0 1 2 ) 6 8 0 – 6 8 9
Discussion

In this study, we proposed a DCE-based approach that illustrates how
costs and individual-specific DCE-based preference information can be
used to inform health care decision making about customized care. In
practice, using our approach means that researchers do the proposed
analysis on the request of decision makers (e.g., doctors or hospital
managers)andthat thesedecisionmakerscanusetheresults forhealth
policy implementation decisions.

We used a DCE-based approach for two reasons. First, the models
used to estimate DCE data like the RPL model, but also the generalized
multinomial logit and flexible individual-level choice models such as
those proposed by Louviere et al. [35], can determine whether prefer-
nce heterogeneity exists and offer a way to obtain individual-specific
arameter estimates. Furthermore, these choice models offer utility es-
imates for all attributes of a health care program, making it possible to
nvestigate the cost-effectiveness of a wide range of programs (i.e., it is
ossible to investigate not only a program that offers patients all possi-
le attribute-level variations [FC program] but also more restricted pro-
rams that offer some, but fewer options [4M and 8M� programs]).

Inpractice,ourDCEapproachcanbehelpful forhospitalsthatwould

Table 6 – Cost-utility comparisons of follow-up programs.

Follow-up program
label

Follow-up program
description

Average f
program

Cheapest single
alternative (“C”)

Two � nurse-led telephone
follow-up and one
specialist-led face-to-face
visit, no EGP

202

Single alternative (“A”) Three specialist-led face-to-
face visits, no EGP

325

Standardized (“S”) Four specialist-led face-to-
face visits, no EGP

407

Choice from MaCare
programs (“4M”)

A choice of the MaCare
programs:

Four specialist-led face-to-
face visits, no EGP

Three � nurse-led
telephone follow-up and
one specialist-led face-to-
face visit, no EGP

Four specialist-led face-to-
face visits, EGP

Three � nurse-led
telephone follow-up and
one specialist-led face-to-
face visit, EGP

407
223
526
342

(452

Choice from MaCare
programs and
MaCare programs
with one visit less
(“8M�”)

A choice of the MaCare
programs � the option to
have one visit less

407
223
526
342
325
202
444
321

(409

Fully customized (“FC”) Customized program for all
patients based on
individual patient
preferences—includes all
program attributes

(375

EGP, educational group program.
* The current standardized program is taken as a basis for comparis
† The average costs per patient for the customized programs 4M, 8

beforehand. To calculate these costs, we have to use individual-spe

from this analysis are placed between parentheses.
ike to know whether implementing customized care is (potentially)
cost-effective and what type of program(s) can best be implemented.
We offered a stepwise illustration of the approach in the context of
breast cancer follow-up programs. The results for this case indicate that
offeringaFCfollow-upprogrammaybenefitbothpatientsandhospitals
in cases in which patients have heterogeneous preferences. For exam-
ple, patients benefit from customized care because of obtaining higher
utility levels (i.e., receiving a more preferred follow-up program), while
hospitals benefit because of cost savings and higher patient satisfaction
rates. The results of the proposed methodological approach are based
on the patients in the specific sample because individual-specific data
are taken into account (instead of focusing on the average population
level). In the next stage, when the FC program is implemented in prac-
tice, every new patient needs to be asked a small number of DCE-style
questions (i.e., fewer than are necessary for the policy evaluation study)
todeterminethatpatient’s individual-levelpreferenceontheestimated
preferencedistribution.Onthisbasis, thepatient is thenassignedbythe
medical team to his or her most preferred follow-up program.

While the approach is new to the health care literature and poten-
tially relevant in many areas of health care decision making, there are
some issues that could be addressed in future research. First, the cost
calculations in this article are based on a health care management per-

-up
s (€)

Average utility
difference*

Average cost
difference* (€)

Eliminations

�2.69 �204.80 Nondominated

�0.01 �81.94 Nondominated

0 0 Dominated by FC

0.25 44.53 Dominated by FC

0.37 1.77 Dominated by FC

0.61 �32.07 Nondominated

nd FC are based on patient preferences and cannot be determined

references from the discrete choice experiment. The costs resulting
ollow
cost

.71

.57

.51

.51

.22

.51

.22
.04)†

.51

.22

.51

.22

.57

.71

.57

.71
.28)†

.44)†

on.

M�, a

cific p
spective, only including costs of the proposed follow-up strategy to the
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hospital itself. For the purpose of illustrating the DCE-based approach,
we felt that this was appropriate. For policymakers, however, there will
often be other (health care costs) related to the health care program that
theymaywishto incorporate (e.g.,visits tootherhealthcareprofession-
als, diagnostic tests, and productivity losses). Hence, the cost calcula-
tions used in this article provided a hospital management–oriented ap-
proach, but in other health care cases these costs may be extended to
cover total costs to society.

Second, the actual costs of each separate health care program com-
ponent may vary between patients from the average costs used in the
analysis. Therefore, it would be insightful to study possible variations in
costswhenanalyzingthecost-effectivenessofofferingcustomizedcare
by using our approach. In our application, such individual costs data
were not available. Future users of our approach, however, may wish to
take heterogeneity in costs into account.

A third consideration for future research is to include the extent of
variation around the mean utility estimates in the proposed cost-effec-
tiveness evaluations. In this study, we did not include uncertainty
around the mean estimates for each program because the uncertainty
in the model is independent and identical for all individuals and inde-
pendent between attributes. As a consequence, the uncertainty is iden-
tical forallprograms.However, futureusersofourapproachcouldallow
for heteroscedasticity in this uncertainty and thus include variation in
uncertainty intheevaluationofoutcomesbyestimatingandpresenting
different confidence levels around the mean estimates for different al-
ternatives and individuals.

Fourth, in clinical practice, it may be challenging to offer customized
care because it may lead to loss of economies of scale or it may require
substantial implementation costs. In the case of breast cancer follow-
up, for example, there needs to be sufficient capacity and skills levels
need to be such that the staff members are able to provide both tele-
phone follow-up and the EGP. Customized care also requires careful
documentation of the proposed strategy and good communication
among patient, doctors, nurses, and other care providers involved. Fu-
ture research may take these aspects into account when investigating
the cost-effectiveness of customized health care programs.

Fifth, an important assumption is that the sample from which the
preference data have been obtained is representative for the population
ofpatients forwhomcustomizedfollow-upwillbe implemented. Inthis
study, DCE estimates were measured in a sample of women who had
been treated for breast cancer and who were between 6 months and 2
years in follow-up. An advantage of using these respondents was that
they provided informed “ex post” preferences for most attributes. Pref-
erence measurements for relatively unknown characteristics of a fol-
low-up would have to rely on patient information provided in the sur-
vey and may be more uncertain [36]. A disadvantage of using an
experienced sample, such as in the current study, however, may be that
the preference for the follow-up program with which respondents have
experience may be stronger than for other programs, for example, be-
cause of endowment effects or status quo bias [36,37].

Sixth, the utility levels in a choice model are dependent on the se-
lected reference points in the model (e.g., the standardized follow-up
program)aswellasontheoverallscaleoftheerrorterminthemodel [9].
Therefore, the comparison of cost-utility trade-offs between different
studies is problematic. Furthermore, while for quality-adjusted life-
year–based cost evaluations clear guidelines are established that de-
scribe the value of a quality-adjusted life-year in euros or dollars to
make program comparisons possible, for utility-based evaluations such
guidelines do not exist. The managerial implication of this model struc-
ture is that for utility-based cost evaluation models, hospitals and poli-
cymakers need to make decisions on a case-to-case basis on whether or
not a certain utility improvement (or cost reduction) is cost-effective.
This is straightforward in case one program dominates another pro-
gram (e.g., full customization vs. the current standardized program) but
becomes more difficult for nondominated program comparisons (e.g.,
the least expensive alternative program vs. the current standardized

program). c
A seventh limitation of our approach is that we do not take error
scale heterogeneity into account [29,38–40]. Incorporating error scale
heterogeneity in the preference model can correct for possible prefer-
ence scale differences between individuals and may increase model fit.
A critical concern, however, if error scale heterogeneity is introduced in
the model is that it is nontrivial if individuals with different scales
should be given equal or different weights in the aggregation of prefer-
ences. If one takes the view that the scale merely reflects differences in
degree of error, one could be inclined to correct for scale differences in
the aggregation of preferences. If one, however, takes the view that the
scale is also a reflection of preference strength differences (i.e., as a mul-
tiplicative component of preference heterogeneity) one would wish to
include scale differences in the aggregations of preferences. A possible
avenue to overcome this dilemma may be through the calculation of
willingness-to-paymeasures(whichincontrasttowhatwasdoneinthe
current study requires a price attribute in the DCE) that can be used to
express different individuals’ utilities on a common monetary scale.
This monetary scale can then be a basis for health care policy evalua-
tions. We welcome future debate in this relevant area.

Eighth, in the customization approach that we propose and that is
the basis for our corresponding analysis, patients are assigned to their
most preferred follow-up program on the basis of their predicted (indi-
vidually) most preferred program. This implies that no uncertainty oc-
curs in the transition from model prediction to actual follow-up pro-
gram assignment. It is worth to point out that in case an alternative
approach to customization would be taken in which patients them-
selveschoosetheirpreferredprogram(e.g., fromasetofhealthprogram
modules), it would be more difficult to extrapolate from the DCE (stated
preference) results to patients’ actual program choices (revealed prefer-
ence). One important reason for this difference is that it is likely that
there would be differences in the error scale factor in the stated prefer-
ence versus revealed preference data, which implies that choice fre-
quencies predicted from the DCE may deviate from those that would be
observed in patients’ real-world choices. Thus, a promising line for fu-
ture research would be to investigate how best to design the interaction
between patients and physicians in case of customized care and what
the effects of different interaction designs will be on how to predict
patient choice outcomes.

Ninth, we can provide some suggestions for future research that are
not specifically based on the proposed approach but that are more re-
lated to the specific case that was studied. Here, even though the in-
structions told participants to consider each program as equally effica-
cious, it is possible that some of the expressed preferences (such as
more frequent follow-up) may be due to indirect preferences for
greater efficacy rather than a true preference for more frequent con-
tact. Future researchers could overcome these problems by using
additional test questions that address and clarify the presence of
equal efficacy in case of less frequent visits. Also, the use of more
flexible experimental designs [35] in future use of our approach could
nhance the efficiency and accuracy of DCE-based preference mea-
urement. Here, we refer to recent developments in experimental
esign theory that allow for a greater integration of heterogeneity in
references in the structure of experimental designs [41]. Another
ossibility to deal with this issue is to use a design that is not split into
locks (i.e., a design that offers every single patient exactly the same
hoice sets) but that would require each patient to respond to a
reater number of questions.

Finally, an important conceptual issue is that although patients
learly value both health outcomes and process-related aspects of care
15,16], it remains an open question to what extent process aspects of
are (i.e., non–health-related aspects of care) should be covered by
ealth budgets. In the proposed approach we take a patient-centered
erspective and allow for process costs to enter into the spending of a
ospital’s health care budget because the outcomes are expressed in

erms of patient utility. An alternative, more strictly health-oriented

ost-effectiveness approach could choose to focus strictly on health-
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related costs and health benefits and exclude any process-related as-
pects of breast cancer follow-up programs.

In summary, we have provided the reader with a DCE-based ap-
proach that combines individual-specific preferences and costs to an-
swer the question whether customized care is cost-effective compared
with a base level (here current practice), and if so, what type of custom-
ized program can best be implemented in practice (i.e., a partially or
fully customized program). While the emphasis of our approach lies on
preference measurement for process-related aspects of care, this ap-
proach could also be applied to investigate patient preferences for
health-related aspects of care in cases in which there are differences in
health outcomes between health care programs. Many DCEs also incor-
porate health outcomes (e.g., life-years gained by the program and im-
proved quality of life), and patients may wish to trade-off some health
benefits for a better process of care. We plan to study this integration in
future research. Given the strong dominance of health outcomes in
health care decision making, however, we believe that the present ap-
proach may be particularly useful when hospitals have the option to
offer several care programs to the patient that are not expected to di-
rectly influence health outcomes but that are likely to affect patient
satisfaction and have financial implications.
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