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Abstract

Dictionary-based protein name recognition is often a first step in extracting information from biomedical documents because it

can provide ID information on recognized terms. However, dictionary-based approaches present two fundamental difficulties: (1)

false recognition mainly caused by short names; (2) low recall due to spelling variations. In this paper, we tackle the former problem

using machine learning to filter out false positives and present two alternative methods for alleviating the latter problem of spelling

variations. The first is achieved by using approximate string searching, and the second by expanding the dictionary with a proba-

bilistic variant generator, which we propose in this paper. Experimental results using the GENIA corpus revealed that filtering using

a naive Bayes classifier greatly improved precision with only a slight loss of recall, resulting in 10.8% improvement in F-measure, and

dictionary expansion with the variant generator gave further 1.6% improvement and achieved an F-measure of 66.6%.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The rapid increase in machine readable biomedical

texts (e.g., MEDLINE) makes automatic information

extraction from these texts much more attractive. One

of the most important tasks today is extracting informa-

tion on protein–protein interactions from MEDLINE

abstracts [1–3].

To be able to extract information about proteins
from a text, one has to first recognize their names in

it. This kind of problem has been extensively studied

in the field of natural language processing as the

named-entity recognition task. The most popular ap-

proach is to train the recognizer on an annotated corpus

by using a machine learning algorithm, such as Hidden

Markov Models, support vector machines (SVMs) [4],
1532-0464/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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and maximum-entropy models [5]. The task of the clas-
sifier in the machine learning framework is to determine

the text regions corresponding to protein names.

Ohta et al. [6] provided the GENIA corpus, an anno-

tated corpus of MEDLINE abstracts, which could be

used as a gold-standard for evaluating and training

named-entity recognition algorithms. The corpus has

fostered research on machine learning techniques for

recognizing biological entities in texts [7–9].
However, the main drawback of these machine learn-

ing approaches is that they do not provide ID informa-

tion on recognized terms. For the purpose of extracting

information about proteins, ID information on recog-

nized proteins, such as GenBank1 ID or SwissProt2

ID, is indispensable to integrate extracted information

with relevant data from other information sources.
1 GenBank is one of the largest genetic sequence databases.
2 The Swiss-Prot is an annotated protein sequence database.
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Dictionary-based approaches intrinsically provide ID

information because they recognize a term by searching

the one that is most similar (or identical) in the dictio-

nary to the target region. This advantage makes dictio-

nary-based approaches particularly useful as the first

step in practical information extraction from biomedical
documents [3].

Dictionary-based approaches, however, present two

fundamental difficulties. The first is a large number of

false positives mainly caused by short names, which sig-

nificantly degrades overall precision. Although this

problem can be avoided by excluding short names from

the dictionary, such a solution makes it impossible to

recognize short protein names. We tackle this problem
by incorporating a machine learning technique to filter

out the false positives.

The other problem in dictionary-based approaches

derives from the fact that biomedical terms have many

spelling variations. For example, the protein name

‘‘NF-Kappa B’’ has many spelling variants such as

‘‘NF Kappa B,’’ ‘‘NF kappa B,’’ ‘‘NF kappaB,’’ and

‘‘NFkappaB’’. Exact matching techniques regard these
terms as completely different terms, which results in fail-

ure to find these protein names written in various forms.

We present two alternative solutions to the problem

of spelling variation in this paper. The first is using

approximate string searching techniques where the sur-

face-level similarity of strings is considered. The second

is expanding the dictionary in advance with a probabilis-

tic variant generator, which we propose in this paper. We
present experimental results on the GENIA corpus to

demonstrate their effectiveness.

This paper is organized as follows. Section 2 over-

views our method of recognizing protein names. Section

3 explains the approximate string searching algorithm

used to alleviate the problem of spelling variations. As

an alternative solution to the problem, Section 4 de-

scribes the probabilistic variant generator that is used
to expand the dictionary. Section 5 describes how false

recognition is filtered out with a machine learning meth-

od. Section 6 presents experimental results obtained

using the GENIA corpus. Some related work is de-

scribed in Section 7. Finally, Section 8 has some con-

cluding remarks.
3 For clarity of presentation, all costs have been assumed to be 1.
2. Method overview

Our method of recognizing protein names involves

the following two phases.

� Candidate recognition phase

The task of this phase is to find protein name candi-
dates appearing in the text using a dictionary. We

propose two alternative solutions to the problem of

spelling variations. The first is to use an approximate
string searching algorithm instead of exact matching

algorithms, which is presented in Section 3. The sec-

ond is to expand the dictionary in advance with the

variant generator, which is presented in Section 4.

� Filtering phase

One of the most serious problems with dictionary-

based recognition is the large number of false posi-

tives mainly caused by short entries in the dictionary.

Our solution to this problem is to check whether each

candidate is really a protein name or not. In other

words, each protein name candidate is classified into

‘‘accepted’’ or ‘‘rejected’’ using a machine learning
algorithm. The classifier uses the context of the term

and the term itself as the features for classification.

Only ‘‘accepted’’ candidates are recognized as protein

names in the final output. Section 5 describes details

of the classification algorithm used in this phase.

In the following sections, we give details of the meth-

ods used in these phases.
3. Candidate recognition by approximate string searching

One way to deal with the problem of spelling vari-

ations is to use a kind of ‘‘elastic’’ matching algo-

rithm, by which a recognition system scans a text to

find a similar term (if any) to a protein name in the

dictionary. We need a similarity measure for this task.
The most popular measure of similarity between two

strings is the edit distance, which is the minimum

number of operations on individual characters (e.g.,

substitutions, insertions, and deletions) required to

transform one string of symbols into another. For

example, the edit distance between ‘‘EGR-1’’ and

‘‘GR-2’’ is two, because one substitution (1 for 2)

and one deletion (E) are required.
To calculate the edit distance between two strings, we

can use a dynamic programming technique [10]. Fig. 1

illustrates an example.3 In matrix C0..|x|, 0..|y|, each cell

Ci, j keeps the minimum number of operations needed

to match x1..i to y1..j and can be computed as a simple

function of the surrounding cells

Ci;0 ¼ i; ð1Þ

C0;j ¼ j; ð2Þ

Ci;j ¼ if ðxi ¼ yjÞ then Ci�1;j�1

else 1þminðCi�1;j;Ci;j�1;Ci�1;j�1Þ: ð3Þ

The calculation can be done either in row-wise left-to-
right traversal or in column-wise top-to-bottom

traversal.



Fig. 1. Dynamic programming matrix.
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There are some algorithms that run faster than the
dynamic programming method in computing uniform-

cost edit distance, where the weight of each edit opera-

tion is constant within the same type [11]. However,

what we expect is that the distance between ‘‘EGR-1’’

and ‘‘EGR 1’’ will be smaller than that between

‘‘EGR-1’’ and ‘‘FGR-1,’’ while their uniform-cost edit

distances are equal.

The dynamic programming-based method is flexible
enough to allow us to define arbitrary costs for individ-

ual operations depending on the letter being operated

on. For example, we can make the cost of a substitution

between a space and a hyphen much lower than that of a

substitution between �E� and �F.�
Table 1 shows the cost function we used in our exper-

iments. Both insertion and deletion costs are 100 except

for spaces and hyphens. Substitution costs for similar
letters are 10. Substitution costs for the other different

letters are 50. Since these costs were heuristically deter-

mined by just observing a number of protein names, it

is likely that we could achieve better performance by

employing a systematic method of determining the cost

function [12].

3.1. String searching

What we have described in the previous section is a

method of calculating the similarity between two strings.
Table 1

Cost function

Operation Letter Cost

Insertion a space or a hyphen 10

other letters 100

Deletion a space or a hyphen 10

other letters 100

Substitution a numeral for a numeral 10

a space for a hyphen 10

a hyphen for a space 10

a capital letter for the corresponding small letter 10

a small letter for the corresponding capital letter 10

other letters 50
However, what we need when trying to find proteins is

approximate string searching in which the recognizer

scans a text to find a similar term (if any) to a term in

the dictionary. The dynamic programming-based meth-

od can be easily extended for approximate string

searching.
The method is illustrated in Fig. 2. In this case, the

protein name to be matched is ‘‘EGR-1’’ and the text

to be scanned is ‘‘encoded by EGR include.’’ String

searching can be done by just setting the elements corre-

sponding to the separators (e.g., space) in the first row to

zero. After filling the whole matrix, one can find that

‘‘EGR-1’’ can be matched to this text at the place of

‘‘EGR 1’’ with cost 1 by searching for the lowest value
in the bottom row and then backtracing to the top

row along the lowest-cost path.

To take into account the length of a term, we use a

normalized cost, which is calculated by dividing the cost

by the length of the term

normalized cost ¼ costþ a
length of the term

; ð4Þ

where a is a constant value.4 When the costs for two
terms are equal, the longer one is preferred due to this

constant. In the case of Fig. 2, the normalized cost of

the term is (1 + 0.4)/4 = 0.35.

To recognize a protein name in a given text, we do the

above calculation for every term contained in the dictio-

nary and select the term that has the lowest normalized

cost. If the cost is lower than the predefined threshold,

the corresponding range in the text is recognized as a
protein name candidate.

3.2. Implementation issues in string searching

A naive way of string searching using a dictionary is

to follow the procedure described in the previous section

for each individual term in the dictionary. However,

since a protein name dictionary is usually large (�105),
this naive way requires too much computational cost

to deal with a large number of documents.

Navarro et al. [13] presented a way of reducing

redundant calculations by constructing a trie of the dic-

tionary. The trie is used as a device to avoid repeating

the computation of the cost against the same prefix of

many patterns. Suppose that we have just calculated

the cost of the term ‘‘EGR-1’’ and we have to calculate
next the cost of the term ‘‘EGR-2’’; it is clear that we do

not have to re-calculate the first four rows in the matrix

(see Fig. 2). They also indicated that it is possible to

determine, prior to reaching the bottom of the matrix,

that the current term cannot produce any relevant
4 a was heuristically set to 0.4 in our experiments. It would be

possible to tune the value by conducting cross-validation on the

training data with additional computational costs.



Fig. 2. String searching using dynamic programming matrix.
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match: if all the values of the current row are larger than

the threshold, then a match cannot occur since we can

only increase the cost or at best keep it the same.

We adopted Navarro�s method: we first constructed a

trie and filled the matrix one by one for each term,
avoiding redundant calculations. The computational

cost for approximate string searching was very large

even with these devices for efficient computation. In

our implementation, it took more than an hour to pro-

cess 2000 MEDLINE abstracts on a 1.13 GHz pentium

III server.
Fig. 3. Probabilistic variant generation. Numerals inside parentheses

are generation probabilities, and those along the edges are operation

probabilities.
4. Expanding the dictionary with probabilistic variant

generator

An alternative way to alleviate the problem of spelling

variations is to expand each entry in the dictionary in ad-

vance. For example, if we have the entry ‘‘EGR-1’’ in the

dictionary, we expand this entry to the two entries

‘‘EGR-1’’ and ‘‘EGR 1.’’ With the expanded dictionary,
we can find protein names written in varied forms simply

by using exact-matching algorithms.

For this purpose, we propose an algorithm that can

generate only ‘‘likely’’ spelling variants. Our method

not only generates spelling variants but also gives each

variant a generation probability that represents the plau-

sibility of the variant. Therefore, one does not need to

receive a prohibitive number of unnecessary variants
by setting an appropriate threshold for generation

probability.

4.1. Probabilistic variant generator

4.1.1. Generation probability

The generation probability of a variant is defined as

the probability that the variant can be generated
through a sequence of operations. Each operation has

an operation probability that represents how likely it is

that it will occur. Assuming independence among oper-

ations, the generation probability of a variant can be

formalized in a recursive manner

P ¼ P � P ; ð5Þ
X Y op
where PX is the generation probability of variant X, PY

is the generation probability of variant Y from which

variant X is generated, and Pop is the probability of

the operation by which Y is transformed into X.

Fig. 3 outlines an example of the generation process,
which can be represented as a tree. Each node represents

a generated variant and its probability. Each edge repre-

sents an operation and its probability. The root node

corresponds to the input term and the generation prob-

ability of the root node is 1 by definition. We can obtain

the variants of an input term in order of their generation

probabilities by growing a tree in a best-first manner.

4.1.2. Operation probability

To calculate the generation probabilities in our for-

malization, we need the probability for each operation.

We used three types of operations for the generation

mechanism:

� Substitution

Replace a character with another character.

� Deletion

Delete a character.

� Insertion

Insert a character.

These types of operations are motivated by the ones

used in approximate string matching. We consider char-

acter-level contexts in which an operation occurs, and
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A part of UMLS Metathesaurus

Concept ID Protein name
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the following seven types of contexts are used in this pa-

per. They differ in relative position to the target and in

how much the context is specified:

� the target letter and the preceding two letters.

� the target letter and the preceding letter.
� the target letter and the following letter.

� the target letter and the following two letters.

� the target letter, the preceding letter, and the follow-

ing letter.

� the target letter, the preceding two letters, and the

following two letters.

� the target letter only.

For an operation for a substitution or a deletion, the

target indicates a letter in the string. For an operation

for an insertion, the target indicates a gap between

two letters. For example, if the original string is ‘‘c-

Rel’’ and the variant is ‘‘c-rel,’’ the operation is a substi-

tution of �R� with �r.� The operation rules obtained from

this example are listed in Table 2. They correspond to

the seven types of the aforementioned context. The first
rule indicates that if the letter �R� is preceded by the

string ‘‘c-,’’ then one can replace the letter with �r.�
The next step is estimating the probability of each

rule. The probability should represent how likely the

operation is to occur in a given context. We estimated

the operation probabilities from a large number of var-

iant pairs with the following equation:

P op ¼ P ðoperationjcontextÞ

� f ðcontext;operationÞ þ 1

f ðcontextÞ þ 2
; ð6Þ

where f (context) is the frequency of the occurrence of

the context, and f (context,operation) is the frequency

of the simultaneous occurrence of the context and oper-

ation in the set of variant pairs. We adopted Laplace
smoothing (adding 1 to the numerator and 2 to the

denominator).

We acquired the actual samples of variant pairs for

probability estimation from the UMLS Metathesaurus

[14], which provides a huge number of biomedical

terms and their concept IDs. We first obtained sets of
Table 2

Example of operation rules

Left context Target Right context Operation

c- R * Replace the target with �r�
- R * Replace the target with �r�
* R e Replace the target with �r�
* R el Replace the target with �r�
- R e Replace the target with �r�
c- R el Replace the target with �r�
* R * Replace the target with �r�

Asterisks represent wild cards.
variants by collecting protein names with the same con-

cept ID. We then selected from each set the pairs whose

edit distance is one, and used them for probability

estimation.

For example, we obtained the following variant pairs

from the set shown in Table 3.

{‘‘gp140 v fms,’’ ‘‘gp140 v-fms’’}

{‘‘v-fms Protein,’’ ‘‘v fms Protein’’}

4.1.3. Generation algorithm

Once the rules and their probabilities are learned, we

can generate variants from an input term using those
rules.

The whole algorithm for variant generation is given

below. Note that V represents the set of generated terms.

1. Initialization

Add the input term to V.

2. Selection

Select the term and the operation to be applied to it
so that the algorithm will generate a new term which

has the highest possible probability.

3. Generation

Generate a new term using the term and the opera-

tion selected in Step 2. Then, add the generated term

to V.

4. Repeat

Go back to Step 2 until the termination condition is
satisfied.

In the generation step, the system applies the rule

whose context matches any part of the string. If multiple

rules can be applied, the rule that has the highest oper-

ation probability is used.

Because this algorithm generates variants in the order

of their generation probability, the termination condi-
: :

C0079930 Oncogene Protein gp140 (v-fms)

C0079930 Oncogene protein GP140, V-FMS

C0079930 fms Oncogene Product gp140

C0079930 fms Oncogene Protein gp140

C0079930 gp140 (v-fms)

C0079930 gp140 v fms

C0079930 gp140 v-fms

C0079930 v-fms, gp140

C0079930 v-fms Protein

C0079930 V-FMS protein

C0079930 v fms Protein

C0079930 Oncogene protein V-FMS

C0079930 GP140 V-FMS protein

: :
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tion can be where that the generation probability for the

generated variant is below the predefined threshold or

that the number of generated variants exceeds the prede-

fined threshold.
5. Filtering candidates by means of a Naive Bayes

classifier

In the filtering phase, we use a classifier trained on an

annotated corpus to suppress false recognition. The

objective of this phase is to improve precision without

the loss of recall.

We conduct binary classification (‘‘accept’’ or ‘‘re-
ject’’) on each candidate. The candidates that are classi-

fied into ‘‘rejected’’ are filtered out. In other words, only

the candidates that are classified into ‘‘accepted’’ are rec-

ognized as protein names in the final output.

In this paper, we used a naive Bayes classifier for this

task of classification. The naive Bayes model is simple

but effective and has been used in numerous applications

of information processing including image recognition,
natural language processing, and information retrieval

[15–18]. Because this model assumes conditional inde-

pendence among features, it is possible to estimate its

parameters from a limited amount of training data.

There are some implementation variants with the naive

Bayes classifier depending on their event models [19]. In

this paper, we adopted the multi-variate Bernoulli event

model, in which we can employ any types of binary
features.
5 We used the training data for constructing the protein name

dictionary so that the recognition performance could be comparable

with those of machine learning-based approaches. However, there is a

chance that we have lower recognition performance if we use an

external resource for constructing the dictionary.
5.1. Features

We use the local context surrounding a candidate

term and the words contained in the term as the fea-

tures. We call the former contextual features and the lat-

ter term features.
The features used in our experiments are given below.

� Contextual features

W�1: the preceding word.

W+1: the following word.

� Term features

Wbegin: the first word of the term.

Wend: the last word of the term.

Wmiddle: the other words of the term without posi-

tional information (bag-of-words).

Suppose the candidate term is ‘‘putative zinc finger

protein’’ and the sentence is

. . . encoding a putative zinc finger protein was found
to derepress beta- galactosidase . . .

We obtain the following active features for this

example:
{W�1 a}, {W+1 was}, {Wbegin putative},

{Wend protein}, {Wmiddle zinc}, {Wmiddle finger}.

5.2. Training

The training of the classifier is carried out using an
annotated corpus. We first scan the corpus for protein

name candidates with the dictionary-matching method

described in Section 3 or 4. If a recognized candidate is

annotatedasaproteinname, this candidateand its context

are used as a positive (‘‘accepted’’) example for training.

Otherwise, it is used as a negative (‘‘rejected’’) example.
6. Experiment

6.1. Corpus and dictionary

We conducted experiments on protein name recogni-

tion using the GENIA corpus version 3.02 [6], which

contains 2000 abstracts extracted from the MEDLINE

database. These abstracts were selected from the search
results with the MeSH terms Human, Blood Cells, and

Transcription Factors.

The biological entities in the corpus are annotated

according to the GENIA ontology. Although the corpus

has many categories such as protein, DNA, RNA, cell

line, and tissue, we only used the protein category. When

a term was recursively annotated, only the outermost

(longest) annotation was used.
We conducted tenfold cross-validation for evaluating

the methods. Each set of 200 abstracts was used as the

test data, and the remaining 1800 abstracts were used

as the training data. The results were averaged over

the 10 runs.

The protein name dictionary was constructed from

the training data by collecting all the terms that were

annotated as proteins.5 The average number of terms
contained in the dictionary was 8055.

Each recognition was counted as correct if both

boundaries of the recognized term exactly matched the

boundaries of an annotation in the corpus.

6.2. Improving precision by filtering

We first conducted experiments to evaluate to what
extent the filtering process improved precision. In the

candidate-recognition phase, the longest matching algo-

rithm was used for candidate recognition.
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The results are listed in Table 4. The F-measure is de-

fined as the harmonic mean of precision and recall

F ¼ 2� precision� recall

precisionþ recall
: ð7Þ

The first row shows performance achieved without filter-

ing, where all candidates identified in the candidate-rec-

ognition phase are regarded as protein names. The other
rows show performance achieved with filtering using the

naive Bayes classifier. In this case, only the candidates

that were classified into ‘‘accepted’’ were regarded as

protein names. Notice that the filtering significantly im-

proved the precision (from 46.5 to 71.2%) with only a

slight loss in recall. The F-measure was also greatly im-

proved (from 54.3 to 65.1%).

6.2.1. Efficacy of contextual features

The advantage of using a machine learning technique

is that we can exploit the context of a candidate. To

evaluate the efficacy of contexts, we conducted experi-

ments using different feature sets.

The results in Table 4 indicate that candidate terms

themselves provide strong clues for classification. How-

ever, the fact that the best performance was achieved
when both feature sets were used suggests that the con-

text of a candidate term conveys useful information

about its semantic class.

6.3. Improving recall by approximate string search

We conducted experiments to evaluate how much we

could further improve recognition by using the approx-
imate string-searching method described in Section 3.

Table 5 lists the results. The leftmost columns show

the thresholds of normalized costs for approximate

string searching. As the threshold increased, precision
Table 4

Precision improvement by filtering

Feature sets Prec

Without filtering N/A 46.5

With filtering Contextual features 60.1

Term features 68.2

All features 71.2

Table 5

Effectiveness of approximate string search

Threshold Without filtering

Precision (%) Recall (%) F-measure (%

4 45.8 67.4 54.5

8 42.4 68.4 52.3

12 37.4 69.3 48.5

16 30.6 70.0 42.5

20 21.0 71.4 32.4
degraded while recall improved. The best F-measure

was 66.1%, which is better than that of exact matching

by 1.0% (see Table 4). It should be noted that approxi-

mate string-searching without filtering did not improve

F-measure: the decline in precision impeded an improve-

ment in recall.

6.4. Expanding the dictionary by variant generation

6.4.1. Variant generator

We used the UMLS Metathesaurus, version 2003AA

to learn the operation rules. Terms having the semantic

type of ‘‘Amino Acid, Peptide, or Protein’’ were used for

learning, and they provide 36,112 pairs of spelling vari-
ants. Table 6 lists some of the rules obtained and their

probabilities. The asterisks in the table represent wild

cards, meaning that one can ignore the context of that

position. Notice that there are many rules for replacing

spaces and hyphens. This suggests that spaces and hy-

phens are often used interchangeably in protein names.

The variants of some biomedical terms generated by

our algorithm are listed in Tables 7, 8, 9, and 10. The
first two input terms ‘‘NF-kappa B’’ and ‘‘transcription

factor’’ are the two most frequent protein names in the

corpus.

The generated variants of ‘‘transcription factor’’

listed in Table 8 are interesting. The first letters of ‘‘tran-

scription’’ and ‘‘factor’’ were capitalized in the second

and third variant, respectively. This reflects the fact that

the first letter of a word is often capitalized in biomedi-
cal terms. Notice that the plural form of ‘‘factor’’ is gen-

erated in the first variant.

The variants for the input term ‘‘tumor necrosis fac-

tor’’ are listed in Table 9. It should be noted that the

transformation to the British spelling variation for ‘‘tu-

mor’’ appears in the seventh variant.
ision (%) Recall (%) F-measure (%)

65.4 54.3

58.0 59.0

59.8 63.7

60.1 65.1

With filtering

) Precision (%) Recall (%) F-measure (%)

70.6 61.8 65.9

69.6 63.0 66.1

68.3 63.9 66.0

66.7 64.7 65.6

63.5 66.1 64.7



Table 6

Operation rules and their probabilities

Operation probability Left context Target Right context Operation

0.971 * � * delete the target

0.958 * o ea delete the target

0.958 rh ea insert �o�
0.952 e hyphen R replace the target with space

0.950 or space 3, replace the target with hyphen

0.950 or hyphen 3, replace the target with space

0.947 TH 1 insert space

0.947 or s _a delete the target

0.945 * space tR replace the target with hyphen

0.938 _T space Ce replace the target with hyphen

0.938 L space I replace the target with hyphen

0.938 in space bi replace the target with hyphen

0.938 ne space tR replace the target with hyphen

0.938 3 space * replace the target with hyphen

0.938 r hyphen 3 replace the target with space

0.938 E space 1 replace the target with hyphen

0.938 V space I replace the target with hyphen

0.938 ne s _R delete the target

0.938 * s _2 delete the target

0.929 start of term l o replace the target with �L�
0.929 NA space DE replace the target with hyphen

0.929 NA hyphen DE replace the target with space

0.929 in hyphen A replace the target with space

0.929 rg hyphen * replace the target with space

0.923 k a e delete the target

0.923 x hyphen 1 delete the target

: : : : :

Asterisks represent wild cards.

Table 7

Generated variants for ‘‘NF-kappa B’’

Generation probability Generated string

1.000 NF-kappa B

0.466 NF kappa B

0.317 NF-kappa-B

0.286 NF-Kappa B

0.233 NFkappa B

0.211 NP-kappa B

0.199 NP kappa B

0.190 NF Kappa B

0.150 NF-kappaB

0.148 NF kappa-B

0.090 NF-Kappa-B

0.081 NP Kappa B

: :

6 For equi-probable variants, the program continues to generate

even when the number of variants exceeds the limit.
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The variants for the input term ‘‘T cell factor 1’’ are

listed in Table 10. Note that the variant where a hyphen

is inserted between the �T� and ‘‘cell’’ is ranked at the

top. The eighth variant ‘‘T cell factor I’’ is also interest-

ing, where the numeral �1� is replaced with the letter �I.�

6.4.2. Dictionary expansion

We conducted experiments on dictionary expansion
using the variant generator. Expansions were carried

out on terms whose lengths were equal to or longer than
five characters. The maximum number of variants gen-

erated for each term was limited to 100.6

Table 11 shows the effectiveness of dictionary expan-

sion. The leftmost columns show the threshold for gen-

eration probability to expand the dictionary. The recall

improved as the threshold decreased. The best F-mea-
sure was 66.6%, which is 1.6% higher than that of the

original dictionary (see Table 4).
7. Related work

Kazama et al. [9] reported an F-measure of 56.5% on

the GENIA corpus version 1.1 using SVMs. Collier et
al. [20] reported an F-measure of 75.9% on 100 MED-

LINE abstracts using a Hidden Markov Model. Tanabe

and Wilbur [21] achieved 85.7% precision and 66.7% re-

call using a combination of statistical and knowledge-

based strategies. They used a transformation-based

part-of-speech tagger to recognize single word protein

names, and hand-crafted rules to filter out false positives

and recover false negatives. Since the evaluation corpora
used in these experiments were different from the corpus



Table 11

Effectiveness of dictionary expansion

Threshold Without filtering

Precision (%) Recall (%) F-measure (%

2�1 46.4 66.4 54.6

2�2 46.5 67.1 54.9

2�3 46.5 67.4 55.0

2�4 46.4 67.7 55.0

2�5 46.0 68.0 54.8

2�6 46.0 68.1 54.8

Table 8

Generated variants for ‘‘transcription factor’’

Generation probability Generated string

1.000 transcription factor

0.571 transcription factors

0.356 Transcription factor

0.219 transcription Factor

0.206 trancription factor

0.203 Transcription factors

0.137 transcription-factor

0.125 transcription Factors

0.117 trancription factors

0.107 transcription factorss

0.078 transcription-factors

0.073 Trancription factor

: :

Table 10

Generated variants for ‘‘T cell factor 1’’

Generation probability Generated string

1.000 T cell factor 1

0.604 T-cell factor 1

0.498 T cell factor-1

0.301 T-cell factor-1

0.196 T cell factors 1

0.139 T cell factor1

0.137 T cell-factor 1

0.135 t cell factor 1

0.129 T cell factor I

0.124 T cell Factor 1

0.118 T-cell factors 1

: :

Table 9

Generated variants for ‘‘Tumor necrosis factor’’

Generation probability Generated string

1.000 Tumor necrosis factor

0.571 Tumor necrosis factors

0.218 Tumor necrosi factor

0.188 Tumor necrosis factor

0.176 tumor necrosis factor

0.139 Tumor-necrosis factor

0.137 Tumor necrosis-factor

0.125 Tumour necrosis factor

0.124 Tumor necrosis Factor

0.124 Tumor necrosi factors

0.107 Tumor necrosis factors

: :
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used in this paper, the results are not directly

comparable.

Lee et al. [22] reported an F-measure of 69.2% on the

GENIA corpus version 3.0 using SVMs. Shen et al.

achieved an F-measure of 70.8% on the same corpus

by incorporating various features into a Hidden Markov
Model. Since the difference between the GENIA cor-

pora versions 3.0 and 3.02, which we used in this paper,

is small, their results suggest that their methods worked

better than ours regarding recognition. However, their

approaches do not provide ID information on recog-

nized terms.

Krauthammer et al. [23] proposed a dictionary-based

method of gene/protein name recognition. They used
BLAST for approximate string matching by mapping

sequences of text characters into sequences of nucleo-

tides that could be processed by BLAST. They achieved

a recall of 78.8% and a precision of 71.1% evaluated

with a partial match criterion, which was not as strin-

gent as our criterion.
8. Conclusion

We proposed a method of two-phase protein name

recognition. In the first phase, we scan texts for protein

name candidates using a protein name dictionary. In the

second phase, we filter the candidates via a process of

machine learning. Our method is dictionary-based and

can provide ID information on recognized terms, unlike
machine learning approaches.

We presented two approaches to alleviate the low-

recall problem caused by spelling variations. The first

is to use an approximate string-searching algorithm in-

stead of exact-matching algorithms. The second is to

expand the dictionary in advance with the variant gen-

erator. We found the dictionary expansion approach

to be much more attractive. The main reason was
the cost of computation: the computational cost in-

volved with approximate string searching was far

greater than for exact matching. Since there are huge

amounts of available biomedical documentation, pro-

cessing speed is an important factor in information

extraction systems.
With filtering

) Precision (%) Recall (%) F-measure (%)

71.2 61.0 65.7

71.6 61.7 66.2

71.6 61.7 66.3

71.8 62.1 66.5

71.7 62.3 66.6

71.7 62.3 66.6
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Experimental results using the GENIA corpus re-

vealed that filtering using a naive Bayes classifier greatly

improved precision with only a slight loss of recall,

resulting in 10.8% improvement in F-measure, and dic-

tionary expansion with the variant generator gave fur-

ther 1.6% improvement and achieved an F-measure of
66.6%.

The future direction of this research involves:

� Use of state-of-the-art classifiers

We have used a naive Bayes classifier in our experi-

ments because it requires limited computational re-

sources and performs well. There is a chance,
however, of improving performance by using state-

of-the-art machine learning techniques including max-

imum entropy models and support vector machines.

� Extending the algorithm for variant generation

Three types of operations were considered in this pa-

per for the mechanism responsible for generating
variants. There can, however, be other types of oper-

ations, such as word-insertion and word-replacement.

Our future work should encompass these types of

operation to improve recall for long protein names.

� Applying the variant generator to other classes

We conducted experiments only on protein names in
this paper. Since the variant generator can be easily

applied to other classes, it would be interesting to

investigate the performance gain on other classes.

We expect to achieve comparable performance gain

on at least gene and RNA names.
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