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Abstract 

Musili, C., A note on the variety of projectors, Journal of Pure and Applied Algebra 74 (1991) 
73-84. 

Somewhat analogous to the case of the variety of Cbmplexes, the variety P of projectors, i.e., 
idempotents (of rank d on an n-space), is shown to be a principal affine open subset of the 
product of the Grassmannian Gr(d, n) and its dual Gr(n - d, II). Also P is identified with the 
affine coset space GL(n)lH for a closed reductive subgroup H of the form GL(d) x GL(n - d); 
consequently, P is nonsingular and of dimension 2d(n - d). The coordinate ring R of P is 
described explicitly by generators and relations as the subring of left translation H-invariants of 
k[GL(n)] as an immediate consequence of the classical Hodge Standard Monomial Basis readily 
available for R just as for the homogeneous coordinate ring of Gr(d, n) for its Phicker 
embedding. The GL(n)-module structure of R is shown to be the direct limit of the filtered 
family of representations of GL(r1): 

mw,@mo,_,@(-m)det., mEZ+ , 

where wd and o,,+ are the fundamental weights of GL(n) corresponding to Gr(d, n) and 
Gr(n - d, n), respectively, and det. is the determinant character of GL(n). 

Introduction 

In [7], Strickland has studied (among other things) the variety of projectors P, 
namely, the space of all n x n matrices A in gl(n, k) (over a field k, algebraically 
closed and of arbitrary characteristic), such that A’ = A and rank A = d (fixed). It 
is obvious that P is closed in gl(n, k) (see 2.1, below, for the defining equations). 
Modulo only these equations, she has constructed an explicit linear basis for the 
coordinate ring R of P using the techniques of HodgE: Algebras (cf. [I]), and 
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concludes that these equations do generate the prime ideal of P. ThGt linear basis 
fcxr R is given by certain double standard products of determinants, etc. 

In this note, we identify P with two other familiar spaces, concludft a little more 
about P and describe R more concretely. This is done simply by putting some 
well-known facts together so as to make the inter connexions transparent. 

First, we look at the adjoint action of the group G = GL(n, k) on its Lie 
Algebra gl(rz, k) and notice that P is the orbit tiirough the point 

4 =diag(ld,O”), d + h = n. 

A simple calculation shows that the centraliser of A,, is the closed reductive 
subgroup (in the block form), namely, 

H = diag(GL(d, k), GL(h, k)) . 

Hence (cf. [6]), the geometric quotient G/H exists, is affine. nonsingular and of 
dimension 2d(n - d). It is well known that the orbit map G/H+ P is an 
isomorphism of varieties since A, is semi-simple. This gives us the fact that R is 
the subring of left translation H-invariants in the ring of regular functions k[ G] on 
G (see Corollary 3, below). 

Second, we notice that H is the intersection of two maximal parabolic sub- 
groups (2 and Q’ of G, where 

Q = {g E G 1 left-hand bottom h x d block of g is 0} 

and 

Q’= {gE Glright-handtopd x h blockof gis0). 

This allows us to identify G/H with a G-orbit for the diagonal action of G on the 
product of the Grassmannians G/Q x G/Q’ and then conclude easily that the 
inclusion morphism Gi H 4 G/Q x G/Q ’ is an open immersion onto its image 
which is a certain principal open subset ‘det # 0’ (see Proposition 4, below). This 
result is somewhat analogous to the one that the variety of Complexes is a 
principal affine open subset of a union of Schubert varieties in the Flag variety (cf. 

m . 
Next, we take the Pliicker embedding of the product of the Grassmannians 

G/Q x G/Q’, followed by the Segre embedding, and determine the open subset 
‘det Z 0‘. Thereby, we get R as the homogeneous localisation of a graded ring S at 
the homogeneous element ‘det’ (which is of degree 1 in S). In the process, we 
observe that the graded piece S,, of S is nothing but the representation space of 
the tensor product p,,, = mu, 8 mu,, , where wd and o,* are the dth and hth 
fundamental weights of G. Now R is filtered by (E,,,}, where 
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Em = S,,, I det ‘” and E,,, C E,,, + 1 r forallmE2!+ . 

But each E, is again the same as S,, as a vector space. But, as G-modules, we 
have 

St?, = mo, 0 mo,, , whereas Em = mod 8 mu,, 8 (det)” . 

Thus we get (see Corollary 7 and Theorem 8, below): 

S = 9 (mo, 0 mo,,) and R = l& (mw, GO mu,, 63 (det)“‘) 

Consequently, we have the well-known classical standard monomial bases of 
I-Lodge, ready made for S and R, giving also generators and relations explicitly. 

1. The variety of projectors P 

1.1. Let k be an algebraically closed field of arbitrary characteristic. Let V be a 
vector space of finite dimension n (over k). Fix an integer d, 15 d zs n - 1. Let 

P= {fEEnd,VIf’=fandrank f= d} , 

i.e., the space of all projectors (or idempotents) on V of rank d. We fix a basis 

{ e,, e2,. . . , e,,} for V. With respect to this basis, we write the matrix A of an 
endomorphism f as 

-4 = (aij) , where f(ej) = C aijei . 

We shall use for A interchangeably. Now P is simply the set of all n x n matrices 
A over k such that A2 = A and rank A = d. We fix the following notation: 

1.2. For an integer r, 15 r 5 n - 1, we denote by [r] the following set with the 

natural partial order (Bruhat order), namely: 

[I’] = {I = (il, i,, . . . , i,) E N’I 15 i, < l l l < i, 5 n} 

with the coordinate-wise comparison as the partial order. We then have the basis 
(e I 1 Z E [ r]l) for A’(V), induced by the basis fixed for V, where 1 

e, == ei, A e,2 -0.0 -ei , 
r for all Z = (i, , . . . , i,) E [Y] . 

1.3. Let Gr(r, rc2) be the Grassmannian of r-dime sional subspaces of V and its 

Plucker embedding 



p : Gr(r, n) 4 P(A’(V)) . 

For a point W E Gr(r, II), we write 

p(W) = (. . . . , p,, . . . .) . 

the Piticker coordinates of p(W) as 

The ( pi ) , considered as coordinate functions on A”( V ). is simply the dual basis of 
A’(V)* dual to the basis (e,). In fact, we shall inte 
concretely as follows: take a basis u, , . . . , write each U, as 
a column vector in the basis of V. Let rt x r matrix of 
these columns. For 1E [r], t e coordinate pa is then the maximal minsr of L 
corresponding to the row in ices 1. Now we recall the following well-known 
theorem: 

Theorem 1 (cf. [3,4]). (Folklore) (1) T/R? ~is coordiilate ring 
k[ Gr(r. IZ)] .for tlrze Phcker embeddirlg is given by the graded k-algebra generated 
by the coordinate functions pI $ 1 E [r], subject to the ~~~adra~c relations satisfied by 
l/w mitsors of a gefleric matrix L. 

(2) The graded component k[Gr(r, II)], of degree m has a standard monomial 
basis : 

c {P ‘1 ..gp,,,II,~z~~~.~~I,in[r]} 

(i.e , standard moatomiuls of degree m in t/w Pliicker coordinates). 0 

&mark. Let @ denote the ample generator of Pic(Gr(r, n)). Then, we have 

k[Gr(r, n)],,, = H”(Gr(r, n), @@‘I) 

k[Gr(r, n)] = @ H’(Gr(r, n), a@‘) . 
I?2 

1.4. Having fixed d, 1~ d 5 n - 1, we write h = n - d throughout in what 
follows. We will be working with Gr(d, n) and Gr(h, n) (each being dual to the 
other). To avoid notational confusion, we shall have the following convention: (i) 
the Pliicker coordinates p, with I E [d] for Gr(d, n) and qJ with J E [h] for 
Gr(h, tt) and (ii) the line bundles @ on Gr(d, n) and q on Gr(h, n). 

2. P as a quotient variety 

Given f E P, let VO = kernel f and V, = image f so that dim,& = d and 
V= VI @ VO. With respect to the basis of V, obtained by choosing arbitrary bases 



for V, and V& the matrix off is simply A,, = diag( Id. 0”). In other words, all the 
elements of P are similar to Al,, or equivalently, P is the GL(n, k)-conjugacy class 
of matrices in gl(n. k) containing &4,,. Since A,, is semi-simple (i.e.. diagonal). it is 
well known that the conjugacy class through A,, is a closed subset esi gE(rr, Q. 
However, it is quite straightforward to write down the equations defining P (cf. 
[7]). In fact, A = (ajj) fiii P if and only if the following three conditions are 
satisfied: 

(i) A2 = A: aii = C aikakd for all i, 6, 
(ii) rank A (: d: all the tz! + I by + 1 minors of A or 0, 

(iii) the characteristic polynomial p(x)=.&-~$-~ -+~=+-(--~)~~s,~ of A, is 
(x - l)‘x”, i.e., si = (3) for i zz d (by (ii), it follows that s, = 0 for r’~ d -+ 

We equip P with the canonical reduced structure, i.e., P is an affine t 

2.2. Since P is an orbit for C = GL(n, k) acting on gl(rz, k) by inner conjugation, 
P is naturally identified with the space of cosets G/W = ( gH 1 g E C}, where W is 
the centraliser of A,,. It is trivial to see that 

H = diag(GL(d, k), GL(h, k)) . 

Thus H is a closed reductive subgroup of G. Now we recall the following 
theorem: 

Theorem 2 (cf. [6]). (1) The geometric quotient G/H exists as a variety. 
(2) G/H is afine (since H is reductive). 
(3) G/H is nonsingular (being a homogeneous variety). cl 

It is easy to see that the differential of the orbit map G/H+ P is surjective for 
dimension reasons and hence we have the following: 

Corollary 3. (1) The orbit map G/H + P is an isomorphism of varieties, conse- 
quently, 

(2) the coordinate ring R of P is the subring of H-invnriants in k[ G] for the left 
translations, i.e., for f E k[ G], g E H, x E G, (g 9 f)(-Y) = f(xg), 

(3) R is a regular geometric k-algebra and 
(4) dim P = dim R = 2d(n - d) = dim G - dim H. Cl 

Our aim now is to describe the ring R more closely. We proceed as follows. 

3. The coordinate ring R of P 

3.1. From now on we shall work with G/H. Look at the maximal parabolic 

subgroups Q and Q’ of G, where 
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Q = { g E G 1 left-hand bottom h X d block of g is 0) , 

and 

Q’={gEGIright-handtopdxhblockofgis0). 

It is obvious that H = Q n Q’. Recall that we have a natural identification of the 
projective varieties: 

G/Q = Gr(d. m) and G/Q’ = Gr(h, n) , 

where the maps are simply sending an element g = (L 1 M) E G (L being t!:e n x d 
matrix of the first d columns of g and M the last h columnsj, to the Plucker 
coordmates given by L and M, respectively. For the linear action of G on V, by 

g@)=C gijei 9 g=Ig,FG 

we see that Q is the stabiliser of e_ = e,,.....,, in Gr(d, n) and Q’ is the stabiliser 

Of e+ = e(il-h+-l,....tl) 
in Gr(h, n). Hence H is the stabiliser of (e_, e,) E 

Gr(d, n) x Gr(h, n). This gives the diagonal morphism 

G+ G/Q x G/Q’ = Gr(d, n) x Gr(h, n) 

which factors through the inclusion 

8 : G/H 4 Gr(d, n) x Gr(h, n) . 

We have the following easy proposition: 

Proposition 4. The inclusion 8 is an opera immersion. 

Proof. It is clear that 8 is a monomorphism of varieties, i.e., an isomorphism onto 
its image. It is therefore enough to show that Image 8 is an open subset. Let 
U = Image 8. Let z E U. By definition, there is a g =- (L 1 M) E G such that 

z = ( . . . ) p,(L), ’ l - ; - - l , q,(M), . . .) . 

Since g is a nonsingular matrix, we have det( g) # 0. But we have, by the Laplace 
expansion of the determinant, that 

dew = c w 5.J PAL h(M) ‘) 

InJ=O 

where the summation runs over all I E [d] and J E [h] with I f3 J = (b and 0 = qJ 

is the permutation, given by g(r) = i, for all r 5 d and a(d + s) = j, for all s 5 h, if 

I= (i ,..... i,& and J=(j ,,.. . , j,,). 
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Thus U is contained in the principal affine open subset 

det = c ‘PA # 0 ’ 
InJ-0 

in the product variety Gr(d, 12) x Gr(h, n), read via the Segre embedding. Con- 
versely, suppose z E det # 0, say, 

2 = (. . . ) p,, . . . ; . . . ) 45,. . .) . 

This means that there are g, , g, E G such that g, = (L I*) and g2 = (* 1 M) with 

f = (0.. , p,(L), l l . ;. . . , ql(M), . . .) . 

But then there are nonzero scalars A and p such that 

Hence 

P,tL) = hP, and qJf”) = PqJ for all I and J . 

det(L 1 M, = 2 k(p,(L)qJ(M)) 

fflJ=0 

= c +p, l p!!J) 

IflJ=0 

= hp c ‘PI l 45 
lflJ=B 

#O. 

Thus g = (L 1 M) E G and e(g) = z, as required. This completes the proof. 0 

3.2. We shall now determine the coordinate ring of ‘det # 0’. Let S be the 
homogeneous coordinate ring of Gr(d, n) x Gr(h, n) for the Segre embedding. 
We have 

S = @ H’(Gr(d, n) X Gr(h, n), (@ X p)@?‘) 
m 

= sff H’(Gr(d, n), @@“‘)@ H’(Gr(h, n), !PBm) 

= @ (W-(4 n)], @ WW, n)],) . m 

We identify this with a subring of the polynomial algebra k[X], where 

X=(X,), lSi,jSn 

is a matrix of indeterminates over k, as described ir! the following: 
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Proposition 5. The ring S is isomorphic to the subalgebra of k[X] generated by the 
bi-homogeneous products 

where PI(X) is the d x d minor of the jCst d columns of X corresponding to the 
row indices I and similar meaning for Q,(X) with respect to the last h columns of 
X. 

Proof. It is well known that S is generated by Pt 69 QJ modulo the Segre relations 

(P,@ Q,)(P,. 8 Q,) - (Pi@ Qdh @ Q,) 

for all Z,Z’ E [d] and J, J’ E [h]. But these are obviously satisfied by the products 
P,Qj in k[X]. We need to show that the only other relations satisfied by P,Ql are 
the quadratic relations among the PI’s and QJ’s independently. This is shown in 
the next section (see Corollary ?, below). El 

4. Standard monomial basis for S 

4.1. For I E [d] and J E [h], for simplicity we write 

P,WQ,W = (11 J) - 

We partially order the pairs (I, J) by defining 

(I, J) 5 (I’, J’) if I(: I’ and J 2 J’ . 

We note the reversal in the order of second factor. 
A monomial of degree m in (I 1 J)‘ls, say 

is called a standard monomial if the pairs (Ii, Ji) are totally ordered, i.e., 

i.e., a standard monomial in (I I J)‘s is simply a product of a standard monomial in 
the P,‘s and another in the Q, 3. Now we have the following theorem: 

Theorem 6. The grad4 ring S, generated by the (I I J)‘s, has a linear basis 
consisting of ah distinct standard ihonormials in the (I 1 J)‘s. 
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Proof. That the standard monomials span S is immediate from the fact that a 
monomial of the form PI, l l l P,,,, can be written as a sum of standard monomials 

5 l l - P, (i.e., I,., 5 9 l l s I,,,i) and similarly a monomial Q,, l l - QI 
witten as”‘; sum of standard monomials QJ, , l l l QJ,,, , (i.e., J,,j 2 l 

can be ,,I 

hence any monomial in (11 J) takes the form 

(II I J, ) l l l (In* I Jm) = C fcoefft*)(l* .i I J* j) ’ ’ l ('01 i I Jade j) 3 . . , 
i.j 

which is a sum of standard monomials, as required. 

4.2. The linear independence of the standard monomials in S can be established 
in twd ways: (i) Bv a trick of Hodge or (ii) by a geometric approach by means of 
‘Schubert varieties’ in the product Gr(d, n) x Gr(h, n). 

(i) Hodge’s method (cf. [3, Last Chapter]), consists in attaching certain 
numerical weights to the variables Xii of the matrix X in such a way that the 
principal diagonal term of the minor PI(X), namely, 

d(PI) = d(P,(X)) = Xi,, l Xi,, . l l Xldd , _‘- if I = (i,, i,, . . . , id) ; 

is singled out as a monomial of largest numerical weight among all the monomial 
terms of that minor. Consequently, it follows that any linear dependency of the 
monomials P,, l l l PI, (standard or not), goes down to a linear dependency of the 
genuine monomials d( P,,) l l l d( P,m). 

TO finish the proof, the point to be noted is that the set of monomials (in Xij) of 
the form d( P,,) l l l do)l,) are distinct (only) for the set of distinct standard 
monomials (P,, l - l PI, I I, 5 l - - zs Z,,,}. This method works in toto for the mono- 

mials W,lJ,)=*=KnlJ,)) as well, since the minors P, and Q, are based on the 
independent sets of variables 

CXijll, SjSd} and {Xijld+lsjln), 

respectively. This completes the proof. 0 

4.3. The geometric method is to set up an inductive procedure by means of a 
family of subvarieties of Gr(d, n) x Gr(h. n). The family is the natural one, 
namely: 

{Y, x Z,ilE[d]and JE[h]} 

where Yi is thy Schubert subvariety of Gr(d, n) given by I in the Bruhat 
decomposition for which Gr(d, n) = Yc , .2.... .a’ :; whereas the Z, is the one in 

Gr(h, n) with Gr(h, n) = &,_h+l ,.... ,,). 
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The most important observation to make here is that a coordinate function PIQl 
on Gr(d, n) x Gr(h, n) is nonvanishing on Yrl X Z,. if and only if I’ 5 1 and 
J’ z- J. Now induction on degrees of the standard monomials and restrictions to 
this family of subvarieties do the job verbatim as for the case of the Grassman- 
nians (cf. [4]). The next result is the following: 

Corollary 7. (1) The .mth graded component St1 of S is isomorphic to 

k[Wd, nLl Q9 k[Wh, 41, and hence the only relations satisfied by the products 

PIQJ are the ones satisfied by the PI’s and Q,‘s independently. 
(2) The functions PIQl are semi-invariants for H with determinant as the 

character (for the linear action of H on the matrix X by multiplication on the 
right). 

5. Standard monomial basis for R 

We have seen that 

R = coordinate ring of det # 0 in Gr(d, n) x Gr(h, n) 

= S (detj, the homogeneous localisation of S at det 

= the ic-subalgebra of the field k(X) generated by the set 

(P,Q,ldet 11 E [d] and J E [h]) . 

Thus the rational functions P,Q,ldet, which are regular functions on the group G, 
give a natural coordinate system on P, viewed as a quotient variety of G. Since S 
% a graded integral domain and R = Sdetj with det an element of degree 1 in S, it 
is obvious that the family 

&I = S,J(det)” , m E E’ 

gives a filtration on R, where we identify E,,, canonically with the subset of Em+* 
as 

Et?, = S,,l l det/(det)““’ C S,,*+ ,/(det)‘“” = E,n+l . 

Further, E,, is isomorphic to Sm as a vector space. Thus we have the following 
stimmary : 

Tkorsm 8, ( t ) 7%~ coordinate ring R of the variety of projectors P, as the subring 
of left translation H-invaiiants in the ring k[ G], is generated by the obvious set of 
in variants 
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{ P,Q,ldet = (11 J)/det 1 I E [d] and J E [h]} . 

In particular, H has no polynomial invariants in K[G). 
(2) The generators P,&/det are subject only to the well-known quadratic I 

relations satisfi by the Pliicker coordinates P,‘s and QJ’s independerttly. 
(3) R has a canonical filtration of G-modules E,>, generated by E, , where E,,, is 

the representation space of the tensor product p,,, = mo, Q9 moi 8 (det)-“’ with w(! 
being the dth fundamental weight and t$ = a+,, the hth fundamental weight of C . 

(4) Each of the Jilters E,,, of R has a linear basis consisting of all distinct 
standard monomials 

with 

IiE[d]andJiE[h], Lsisrn, mEZ’. Cl 

6. Some remarks 

6.1. For the representation point of view, it seems more natural to identify P with 
the quotient space SL(n)lH’ rather than GL(n)lH, where H’ = H n SL(n). 

The coordinate ring R of P is the subring of H’-invariants of k[SL(n)] and, as 
an SL(n)-module, R is the direct limit of the representation spaces E,, of the 
tensor product mw, C3 mw f for SL(n). 

6.2. The standard monomial bases for the filters E, of R, as in Theorem 8, 
above, are not consistent with the inclusions E,,, c E,n + I. I-Iowever, there seems to 
exist a ‘Good module_filtration for R, in the sense of [2], which is a refinement of 
this filtration. Fixing then standard monomial bases for the sections of this refined 
filtration, we get a standard monomial basis globally for R. In practical terms, this 
is not constructive in general. 

6.3. There is an affine open covering for P, 

{U,,I=[d],JE[h]Jn J=@, 
7 

such that each U, J is the complement of a hypersurface in an affine 2dh-space 
with explicit patching data. The corresponding cocycle in Pit P is not zero, hence 
P, which is already locally factorial, is kot globally factorial. In fact, the restriction 
of the line bundle @ x !P on Gr(d, n) x Gr(h, n) to P is a nonprincipal divisor on 
P. As for the description of U,,J7 we rake 
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u ,,J= P,QJdet+O, In.!=& 

This is simply the hypersurface det # 0 in the product of the big cells in Gr(d, IZ) 
and Gr(h, n) corresponding to the Bruhat decompositions for which Gr(d, ri) = Y, 
and Gr(tz, n) = ZJ (see 4.3 above, for the notation). 
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