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Abstract 

Accurate and non-conservative measurements of fatigue crack growth rate are essential when designing efficient structures to be

subjected to cyclic loading. Crack closure is a main mechanism of fatigue crack propagation and must be included. Numerical 

models have been successfully developed to predict plasticity induced crack closure (PICC), however a full understanding of the

links between physical parameters, residual plastic wake and PICC has not been achieved yet. The objective of the present paper

is the identification of the main micromechanisms involved in PICC and the establishment of qualitative and quantitative links 

between plastic deformation and the level of PICC. An M(T) specimen with 200×60×0.2 mm3 and an initial crack of 10 mm was 

studied. It was found that the linear superposition applies to the effect of individual plastic wedges on the PICC level. The 

vertical elongation of the plastic wedge, Δy, was considered and found adequate to quantify the weight of individual plastic 

wedges in the residual plastic wake. The effect of an individual plastic wedge was found to have an exponential decrease with the 

distance to the crack tip, d. An empirical model was developed relating the PICC level of individual plastic wedges with the 

distance d and the plastic deformation level, Δy, and was applied successfully to predict PICC evolution from residual plastic 

wakes.
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1. Introduction 

Accurate and non-conservative measurements of FCGR are essential when designing efficient structures subject 

to cyclic loading. One cause of conservatism in FCGR prediction has been the neglect of the crack closure 

phenomenon, which consists of the contact of the fracture surfaces during a portion of the load cycle, and is usually 

associated with plastic deformation, oxide particles or roughness at the crack flanks [1–3]. This contact affects the 

local stress and plastic deformation fields near the crack tip, and therefore the micromechanisms responsible for 

fatigue propagation. Current applications of fracture mechanics concepts to fatigue crack advance characterization 

are generally based on the premise that the compression portion of a fatigue cycle does not contribute to the growth 

of fatigue cracks. Crack closure seems to be able to explain the influence of mean stress in both regimes I and II of 

crack propagation [4,5], the transient crack growth behavior following overloads [6], and the effect of thickness 
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Fig. 1. (a) Middle-tension M(T) specimen. (b) Details of the initial notch.

[7,8], among other aspects. So, crack closure is an extrinsic mechanism affecting the intrinsic damage mechanisms 

and the fatigue crack growth rate (FCGR), and must be considered in the design of components. 

According to Elber’s understanding of crack closure [4,9], as the crack propagates due to cyclic loading, a 

residual plastic wake is formed. The deformed material acts as a wedge behind the crack tip promoting the contact 

of fracture surfaces during recovery of the surrounding elastically deformed material. Numerical models have been 

successfully developed to predict PICC and to understand the basic micromechanisms associated with it [10]. Most 

of these studies focused on the optimization of the large number of numerical parameters [11,12], and on the 

influence of physical parameters such as crack shape, stress state, or variable amplitude loading [13,14]. However, a 

full understanding of the links between physical parameters, the strain field and PICC has not been achieved yet.  

The generation of a residual plastic wake and its relation with load and material parameters has been studied 

qualitatively. It was found that the plastic deformation level depends mainly on monotonous and reversed plastic 

deformation happening at current crack tip, but also on cyclic deformation mechanisms (strain ratcheting, mean 

stress relaxation and cyclic hardening or softening). The increase of the size of the forward plastic zone, which is 

constituted by the material near the crack tip undergoing plastic deformation at the maximum load, is expected to 

increase the level of plasticity induced crack closure (PICC). The monotonous plastic deformation field is enlarged 

by the increase of the load or/and crack length (i.e., by the increase of Kmax) and by plane stress conditions (instead 

of plane strain). The size of the reversed plastic zone, which is formed by the material near the crack tip undergoing 

compressive yielding at minimum load, is influenced by ΔK, stress state and material behavior. In materials with 

significant Bauschinger effect, important deformation occurs during unloading, reducing closure level and 

compressive residual stresses ahead of the crack tip. Accordingly, the use of pure kinematic hardening models was 

found to produce the largest reversed plastic zone, while the pure isotropic models were found to produce the 

smallest zones [15]. The sizes of the monotonous and reversed plastic zones have been used to define the size of 

finite element meshes and the crack propagation needed for stabilization. According to Solancki et al. [16], there 

must be 3-4 linear elements within the reversed plastic zone, while Roychowdhury et al. [17] suggested 2-3 linear 

elements. The crack propagation required for stabilization, Δastb, is usually defined as a fraction of the size of the 

monotonic plastic zone resulting from the first load cycle. Values of half [18], one [19,20], two [16] and four [21]
have been reported for , Δastb under plane stress conditions. Under plane strain conditions, values of one [16], four 

[22,23] and eight [24] have been suggested. An explanation for these differences has not been proposed. 

The objective of present paper is the identification of the main micromechanisms explaining PICC and the 

establishment of qualitative and quantitative links between residual plastic deformation and the level of PICC. This 

is expected to be a step towards physically based models of PICC. The numerical analysis based on the finite 

element method was the tool selected. Material properties and load parameters have been manipulated to isolate and 

understand phenomena. 

2. Numerical procedure 

Figure 1 illustrates the geometry of the Middle-Tension (M(T)) specimens studied here, which is in agreement 

with ASTM E647 standard. An initial crack length a0=5 mm was modelled. Figure 2 shows the physical model 
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Table 1. Load level in constant amplitude tests 

Fmin [N] Fmax  [N] σmax [MPa] σmax/σysLoad 

1 0 60 20 0.16 

2 0 80 26.7 0.22 

3 0 100 33.3 0.27 

4 0 140 46.7 0.38 

5 0 180 60 0.48 

6 0 200 66.7 0.54 

7 0 220 73.3 0.59 

σ

assumed in the numerical analysis. Due to the symmetry of the sample and of loading conditions, only 1/8 of the MT 

specimen was simulated, by using adequate boundary conditions (Fig. 2). The opposite crack surface was simulated 

by assuming frictionless contact conditions over a symmetry plane placed behind the growing crack front. The 

thickness of the model is t/2 = 0.1 mm, therefore the total thickness of the specimen is t = 0.2 mm. 

Different loading conditions were considered, namely, constant amplitude loading and single overload. In the 

constant amplitude tests, the model of figure 2 was submitted to the loads presented in table 1. An overload ratio 

was defined as 

ol min

max min

OLR
σ σ

σ σ
−=
−

(1) 

where σmin, σmax and σol, are the minimum, maximum and overload stresses, respectively. 

The material parameters used in the numerical simulations corresponded to the 6016-T4 aluminium alloy (92 

HV0.5). In order to characterize the hardening behaviour of this aluminium alloy, three types of mechanical tests 

were performed: uniaxial tensile tests and monotonic and Bauschinger shear tests. From the experimental data and 

curve fitting results [25], for different constitutive models, it was determined that the mechanical behaviour of this 

alloy is accurately modelled using a Voce type equation 
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Fig. 2. Boundary conditions (t/2=0.1 mm).
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to describe the isotropic component of hardening, combined with the saturation law 

( ) p
satx XXXCX ε

σ
σ −−′

= , (3) 

to describe the kinematic component of hardening. In these equations Y is the equivalent flow stress, 
pε  is the 

equivalent plastic strain, Y0 is the initial yield stress, Rsat is the saturation stress, nν, Cx and Xsat are material 

constants,  is the deviatoric stress tensor, X is the back stress tensor, ′ pε  the equivalent plastic strain rate and σ
the equivalent stress. The material constants used in the numerical simulations were: Y0=124 MPa, Rsat=291 MPa, 

nν= 9.5, Cx= 146.5 and Xsat= 34.90 MPa. 

Figure 3 presents the finite element mesh, which was refined at the crack front, to enable the numerical 

simulation of the severe plastic deformation gradients, and enlarged at remote positions, to reduce the numerical 

effort. The radial size considered for the elements around the crack front was L1=16 μm and the total number of 

linear isoparametric elements and nodes were 2587 and 5382, respectively. To overcome convergence difficulties, 

crack propagation was simulated by successive debonding of nodes at minimum load. Each crack increment (Δai)

corresponded to one finite element and two load cycles were applied between increments. In each cycle, the crack 

propagated uniformly over the thickness by releasing both crack front nodes. Crack extensions of 0.96 mm were 

simulated, which correspond to 60 crack propagations. The opening load, Fop, was determined by evaluating the 

contact status of the first nodes behind current crack tip with the symmetry plane. Considering the discrete character 

of the finite element simulations, the exact opening load was obtained from the linear extrapolation of the loads 

corresponding to the two increments following opening. 

The numerical simulations were performed with a three-dimensional elastic-plastic finite element program 

(DD3IMP) that follows a fully implicit time integration scheme [26,27]. The mechanical model and the numerical 

methods used in the finite element code, specially developed for the numerical simulation of metal forming 

processes, takes into account the large elastic-plastic strains and rotations occurring during large deformation 

processes. To avoid the locking effect, a selective reduced integration scheme was used [28,29]. The optimum 

values for the numerical parameters of the DD3IMP implicit algorithm had been already established in previous 

works, concerning the numerical simulation of sheet metal forming processes [30] and PICC [31].
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Fig. 3. Finite element mesh. (a) Frontal view. (b) Detail of frontal view.
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Fig. 4. Individual residual plastic wedges.

3. Numerical results 

3.1. Linear superposition principle 

In present work, some samples with manipulated material properties were created, as exemplified in Fig. 4, to 

check if the linear superposition principle applies to the effect of residual plastic wedges on PICC. More precisely, 

finite element models were generated in which soft material strips, having the material properties of the 6016-T4 

aluminum alloy, and embedded in a surrounding hard material matrix simulated by increasing artificially the yield 

stress of the alloy (Y0 = 9524 MPa in Eq. (2)). The choice of the yield stress for the hard matrix was performed in 

order to insure that plastic deformation during cyclic loading was restricted to the soft material columns, distributed 

along the crack flanks and simulating individualized plastic wedges. The different plastic wedges were identified 

according to its location relative to the initial crack tip position (20th, 30th and 40th columns). It was found that the 

effect of 20th column on the closure measured at the 40th column (Fig. 4a), plus the effect of 30th column (Fig. 4b), 

was nearly equal to the effect of both columns simultaneously (Fig. 4c), with a difference of only about 0.5%. This 

study was repeated for different number and locations of the individualized plastic wedges along the hardened crack 

flank, always with the same positive results. Therefore, it was concluded that the linear superposition effect applies 

to the effect of individual plastic wedges on PICC level. 

3.2. Effect of distance to crack tip 

Figure 5a shows the contribution of individual plastic wedges to the level of PICC, versus their distance to the 

crack tip, d. Constant amplitude crack propagation tests were considered to define the curves represented. Notice 

that, as is illustrated in Fig. 5b, crack propagation adds plastic wedges at the crack tip. Analyzing the situation from 

the point of view of the crack tip, for each crack propagation a plastic wedge is added at the most remote position 

along crack flank. The corresponding variation of the global PICC is the effect of this “new” plastic wedge at a 

distance d. As shown in Figure 5a, the effect of an individual plastic wedge on PICC decreases strongly with 

increasing distance (d) to the crack tip. Increasing the load level increases the influence of the individual plastic 

wedges, as could be expected. Assuming that the influence of plastic wedges can be neglected when the variation of 
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PICC reduces above a particular limit, defined in Fig. 5a by the horizontal line, it is possible to see that the extension 

of the influence increases with load level, i.e., with plastic deformation level.  

3.3. Effect of plastic deformation level 

In order to quantify the influence of the plastic deformation on PICC, a global parameter able to characterize the 

plastic wedge is required. In present work, the integration of the strain normal to the crack flank (εyy) versus y curve, 

was considered: 

=Δ
h

dyyyy
0

.ε (4) 

which represents the vertical elongation of the plastic wedge. Figure 6a shows the distribution of εyy, after crack 

propagation, for load case 4 (Fmin= 0, Fmax=140). According to the figure, the finite elements at the first crack tip 

position have the highest plastic deformation levels, which results from the hardening of the initially non-plastically 

deformed material at the beginning of crack propagation. Following the initial crack tip strain field, there is a 

relatively large region with stabilized strain values, which ends at the final position of crack tip. Figure 6b shows the 

variation of Δy with x-coordinate and with load level. In the graph, the vertical lines represent the beginning and end 

of crack propagation. For relatively low load levels, at the beginning of crack propagation, Δy has a relatively low 

value, although the peak of plastic deformation observed in figure 6a. In fact, Δy represents the integration over a 

height h = 0.3 mm, and although one or two elements at the initial crack tip have relatively large deformation, the 

global value is small because the deformation in the region ahead is small.  In fact, the plastic deformation region 

ahead of crack tip has a slope of about 70º, therefore the region corresponding to 90º has relatively low deformation. 

However, for load case 5 (Fmin= 0, Fmax=180), the strong deformation near the horizontal symmetry plane is enough 

to produce a peak of Δy at the beginning of crack propagation. In the intermediate region, Δy has nearly stabilised 

values, while on the right end side of the curve (i.e., for relatively large values of x), Δy has a sudden drop ahead of 

the last crack tip position. The increase in load level produces a quite large increase in Δy, as could be expected.  

Figure 7 shows the variation of PICC with Δy, for fixed values of the distance, d, to the crack tip. According to 

the graph, there is a strong increase of PICC with Δy, for relatively low values of this, while for relatively large 

values of Δy the PICC levels tend to stabilize. 

Fig. 5. (a) PICC variation versus distance to crack tip, d, in constant amplitude tests. (b) Formation of residual plastic wake in constant amplitude 

crack growth. 
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Fig. 6. (a) Strain field (εyy) for load case 4 (Fmin= 0, Fmax= 140). (b) Variation of Δy with x-coordinate and with load level. 
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3.4. Analytical model 

An analytical model was developed, based on previous results. The basic idea is to establish a relation between 

an individual plastic wedge, characterized by its position (d) and magnitude (Δy), and the level of PICC. An 

excellent fitting was found with the exponential model 

bayf d),d(
~

i
PICC ⋅=Δ= (6) 

where a and b are fitting constants dependent on Δy. Figures 8a and 8b show the evolution of a and b constants of 

eq. (6) with Δy, respectively. As indicated in the figure, a good fitting was found with exponential models, but better 

results were found with polynomial models. It is important to notice that, since there is a huge sensitivity of PICC 

previsions to relatively to the a and b parameters, accurate models are fundamental. In the analytical model, the 

global level of PICC produced by a residual plastic wake is obtained by summing the effects of all individual plastic 

wedges (PICCi) behind crack tip, which are given by eq. (6). 

The model was applied to the analysis of different situations, including variable amplitude loading. Figure 9 

shows the results obtained with the application of an overload of 160 N after a crack extension of 0.369 mm 

(baseline loading: Fmin= 0, Fmax= 140 N). In Figure 9a, where the εyy strain field is shown, the plastic deformation 

produced by the overload is evident. This plastic deformation produces a strong increase of Δy, as Fig. 9b illustrates. 

Finally, Fig. 9c compares the PICC results obtained from the finite element method with those calculated using the 

analytical model of eq. (6). The excellent agreement between the curves validates the analytical model and the 

methodology followed to deduce it. In fact, the model is interesting because isolates the effect of residual plastic 

wedges, from other phenomena, like discontinuous closure or crack tip blunting. 

4. Conclusions 

A numerical model based on finite element method was developed to predict plasticity induced crack closure 

(PICC). In the model, the material properties and the applied loads were manipulated in order to isolate basic 

micromechanisms of crack closure and to develop qualitative and quantitative relations between individual plastic 

wedges and PICC. The main conclusions are: 
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Fig. 8. Evolution of the a and b constants of eq. (6). 
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(a)

• the linear superposition effect applies to the effect of the individual plastic wedges on PICC; 

• the surface value of plastic strain isn’t representative of the all plastic wedge and a global value is required. The 

integration of εyy versus y curve, which was called Δy, was considered. Δy was found adequate to characterize the 

effects of load level and crack propagation on the residual plastic field; 

• the influence of individual plastic wedges on PICC exponentially decreases with the distance to the crack tip, d;

• an empirical model was developed relating the PICC level of an individual plastic wedge, with its distance to 

crack tip, d, and with the plastic deformation level, Δy. The model was validated and is quite interesting to predict 

PICC only from residual plastic field and to isolate the effect of residual plastic wedges, from other phenomena, 

like discontinuous closure or crack tip blunting. 
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