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SUMMARY

Voltage-dependent Ca2+ channels (CaVs) represent
the principal source of Ca2+ ions that trigger evoked
neurotransmitter release from presynaptic boutons.
Ca2+ influx is mediated mainly via CaV2.1 (P/Q-type)
and CaV2.2 (N-type) channels, which differ in their
properties. Their relative contribution to synaptic
transmission changes during development and tunes
neurotransmission during synaptic plasticity. The
mechanism of differential recruitment of CaV2.1 and
CaV2.2 to release sites is largely unknown. Here, we
show that the presynaptic scaffolding protein
Bassoon localizes specifically CaV2.1 to active zones
via molecular interaction with the RIM-binding pro-
teins (RBPs).AgeneticdeletionofBassoonoranacute
interference with Bassoon-RBP interaction reduces
synaptic abundance of CaV2.1, weakens P/Q-type
Ca2+current-driven synaptic transmission, and results
in higher relative contribution of neurotransmission
dependent on CaV2.2. These data establish Bassoon
as a major regulator of the molecular composition of
the presynaptic neurotransmitter release sites.

INTRODUCTION

Evoked neurotransmitter release from presynaptic boutons is

based on depolarization-induced fusion of synaptic vesicles

(SV) with the cell membrane at the active zone. The mediator be-

tween membrane depolarization and SV exocytosis is the diffus-

ible Ca2+ ion, which enters the presynaptic boutons through

voltage-dependent Ca2+ channels (CaVs) (Catterall and Few,

2008). The density of CaVs at the active zone is a major determi-

nant of the presynaptic efficacy of individual synapses (Sheng

et al., 2012). Due to the relatively low intracellular level of free
Ca2+, there is a steep concentration gradient around the open

CaV pores. Rapid and reliable synchronous release of neuro-

transmitter therefore requires exact localization of CaVs relative

to the exocytic machinery, which is achieved by a process

named positional priming (Neher and Sakaba, 2008). The com-

ponents of the presynaptic cytomatrix at the active zone (CAZ),

in particular Rab3-interacting molecule (RIM) and RIM-binding

protein (RBP), and the a2d and b auxiliary subunits of CaVs con-

trol the abundance and positional priming of CaVs at the synapse

in Caenorhabditis elegans, in Drosophila, and in mammals (Graf

et al., 2012; Gundelfinger and Fejtova, 2012; Hibino et al., 2002;

Hoppa et al., 2012; Kaeser et al., 2011; Kiyonaka et al., 2007; Liu

et al., 2011; Saheki and Bargmann, 2009; Südhof, 2012). At hip-

pocampal synapses, CaV2.1 and CaV2.2 pore-forming subunit-

containing channels are the main presynaptic sources of Ca2+

influx mediating P/Q- and N-type currents, respectively (Luebke

et al., 1993; Takahashi and Momiyama, 1993). The proportional

contribution of CaV2.1 and CaV2.2 to neurotransmitter release

varies among individual synapses (Ariel et al., 2012) and deci-

sively shapes synaptic transmission and plasticity (Ahmed and

Siegelbaum, 2009; Fedchyshyn and Wang, 2005). Interference

with RIM, a2d, and b equally affects the localization of both abun-

dant presynaptic CaVs (Han et al., 2011; Hoppa et al., 2012;

Kaeser et al., 2011) raising questions about mechanisms of dif-

ferential recruitment of CaV2.1 and CaV2.2 to release sites, which

mechanistically underlies rapid changes of presynaptic efficacy

during synaptic plasticity (Ahmed and Siegelbaum, 2009).

Here, we report on the physical interaction of the presynaptic

CAZ protein Bassoon with RBP. Via this interaction, Bassoon

functions in localizing of CaV2.1, without affecting the positioning

of CaV2.2. Interference with Bassoon expression or its interac-

tion with RBP affects synaptic recruitment of CaV2.1 and eventu-

ally decreases the relative contribution of CaV2.1-mediated

synaptic transmission. We suggest that Bassoon controls the

molecular composition of release sites through specific func-

tional capturing of CaV2.1 and thereby contributes to the deter-

mination of presynaptic efficacy of individual synapses.
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Figure 1. Bassoon Interacts with RBPs

(A) The position of the RBP-interaction interface in

Bassoon and the extension of Bassoon fragments

used in Y2H screening and interaction studies are

depicted. Black bars represent constructs inter-

acting with SH3 domain-containing constructs of

RBP1 and RBP2.

(B) Recruitment assay in COS7 cells with mito-

targeted EGFP-RBP2-SH3I for mRFP-Bsn10

bearing the RBP-binding motif, but not with

mRFP-Bsn10* containing three point mutations in

the binding motif (RTLPSPP / ATLASPA; see

also Figure S1). Scale bar represents 10 mm.

(C) Myc-RBP2 can be coimmunoprecipitated with

GFP antibodies when coexpressed with EGFP-

Bsn10, but not with EGFP-Bsn10* or with EGFP

alone. Antibodies used for immunodetection on

western blots (WB), position of bands corre-

sponding to proteins of interest and size markers

are indicated.

(D) Binding characteristics of RBP-SH3 domains

to the RTLPSPPmotif of Bassoon in Y2H andmito-

targeting assays.

Abbreviations: Zn1/2, zinc fingers; CC1-3, coiled-

coil regions; PBH1-10, Piccolo-Bassoon homo-

logy regions; SH3, src homology domain 3; FNIII,

three contiguous fibronectin-type III domains,

numbers in brackets correspond to included aa

residues of rat Bassoon and RBPs.
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RESULTS

SH3 Domains of RBP Interact with PXXP Motif of
Bassoon
Initially, we isolated a RBP1 clone bearing sequence down-

stream of amino acid residues (aa) 1,357 in a yeast-2-hybrid

(Y2H) screen with the bait fragment Bsn7 covering aa 2,715–

3,013 of rat Bassoon. In subsequent Y2H system-based

interaction assays we narrowed down the interacting region

to the RTLPSPP sequence (aa 2,889–2,895) of Bassoon, which

resembles the consensus interaction motif (RXFPXFP) for

class-I src homology 3 (SH3) domains (Mayer, 2001) (Fig-

ure 1A). Consistently, mutation of the RBP-binding site within

Bassoon to ATLASPA abolished the interaction completely

both in Y2H and cellular corecruitment assays (Figure 1B and

Figure S1 available online). The mutation also interfered with

coimmunoprecipitation of fragment Bsn10 (aa 2,821–3,013)

with overexpressed RBP2 in HEK293T cells (Figure 1C).

RBPs contain an N-terminal SH3I and a tandem of SH3II+

SH3III domains at the C terminus (Figure 1D). SH3I and single
182 Neuron 82, 181–194, April 2, 2014 ª2014 Elsevier Inc.
and tandem SH3II+III domains of

RBPs bind to Bassoon in Y2H and in

cellular corecruitment assays (Figures

1D and S1).

RBP Can Link Bassoon with CaVs
SH3 domains of RBPs bind to the PXXP

motif in the C-terminal region of the a1

pore-forming subunit of retinal presyn-

aptic L-type channels (CaV1.3). This motif
is conserved in CaV2.1 and CaV2.2 (Figure 2A) (Hibino et al.,

2002). RBPs having multiple SH3 domains are potentially

capable to interact simultaneously with CaVs and Bassoon to

function as a molecular linker between the presynaptic cytoma-

trix and Ca2+ channels. To test this hypothesis, we performed

coimmunoprecipitations from HEK293T cells expressing PXXP

motif containing fragments of Bassoon (mRFP-Bsn10) and

CaV2.1 (EGFP-CaV2.1) and myc-tagged full-length RBP2 using

specific GFP antibodies. HEK293T cells do not express

Bassoon, CaV2.1, or RBP2 endogenously. We could efficiently

coprecipitate the Bassoon fragment with EGFP-CaV2.1 only

when RBP2 was coexpressed, confirming that RBP2 can

interact with PXXP motifs of Bassoon and CaV2.1 and function

as amolecular linker between these proteins (Figure 2B). Further,

we expressed EGFP-Bsn10 and its RBP binding-deficient

mutant (EGFP-Bsn10*), which differs only by the substitution of

3 aa in the RBP-binding motif (RTLPSPP/ ATLASPA), together

with myc-tagged full-length RBP2 and PXXP motif-containing

fragment of CaV2.1 in COS7 cells, which also do not express

detectable levels of Bassoon, CaV2.1, or RBP2 endogenously.
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Figure 2. RBP Can Physically Link Bassoon

with CaV2.1

(A) Domain structure of RIMs (a-isoforms with Zn-

zinc fingers, PDZ domain, C2 domains C2A and

C2B) and of CaVs; locations of RBP-binding PXXP

motifs are indicated.

(B) Coexpression of RBP2 is required to copreci-

pitate PXXP motif-bearing recombinant fragments

of Bassoon and CaV2.1 from HEK293T cell lysates

with GFP antibodies. Size markers are given

in kDa.

(C) PXXP-motif-containing fragment of CaV2.1 is

recruited by Bsn10 only when full-length RBP2 is

coexpressed in COS7 cells (upper row). Absence

of RBP2 or mutation of the PXXP motif in Bsn10*

interferes with corecruitment of CaV2.1 (middle

and lower row, respectively). Regions in squares

are shownmagnified in the upper left insert of each

image. Scale bar represents 20 mm in overview and

5 mm in inset.

(D) Sensorgrams showing binding and dissocia-

tion of RBP2-SH3I from chip with immobilized His-

Trx, Bsn10, and mutated Bsn10* proteins.

(E) Quantification of in vitro binding of SH3I or

SH3II+III of RBPs to immobilized PXXP-containing

motifs of Bsn, RIM1, CaV2.1, and CaV2.2. Bars

represent mean ± SEM.

See also Figure S2.
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Both EGFP-Bsn10 and EGFP-Bsn10* are localized in cytosolic

clusters, when expressed in heterologous cell lines (Figure 2C).

mRFP-CaV2.1 and myc-RBP2 were efficiently recruited into

these clusters in cells expressing EGFP-Bsn10, but not those

expressing EGFP-Bsn10* (Figure 2C). Importantly, mRFP-

CaV2.1 was only recruited to EGFP-Bsn10, when myc-RBP2

was coexpressed (Figure 2C, middle row). Together these

experiments strongly support our notion that RBPmight function

as a hub linking multiple PXXP motif-containing proteins such as

Bassoon and CaV2.1.
Neuron 82, 181–
Bassoon Binds Preferentially to
SH3I of RBPs
The SH3II domain of RBPs mediates

interaction with RIMs (Wang et al.,

2000), proteins implied in the recruitment

of presynaptic Ca2+ channels to release

sites (Südhof, 2012). This interaction is

mediated by a PXXP motif of RIM (Fig-

ure 2A), which can bind to the SH3 do-

mains of RBP1 and RBP2 and contributes

to the recruitment of CaVs to the release

sites (Kaeser et al., 2011; Wang et al.,

2000). To assess if and how RBPs with

their three SH3 domains integrates multi-

ple PXXP motif-bearing proteins, we per-

formed quantitative binding assays with

purified recombinant proteins utilizing

surface plasmon resonance technology.

Fragments containing extended SH3I do-

mains of RBP1 or RBP2 and fragments

containing the SH3II and SH3III of the
RBPs (SH3II+III) exhibited considerable PXXP interactions and

thus were used to quantitatively evaluate the binding to immobi-

lized 6xHis-Thioredoxin (His-Trx)-tagged fusion proteins con-

taining PXXP motifs of Bassoon (Bsn12), RIM1, CaV2.1, and

CaV2.2 (Figure 2E). Bsn12* containing the mutated PXXP motif

was immobilized in a control experiment, which resulted in

responses not significantly different from background responses

induced using immobilized His-Trx control proteins (Figure 2D).

We introduced inactivating point mutations into the second,

third, or both SH3 domains in the SH3II+III construct to assess
194, April 2, 2014 ª2014 Elsevier Inc. 183
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the contribution of SH3II and SH3III to the binding (Figure S2). To

correct for different molecular weights of GST-fusion proteins

used, molar binding activities (MBAs) were calculated for each

interaction pair. The first SH3 domain of both RBPs bound

Bsn12 but showed basically no interaction with other PXXP-

containing fragments (Figure 2E). Bsn12 bound with comparable

strength to SH3II+SH3III, which also interacted with RIM1 and

CaVs (Figure 2E). The inactivating mutation of SH3III in the

SH3II+SH3III fragment completely prevented binding of Bsn12,

whereas CaVs and RIM1 still could bind, though clearly less

efficiently in the case of RBP2 (Figure S2). Taking these results

together and assuming equimolar ratios of all studied proteins

(Holderith et al., 2012), we suggest that Bassoon occupies

most likely the first SH3 domain, whereas CaVs and RIM1 may

bind to the C-terminal SH3 domains. Thus RBPs can accommo-

date simultaneous binding of Bassoon and CaVs.

Bassoon Localizes CaV2.1, but Not CaV2.2, via Its
Interaction with RBP
To test whether Bassoon, RBP, and CaVs can interact in

neurons, we performed colocalization and coprecipitation

experiments (Figure 3). Multimolecular complexes containing

Bassoon, RBP2, and CaV2.1 were precipitated with specific

antibodies against Bassoon and CaV2.1 from synaptosomal

fractions of adult rat brain (Figure 3B) providing evidence for

the existence of a tripartite Bassoon-RBP2-CaV2.1 complex in

neurons. Moreover, immunostaining of cultured hippocampal

neurons with antibodies against Bassoon, RBP2, and CaV2.1

or CaV2.2 revealed colocalization of all three components in indi-

vidual synapses (Figure 3A). Nearly all RBP2-positive, CaV2.1-

positive, or CaV2.2-positive synaptic puncta also contained

Bassoon immunoreactivity (Figures 3A and 3C; RBP2: 91% ±

1%, Cav2.1: 94% ± 1%, Cav2.2: 93% ± 1%, n = 15 cells from

three independent experiments), what is consistent with the

presence of Bassoon in most synapses (Altrock et al., 2003).

The expression levels of presynaptic proteins vary significantly

between individual synapses (Lazarevic et al., 2011). To assess

whether synaptic recruitment of Bassoon, RBP2, and CaVs is

interdependent, we first compared expression levels of the

four proteins at individual synapses by measuring immunofluo-

rescence (IF) intensities for Bassoon, RBP2, CaV2.1, and

CaV2.2 in presynaptic boutons identified by antisynapsin stain-

ing. We calculated Pearson’s correlation coefficient (Pearson’s

r), expressing the degree of linear interdependence of variables,

for intensities of Bassoon and CaVs or RBP2 at individual

synapses for each cell. Bassoon-CaV2.1 and Bassoon-RBP2

correlated with remarkably high Pearson’s r (0.61 ± 0.03 and

0.65 ± 0.02, respectively) and differed significantly from that of

Bassoon-CaV2.2 (0.32 ± 0.03, n = 10 cells from two independent

experiments, p < 0.001, ANOVA, Bonferroni posttest; Figure 3D).

This illustrates a stronger dependence of RBP2 and CaV2.1

levels on Bassoon at individual synapses compared to CaV2.2,

which might be due to the Bassoon-dependent recruitment or

retention of RBP and CaV2.1, but not of CaV2.2, in presynaptic

boutons. Thus, coprecipitation of Bassoon, CaV2.1, and RBP2

from brain tissue and covariance of expression levels of

Bassoon, CaV2.1, and RBP2 strongly suggest that RBP links

Bassoon with CaV2.1 in vivo.
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To further explore the possibility that Bassoon controls sub-

cellular localization of CaVs in neurons, we stained for endoge-

nous RBP2, CaV2.1, and CaV2.2 in neurons transfected with

EGFP-tagged Bassoon (GFP-Bsn). GFP-Bsn localizes to synap-

ses and forms ectopic clusters in the cytoplasm of transfected

neurons (Dresbach et al., 2003). We observed robust corecruit-

ment of endogenous RBP2 and CaV2.1, but not of CaV2.2, to

these cytoplasmic GFP-Bsn clusters (Figure 3E) supporting a

role of Bassoon in localizing of CaV2.1. Overexpressed GFP-

Bsn* mutated in the RBP-binding motif fully mirrored the locali-

zation of GFP-Bsn in neurons, but completely failed to corecruit

both RBP2 and CaV2.1 (Figure 3E). This suggests that an intact

RBP2-interaction interface in Bassoon is necessary for the spe-

cific recruitment of P/Q-type channels to the clusters. If Bassoon

plays a role in physiological recruitment of CaV2.1 to synapses,

then overexpression of GFP-Bsn should result in an increased

recruitment of CaV2.1 to synaptic sites. To analyze this we calcu-

lated Pearson’s r for IF intensity of GFP and levels of endogenous

RBP2 and CaV2.1 at individual synapses of neurons expressing

GFP-Bsn or GFP-Bsn*. Pearson’s r of IF levels for RBP2 and

CaV2.1 were significantly higher in synapses expressing GFP-

Bsn compared to synapses expressing GFP-Bsn* (Figures S3A

and S3B). This is in line with the proposed role for Bassoon’s

PXXP motif in mediating the interaction with RBPs. Pearson’s r

values were lower for immunoreactivity for CaV2.2 or Piccolo

and GFP-Bsn IF levels and did not differ when compared to

GFP-Bsn* expressing synapses. This argues for a specific syn-

aptic recruitment of CaV2.1 and RBP2 by overexpressed

Bassoon and suggests that Bassoon controls synaptic localiza-

tion of RBP2 andCaV2.1 in neurons bymechanisms requiring the

intact PXXP motif that mediates its interaction with RBPs.

Bassoon Is Required for Normal Recruitment of CaV2.1
to Synapses
To confirm the preference of Bassoon for CaV2.1 over CaV2.2

apparent from specific recruitment of CaV2.1 in GFP-Bsn ex-

pressing neurons and to further assess the role of Bassoon in

the synaptic localization of RBP2 and CaV2.1, we analyzed the

effect of Bassoon deletion on synaptic localization of these

proteins. To this end, we prepared dissociated hippocampal

cultures, where neurons from Bsn-deficient (Bsn�/�) mice (Hal-

lermann et al., 2010) and their wild-type (WT) siblings were

coplated in a 1:1 ratio and grown for 23 days in vitro (DIV). The

cultures were immunostained with specific antibodies, IF levels

of RBP2, CaVs, and synaptophysin were measured at individual

synapses defined by synapsin staining and compared in

Bassoon-containing versus Bassoon-lacking synaptic boutons

(Figures 4A and 4B). As Bassoon can be detected in >90% of

synapses of WT neurons (Lazarevic et al., 2011) staining against

Bassoon is a reliable way to discriminate between synapses

formed by neurons fromWT and from Bsn�/� animals. We found

a significant reduction of immunoreactivity for RBP2 (0.84 ± 0.03

in Bsn�/� versus 1 ± 0.03 WT, values normalized to WT cells; n =

18 cells, p < 0.0001, two-tailed t test, four independent experi-

ments) and for Cav2.1 (0.71 ± 0.03 versus 1 ± 0.05, n = 18, p <

0.0001) at synapses of Bsn�/� neurons. No significant decrease

was detected for immunostaining intensity of Cav2.2 (0.93 ±

0.04 versus 1 ± 0.06; n = 18, p = 0.32) or synaptophysin



Figure 3. Bassoon Is Linked toCaV2.1, but Not CaV2.2,

via Interaction with RBP

(A) Staining of hippocampal neurons (DIV21) with antibodies

against Bassoon, RBP2, CaV2.1, and CaV2.2 (grayscale

images) demonstrates their colocalization (colored overlay

images; arrows) in individual synapses. The color code

corresponds to lettering in grayscale image. Regions shown in

high magnification are boxed. Scale bars represent 20 mm in

overview and 5 mm in insets.

(B) Protein complexes containing Bassoon, RBP2, and Cav2.1

were isolated from brain synaptosomal fractions with anti-

bodies against Bassoon and CaV2.1, but not with control

rabbit IgGs. Position of bands corresponding to proteins of

interest are indicated.

(C) Quantification of colocalization of Bassoon in synaptic

puncta immunoreactive for RBP, CaV2.1, and CaV2.2. Bars

show mean ± SEM. Values in bars indicate number of

analyzed cells.

(D) Correlation of IF intensity for RBP2, CaV2.1, and CaV2.2

with Bassoon at individual synapsin-positive presynapses.

Bars show mean ± SEM; ***p < 0.001, n.s. p > 0.05. Values in

bars indicate number of analyzed cells.

(E) Cytoplasmic clusters formed by overexpressed GFP-Bsn

recruit endogenous RBP2, CaV2.1, but not CaV2.2. This

recruitment depends on the presence of an intact RBP-

binding site on Bassoon and does not occur with RBP-

binding-deficient GFP-Bsn*. Large images show overviews of

neurons overexpressing GFP-Bsn and their counterstains

with antibodies against RBP2 or CaV2.1. Higher magnification

of cytoplasmic GFP-Bsn clusters formed in transfected

neurons are boxed. The color images display overlays of GFP-

fluorescence (green) and immunostaining (magenta) for

proteins of interest. Corecruitment with GFP-Bsn is observed

for RBP2 and CaV2.1, but not for CaV2.2. Scale bars represent

20 mm in overview and 5 mm in insets. See Figure S3 for

enrichment of RBP2 and Cav2.1 in synapses overexpressing

GFP-Bsn.
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Figure 4. Bassoon Regulates Synaptic Recruitment of RBP2 and CaV2.1 Without Affecting CaV2.2

(A) Staining of mixed neuronal cultures fromBsn�/� andWTmice with antibodies against Bassoon, synapsin, and RBP2 (1st row) or CaV2.1 (2nd row), CaV2.2 (3rd
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(legend continued on next page)
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(0.92 ± 0.06 versus 100 ± 5, n = 18, p = 0.38). The decrease of

RBP2 and CaV2.1, but not of CaV2.2 or synaptophysin was

also observed when Bsn�/� and WT neurons were plated sepa-

rately and grown in parallel (data not shown). Thus, lack of

Bassoon expression affects specifically the presynaptic localiza-

tion of RBP2 and CaV2.1, but not that of CaV2.2.

Decreased levels of CaV2.1 in Bassoon-lacking synapses

might be due either to a defect in their synaptic localization or

to disturbed regulation of the expression of these channels.

The expression levels of CaV2.1 were similar in cell lysates pre-

pared form mature cultured hippocampal neurons from WT or

Bsn�/� animals as assessed by immunoblot analysis (Figure 4C).

To explore the possibility of perturbed synaptic recruitment in

absence of Bassoon, we examined the distribution of CaV2.1

and CaV2.2 between synapses and extrasynaptic (surface and

intracellular) membranous compartments in neurons from

Bsn�/� and WT mice. To this end, we stained hippocampal neu-

rons with antibody against CaVs and synapsin (to define synaptic

boutons) and measured IF intensities of CaVs staining either in

the mask formed by synaptic marker (syn) or in whole images

(total staining, tot). The total intensity of IF for the channels did

not differ in Bsn�/� and WT cells confirming the immunoblot

results. However, the syn/tot ratio was significantly lower in

Bassoon-lacking as compared to WT neurons for CaV2.1

(0.22 ± 0.02 in Bsn�/� versus 0.35 ± 0.03 in WT, n = 18, p =

0.001, two-tailed t test, three independent cultures; Figures

4D–4F). In contrast, the ratio did not differ significantly for

CaV2.2 (0.32 ± 0.03 versus 0.28 ± 0.02, n = 15, p = 0.224; Figures

4D, 4G, and 4H). Moreover, an inspection of the distribution of

staining in Bsn�/� and WT neurons showed a clearly increased

extrasynaptic IF for CaV2.1 in Bsn�/� neurons, while only low

extrasynaptic CaV2.1-IF was detected in WT neurons (IF inten-

sity line scans in Figures 4E–4H). These results imply that lack

of Bassoon leads to specific deficits in the localization of RBP2

and CaV2.1 to presynapses.

Acute Interference with Bassoon-RBP Interaction
Affects Synaptic Localization of CaV2.1 and Weakens
Synaptic Transmission
The reduction of synaptic levels of RBP2 and CaV2.1 might also

be a consequence of adaptive processes during development

induced by Bassoon deficiency in Bsn�/� neurons. To exclude

this possibility, we acutely interfered with Bassoon-RBP2 inter-

action in mature neurons (DIV23) prepared from newbornBsn�/�

mice and their WT siblings by means of 2 hr application of 1 mM

TAT-conjugated peptides mimicking either the RBP-binding site

on Bassoon sequence (aa 2,880–2,899; TAT-WT) or containing

the above-described 3 aa mutation in the RBP-binding site
(B) Quantification of IF intensities in Bsn�/� synapses normalized to mean IF of

in Bsn�/�.
(C) CaV2.1 expression in WT and Bsn�/� mature (23 DIV) hippocampal cell lysate

(D) Quantification of relative synaptic pool of CaVs measured as mean synaptic IF

plots (B and D) bars show mean ± SEM; ***p < 0.001; **p = 0.001; n.s. = p > 0.05

(E–H) Example images displaying the distribution of CaV2.1 (E and F) and CaV2.2

provide IF intensity for CaVs (red) and synapsin (black) along the line shown in the i

in WT than in Bsn�/� neurons. The distribution of CaV2.2 is not affected by Bass

See also Figure S3.
(TAT-RBM). TAT-WT, but not TAT-RBM peptide, efficiently inter-

fered with Bassoon-RBP2 binding in an in vitro competition

assay (Figure 5A) and did not significantly affect basicmembrane

properties of cultured hippocampal neurons (Figure S4). A slight

change is observed for the half-width of action potentials what

may indicate an effect of the TAT peptides on presynaptic

Ca2+ influx, however, neither TAT-RBM nor TAT-WT cause sig-

nificant differences from controls (Figure S4E). The effect of

TAT-peptides on the synaptic recruitment of RBP2 and CaV2.1

via Bassoon was assessed by measuring IF levels at individual

synapses as described above. Treatment with TAT-WT, but

not with TAT-RBM, induced a significant acute reduction of

RBP2 and CaV2.1 levels in neurons from WT mice (RBP2:

0.77 ± 0.05 versus 1 ± 0.05, TAT-WT versus TAT-RBM, n = 19

versus 18 cells, p < 0.001, ANOVAwith Bonferroni posttest, three

independent experiments; Cav2.1: 0.69 ± 0.05 versus 1 ± 0.05,

n = 24 versus 23, p < 0.001; Figures 5B–5D). The same treatment

had no effect on synaptic localization of CaV2.2 (0.94 ± 0.08

versus 1 ± 0.06, n = 16 versus 19, p > 0.05; Figure 5E). A similar

effect was seen after treatment of neurons derived from embry-

onic rats (data not shown). Importantly, the application of the

TAT-WT had no effect on synaptic levels of RBP2 or CaVs in

the neurons from Bsn�/� mice (RBP2: 0.71 ± 0.06 versus

0.67 ± 0.05, TAT-WT versus TAT-RBM, normalized to respective

IF in WT cultures, n = 20 versus 20, p > 0.05, ANOVA with

Bonferroni posttest; CaV2.1: 0.48 ± 0.04 versus 0.52 ± 0.04,

n = 25 versus 24, p > 0.05; CaV2.2: 1.15 ± 0.1 versus 0.99 ±

0.06, n = 15 versus 24, p > 0.05; Figures 5B–5E). This indicates

that the effect of TAT-WT is exclusively dependent on Bassoon

and not due to interference with the interaction of the SH3

domain of RBP with RIM or CaVs.

Having shown the specificity of TAT peptides for Bassoon-

dependent recruitment of CaVs, we used them to test the role

of the Bassoon PXXP motif in synaptic transmission. To this

end, we applied the TAT-WT and TAT-RBM peptides to acute

hippocampal slices and recorded field excitatory postsynaptic

potentials (fEPSP) in the stratum radiatum of the hippocampal

CA1 region evoked by Schaffer collateral stimulation (Figure 5F).

At these synapses, transmission relies predominantly on Ca2+

influx through CaV2.1 and CaV2.2, which (Luebke et al., 1993;

Wu and Saggau, 1994). We observed a significant reduction of

normalized fEPSP slopes in slices treated with TAT-WT

compared to those treated with TAT-RBM (48.1% ± 11.8% of

TAT-RBM, n = 8, p = 0.0032; Figures 5G and 5H). Importantly,

a comparable reduction of synaptic transmission by TAT-WT

peptide was also seen upon pharmacological isolation

of CaV2.1-driven transmission using the specific blocker of

CaV2.2 u-conotoxin GVIA (Cono, 45.2% ± 5.8% of TAT-RBM,
WT synapses. Note selective reduction of synaptic RBP2 and CaV2.1 levels

.

normalized to total IF measured along neurites of WT and Bsn�/� cells. In both

. Values in bars indicate number of analyzed cells.

(G and H) in neurons from WT (E and G) and Bsn�/� (F and H) mice. Line scans

nsets. Note the higher confinement of immunoreactivity for CaV2.1 to synapses

oon deficiency. Scale bars represent 10 mm in overview and 2.5 mm in insets.
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Figure 5. Interference with Bassoon-RBP Interaction Impairs Synaptic Localization of CaV2.1 and Diminishes CaV2.1-Mediated Synaptic

Transmission

(A) Lysates from cells expressing myc-RBP2 and EGFP-Bsn10 fragments were incubated with increasing concentrations of TAT-WT or TAT-RBM control

peptides before coprecipitation. EGFP-Bsn10 was successfully precipitated in all samples. Increasing concentrations of TAT-WT peptide interfered with the

coprecipitation of Myc-RBP2, whereas the TAT-RBM had no effect. Positions of bands corresponding to proteins of interest are indicated.

(B–E) Treatment of neurons with TAT-WT peptide leads to reduction of CaV2.1 (B and C) and RBP2 (D) IF levels at WT but not Bsn�/� synapses. (E) CaV2.2 levels

are unaffected. (B) Example stains for CaV2.1 in WT and Bsn�/� neurons treated with TAT-WT and TAT-RBM. Scale bar represents 5 mm. Quantification of IF

intensities for CaV2.1, RBP2, and CaV2.2 at individual synapses of WT and Bsn�/� neurons treated with either peptide and normalized to IF inWT cultures treated

with the control peptide is shown in (C–E).

(F) fEPSPs were recorded from the stratum radiatum of the hippocampal CA1 region upon Schaffer collateral stimulation.

(G) Sample average traces from slices incubated with TAT-WT or TAT-RBM peptides without inhibitors (CTRL) or in the presence of u-conotoxin GVIA (Cono) or

u-agatoxin IVA (Aga). Vertical scale bar from top to bottom 0.4, 0.4, and 0.2 mV, horizontal 10 ms.

(H) fEPSPs were significantly reduced upon TAT-WT incubation without toxins and upon isolation of CaV2.1 driven-transmission using conotoxin, but not if

transmission relied primarily on CaV2.2 in the presence of agatoxin. Values were normalized to transmission in slices incubated with control peptides. In all plots,

***p < 0.001; **p < 0.01; *p < 0.05; n.s. = p > 0.05. Values in bars indicate number of cells or slices analyzed.

See also Figure S4.
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n = 11, p < 0.001; Figures 5G and 5H). This suggested that trans-

mission relying on Ca2+ influx through CaV2.1 is affected. In

contrast, the transmission component dependent on CaV2.2

(isolated by u-agatoxin IVA, Aga) was similar in TAT-WT- and

TAT-RBM-treated slices. As CaV2.1 and CaV2.2 do not

contribute to dendritic signaling in CA1 pyramids (Higley and

Sabatini, 2008), changes in release efficiency explain this data

most plausibly. Again, this pointed to the specific regulation of

CaV2.1-dependent transmission by the Bassoon-RBP inter-

action (85.2% ± 20.7%, n = 5, p = 0.51, Aga versus Cono:

p = 0.025; Figure 5H).
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Bassoon Controls via Its Interaction with RBP
Specifically the Contribution of CaV2.1 to Synaptic
Vesicle Exocytosis
To investigate the effect of aberrant localization of RBP2 and

CaV2.1 in Bsn�/� synapses on synaptic vesicle exocytosis, we

first visualized efficiency of synaptic vesicle recycling in indi-

vidual synapses by means of uptake of anti-synaptotagmin-1

antibody (Stg1Ab) in living neurons (Kraszewski et al., 1995; Laz-

arevic et al., 2011). This antibody recognizes the lumenal domain

of synaptotagmin-1 and, if applied to media, gets internalized

during vesicle recycling that follows each fusion event. Using
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Figure 6. Vesicle Recycling Mediated by

CaV2.1 Depends on Bassoon-RBP Binding

(A) GFP-Bsn and GFP-Bsn* do not differ in their

synaptic targeting inBsn�/� neurons. Arrows show

synapses of neurons expressing GFP fusion pro-

tein. Uptake of synaptotagmin luminal antibodies

(Stg1 AB) is detected. Scale bar represents

2.5 mm.

(B) Stg1Ab-uptake is reduced in Bsn�/� compared

to WT synapses and can be rescued in synapses

expressing Bsn-GFP, but not in cells expressing

GFP-Bsn*.

(C) Quantification of Stg1Ab-uptake in cultures

from Bsn�/� and WT mice without toxin treatment

or after u-conotoxin GVIA (Cono), u-agatoxin IVA

(Aga), or tetrodotoxin (TTX) application. Values

were normalized to uptake in nontreated WT

cultures. In all plots bars showmean ± SEM; ***p <

0.001; **p < 0.01; *p < 0.05; n.s. = p > 0.05. Values

in bars indicate number of cells analyzed.

See also Figure S5.
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this technique the pool of vesicles exocytosed during a period of

time can be measured as fluorescence intensity of antibody

taken up. The endogenous network activity-driven Stg1Ab

uptake was significantly lower in Bsn�/� neurons than in WT

neurons (CTRL: 446 ± 15 versus 777 ± 19 AU, Bsn�/� versus

WT, n = 7 cells; p < 0.001, one-way ANOVAwith Bonferroni post-

test; replicated in two independent experiments; Figures 6A–6C

and S5A). This defect was not due to the changes in network

activity in the absence of Bassoon and was fully dependent on

cell-autonomous functions of Bassoon as transfection of

scattered single neurons in culture from Bsn�/� animals with

GFP-Bsn completely rescued vesicle recycling (730 ± 14 AU;

Figures 6A and 6B). Importantly, expression of recombinant

GFP-Bsn*, bearing the mutated RBP-binding PXXP motif, could

not rescue the recycling defect and was statistically not different

from nontransfected Bsn�/� neurons (407 ± 12 AU; Figures 6A

and 6B). This strongly supports our notion that Bassoon controls

neurotransmitter release via its RBP-mediated recruitment of

CaVs to release sites.

To assess whether specific decrease in synaptic levels of

CaV2.1 in Bassoon-lacking neurons lead to a decrease in

CaV2.1-driven exocytosis of synaptic vesicles, we quantified

Stg1Ab uptake upon pharmacological block of CaV2.1 or

CaV2.2 using specific toxins. The Stg1Ab uptake in neurons

treated with CaV2.2 blocker u-conotoxin GVIA resulting in

merely CaV2.1-dependent neurotransmission was significantly

lower in Bsn�/� neurons compared to WT (CTRL: 689 ± 22

versus 904 ± 47 AU, Bsn–/– versus WT, n = 20 cells; p < 0.001,

Cono: 396 ± 24 versus 543 ± 31, n = 20, p < 0.01; one-way

ANOVA with Bonferroni posttest, two independent experiments;

Figures 6C and S5B). In contrast, the uptake in neurons treated

with u-agatoxin IVA that blocks specifically CaV2.1 did not differ

significantly (Aga: 475 ± 17 versus 400 ± 36, n = 20, p > 0.05; TTX:

130 ± 22 versus 205 ± 26 WT, n = 20, p > 0.05; Figures S5C and

S5D). This implies that release driven by Ca2+ influx through

CaV2.1 is strongly reduced in absence of Bassoon, whereas
CaV2.2-driven release stays unaffected. This supports the view

of an important role of Bassoon in the functional recruitment of

CaV2.1 into presynaptic release sites.

Synaptic Transmission Relies More on CaV2.2 upon
Bassoon Deletion
To test whether the aberrant synaptic localization of CaV2.1 in

Bsn�/� neurons alters the synaptic transmission properties, we

performed patch-clamp recordings from cultured hippocampal

neurons from Bsn�/� and WT mice. We observed a significant

decrease of spontaneous mEPSC frequency in Bsn�/� neurons

(interevent interval: 145 ± 26 versus 476 ± 80 ms, WT versus

Bsn�/�, n = 8 versus 11, p < 0.0001, Kolmogorov-Smirnov test;

Figure 7A). This might be due to a reduction either in the number

of synapses or in synaptic release probability in Bsn�/� mice. To

test this we calculated the density of excitatory synapses on

20 mm long proximal (10–30 mm from the cell body) and distal

dendritic segments (60–80 mm) in neurons stained with anti-

bodies against synapsin, vGLUT, and homer. No significant

differences were observed (proximal dendrites: 2.2 ± 0.1 versus

2.1 ± 0.1; distal: 2.4 ± 0.1 versus 2.3 ± 0 synapses/10 mm, WT

versus Bsn�/�, n = 7 cells each). This suggests that the observed

reduction in the spontaneous mEPSC frequency in Bsn�/� likely

reflects lower synaptic release probability, what is consistent

with reduced Stg1Ab uptake observed in these cultures. The

amplitudes of mEPSC were not changed significantly (15.4 ±

1.2 versus 13.3 ± 1.0 pA,WT versusBsn�/�, n = 8 and 11 animals,

p = 0.081, Kolmogorov-Smirnov test; Figure 7B), however, their

kinetic properties differed slightly (Figures 7B, inset, and S6A).

This might reflect modifications in the postsynaptic receptor

apparatus of cultured Bsn�/� neurons as reported previously

(Ghiglieri et al., 2009).

Next, we assessed whether the Bassoon deletion affects the

relative contribution of CaV2.1 and CaV2.2 to evoked synaptic

transmission in the same preparation. We measured transmis-

sion between paired cells before and after applying specific
Neuron 82, 181–194, April 2, 2014 ª2014 Elsevier Inc. 189
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Figure 7. Reduced Contribution of CaV2.1 to Synaptic Transmission

in Bsn–/– Mice

(A and B) Analysis of spontaneous neurotransmission in cultures from Bsn�/�

andWT neurons. Cumulative distributions (mean values ± SEM) are plotted for

interevent intervals (IEI) (A) and amplitudes (B) of mEPSC.

(C) Quantification of evoked EPSCs before toxin addition and after

subsequent treatment of WT or Bsn�/� neurons withu-conotoxin GVIA (Cono)

or u-agatoxin IVA (Aga) or vice versa. eEPSCs amplitudes were normalized for

each cell to the response before addition of toxins. Note the higher sensitivity

to conotoxin and the lower sensitivity to agatoxin in Bsn�/� cultures (see also

Figure S6B).

(D) fEPSPs evoked by Schaffer collateral stimulation and recorded from the

stratum radiatum of the CA1 region were significantly reduced upon conotoxin

but increased upon agatoxin treatment in slices from Bsn�/� mice compared

to their WT siblings, suggesting a decrease in CaV2.1-driven and enhanced

contribution of CaV2.2 to synaptic transmission. Values were normalized to

fEPSPs measured in slices without toxin treatment on the same day (dashed

line). Values in bars indicate number of cells and slices analyzed. Bars repre-

sent mean ± SEM in all plots; **p < 0.01; *p < 0.05.
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channel blockers and calculated the toxin-induced inhibition of

transmission relative to initial transmission. Relative measure-

ments appeared more appropriate to us, considering high vari-

ability of coupling of individual neurons in dense mature (DIV

14–21) mass cultures used here. The blockage of CaV2.2 using

u-conotoxin GVIA revealed a significantly lower proportion of

transmission mediated by CaV2.1 in Bsn�/� neurons compared

with WT controls (36% ± 5% versus 54% ± 5% of transmission

before toxin addition, Bsn�/� versus WT, p = 0.0218, two-tailed

t test; Figures 7C and S6B). The proportional transmission in the

presence of u-agatoxin IVA, (mediated by CaV2.2) was also

slightly increased in absence of Bassoon (28% ± 8% versus

16% ± 4%, p = 0.17, two-tailed t test; Figure 7C).

To extrapolate the data obtained from cultured cells to orga-

nized brain tissue, we recorded field excitatory postsynaptic

potentials (fEPSP) in the stratum radiatum of the hippocampal

CA1 region evoked by Schaffer collateral stimulation in acute

slices from Bsn�/� and WT mice. In line with previous data

(Sgobio et al., 2010), the normalized fEPSP slope did not differ

between slices from Bsn�/� and WT littermates (WT versus
190 Neuron 82, 181–194, April 2, 2014 ª2014 Elsevier Inc.
Bsn�/�: 1.11 ± 0.16 versus 1.14 ± 0.17 ms�1, n = 17 versus 14

animals, p = 0.915, two-population t test). However, we

measured significantly decreased fEPSPs upon isolation of

u-conotoxin GVIA-resistant, CaV2.1-driven transmission in

Bsn�/� compared to WT (WT versus Bsn�/�: 0.60 ± 0.14 versus

0.17 ± 0.05 normalized to fEPSPs of nontreated slices of either

genotype, n = 5 versus 5, p = 0.035; Figure 7D). In contrast,

the u-agatoxin IVA-resistant transmission, relying on CaV2.2,

was significantly higher in Bsn�/� mice (WT versus Bsn�/�:
0.25 ± 0.05 versus 0.71 ± 0.12, n = 11 versus 10, p = 0.003; Fig-

ures 7D and S6C) suggesting enhanced involvement of CaV2.2 in

synaptic transmission in Bsn�/� animals. In summary, these

results strongly imply an important role of Bassoon specifically

controlling contribution of CaV2.1 to synaptic transmission.

Moreover, they suggest enhanced compensatory recruitment

of CaV2.2 in Bsn�/� animals leading to a recovery of evoked

transmission at Schaffer collaterals-CA1 synapses.

DISCUSSION

Here, we describe RBPs as a binding partner of Bassoon. This

interaction links Bassoon physically to RBP-interacting pre-

synaptic CaVs and functions in the specific recruitment of

CaV2.1-containing P/Q-type channels to active zones. Consis-

tently, we observed a decrease of CaV2.1 and RBP2 at synapses

of Bsn�/� neurons associated with a reduced CaV2.1-driven

synaptic vesicle exocytosis and CaV2.1-driven transmission in

hippocampal primary cultures and slices from Bsn�/� animals.

These findings place Bassoon as a new player in the complex

molecular machinery that controls coupling of CaVs to trans-

mitter release sites. Unlike the previously known CaV regulators,

which equally control both N- and P/Q-type channels (Gundelfin-

ger and Fejtova, 2012; Inchauspe et al., 2004; Kaeser et al.,

2011; Südhof, 2012), Bassoon functions specifically in the

recruitment of CaV2.1 to tune the exact arrangement of pre-

synaptic release sites.

Bassoon Is a Component of the RBP-Based Protein
Complex Organizing CaVs at Vesicular Release Sites
Various protein-protein binding assays identified the interaction

of an PXXP motif in the C-terminal part of Bassoon with SH3

domains of RBPs. RBPs are evolutionary conserved proteins

bearing three SH3 domains, which can interact with multiple

partners including RIMs and a-subunits of L-type, P/Q-type,

and N-type Ca2+ channels (Hibino et al., 2002; Kaeser et al.,

2011; Wang et al., 2000). Quantitative in vitro binding assays

comparing the binding of RBPs to their presynaptically localized

interaction partners revealed Bassoon as the virtually exclusive

binding partner of the first SH3 domain, whereas RIM1 and

CaV2.1, as well as CaV2.2, bound second and third domain.

Thus, RBPs can function as a molecular hub integrating binding

of Bassoon, RIMs, and CaVs to spatially and functionally couple

presynaptic CaVs to the CAZ surrounding docking and fusion

sites for SVs. The functional properties of presynapses including

their release probability or contribution of N- and P/Q-type cur-

rent to the release are highly variable between different cell types

and even along single axons (Ariel et al., 2012; Murthy et al.,

1997). Expression of RIMs and RBPs occurs frommultiple genes



Figure 8. RBP-Based Multiprotein Complex Organizes Presynaptic

Release Sites

The CAZ proteins RIM, RBP, and Bassoon and the auxiliary subunits of CaVs,

a2d, and b control synaptic localization of CaVs (Gundelfinger and Fejtova,

2012). RBPs link via their SH3 domains-mediated interactions Bassoon, RIM,

and CaVs to achieve efficient positional priming of synaptic vesicles (SV).

Bassoon is necessary for rapid replenishment of the release sites (Hallermann

et al., 2010) likely by SV tethering to active zones. RIM binds SV-associated

Rab3 (Südhof, 2012). Thus, the RBP-based multiprotein complex organizes

release sites by spatial and functional coupling of multiple steps of the

SV cycle.
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and involves complex splicing (Kaeser et al., 2008; Mittelstaedt

and Schoch, 2007; Wang and Südhof, 2003). It will be interesting

to investigate how the molecular diversity of RBP-based multi-

protein complexes contributes to this functional variability.

Serine-2893 included in the RBP-binding PXXPmotif of Bassoon

is phosphorylated in vivo (Collins et al., 2005; Munton et al.,

2007). Phosphorylation of PXXP motifs can influence their

binding to SH3 domains (Anggono et al., 2006). Accordingly,

phosphorylation of S2893 in Bassoon might represent a mecha-

nism of fast modulation of coupling of CaV2.1 to vesicular release

sites. While exclusive synaptic recruitment of CaV2.1 (but not

CaV2.2) by Bassoon in neurons was apparent throughout this

study, the molecular mechanism of this specificity is unclear so

far. The in vitro binding assay did not show any clear preference

of binding neither of Bassoon nor CaVs to one RBP isoform,

suggesting that more complex regulation takes place. A recent

proteomic study supported a preferential association of

Bassoon with CaV2.1-containing channels (Müller et al., 2010).

Future comparative analysis of molecular composition of

CaV2.1- and CaV2.2-containing complexes should help to tackle

this question.

Recruitment of CaVs to Vesicular Release Sites at CNS
Synapses
To date, active zone scaffolding proteins RIMs and RBPs

have been implicated in organizing vesicular release sites by

molecular linkage of Ca2+ channels, components of the release

machinery and synaptic vesicles (Kaeser et al., 2011; Kiyonaka
et al., 2007; Liu et al., 2011; Wang et al., 2000) (Figure 8).

Drosophila RBP (DRBP) links CaVs to Bruchpilot (BRP), the

main presynaptic scaffolding protein at larval neuromuscular

junctions. Loss of DRBP leads to reduction of presynaptic CaV
density and basically abolishes evoked neurotransmission (Liu

et al., 2011). A deletion phenotype of RBPs is unknown in

mammals, but it was suggested that RBPs link CaVs to release

sites via their interaction with RIMs, which in addition regulates

CaVs by a direct interaction (Hibino et al., 2002; Kaeser et al.,

2011; Wang et al., 2000). However, expression of a RIM deletion

construct in RIM1/2-deficient cells, which restores normal prim-

ing but leaves RIM-dependent CaV recruitment impaired, had

milder effects on evoked synaptic transmission compared

to severe defects in DRBP null mutants (Kaeser et al., 2011;

Liu et al., 2011). Similarly, in absence of Bassoon total transmis-

sion is only slightly affected (also due to compensation through

increased CaV2.2 as discussed later) but contribution of both

channels to transmission differs significantly. We observed

an �30% reduction of synaptic localization of CaV2.1 in Bsn�/�

synapses, what is comparable with the reduction seen in full

RIM1/2 knockout (i.e., 40%) (Kaeser et al., 2011) or in Drosophila

mutants for DRBP (25%) (Liu et al., 2011), DRIM (30%–40%)

(Graf et al., 2012) or Bruchpilot (40%) (Kittel et al., 2006). These

rather mild effects on CaV localization are likely due to multiple

interactions coregulating the synaptic recruitment and coupling

of CaVs (Figure 8). CAZ proteins likely mediate the exact posi-

tioning of CaVs relative to release sites, whereas the auxiliary

channel subunits b and a2d regulate the synaptic abundance

of CaVs mainly by controlling their trafficking to axons (Hoppa

et al., 2012; Kiyonaka et al., 2007). The observed redistribution

of CaV2.1 from synaptic to extrasynaptic pools in the absence

of functional Bassoon-RBP interaction suggests that Bassoon

acts probably in recruiting/retention of axonal CaV2.1 at synaptic

release sites. Additional factors regulating presynaptic availabil-

ity of CaVs might be neurexins and their interaction with

postsynaptic neuroligins (Missler et al., 2003). Altogether, multi-

ple targeting mechanisms coexist to assure proper synaptic

localization and function of presynaptic CaVs offering variable

modes of regulation to control the release properties at individual

synaptic boutons along axons.

Specific Recruitment of CaV2.1 by Bassoon
Removal of RIMs or b and a2d auxiliary subunits leads to a

decrease in total Ca2+ influxwithout altering the relative contribu-

tion of N- and P/Q-currents to synaptic transmission (Han et al.,

2011; Hoppa et al., 2012) implying a role for these proteins in

nonselective synaptic recruitment of presynaptic CaVs. In

contrast, Bassoon mediates specific recruitment of Cav2.1 to

synaptic sites. Consequently, as shown here, in the absence of

Bassoon function or acute interference with Bassoon-RBP inter-

action the relative contribution of CaV2.1 to synaptic transmis-

sion is decreased. Strikingly, while the total transmission was

reduced due to reduction of the CaV2.1-driven release upon

the acute interference with RBP-Bassoon binding, this decrease

was essentially compensated by increased functional recruit-

ment of CaV2.2 in mutant animals. This implies that vesicular

release sites normally coupled to CaV2.1 may switch to CaV2.2

if Bassoon-RBP interaction is disrupted during ontogenesis.
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This is consistent with the previous observation that CaV2.2 can

functionally replace CaV2.1 (Cao and Tsien, 2010; Jun et al.,

1999). It has been proposed that synapses possess CaV slots

of two types: CaV2.1 rejecting (occupied only by CaV2.2) and

CaV2.1 nonrejecting (occupied preferentially by CaV2.1) (Cao

et al., 2004; Cao and Tsien, 2010). We propose that Bassoon

specifies the CaV2.1 nonrejecting slots, whereas RIMs and b

and a2d auxiliary subunits associate with all slots. The contribu-

tion of N-type and P/Q-type currents to synaptic transmission

differs among brain synapses (Iwasaki et al., 2000) and is regu-

lated during development (Fedchyshyn and Wang, 2005; Scholz

and Miller, 1995) and processes of synaptic plasticity (Ahmed

and Siegelbaum, 2009). A differential recruitment of specific

channel types to release sites influences presynaptic release

probability and affects synaptic transmission as demonstrated

during long-term potentiation of hippocampal CA1 perforant

path synapses (Ahmed and Siegelbaum, 2009), during synapse

maturation in the calyx of Held (Fedchyshyn and Wang, 2005)

or in synapses where compensation by other channel types

occurs upon genetic deletion of the naturally occurring one

(Inchauspe et al., 2004, 2007). Thus, specific recruitment of

CaV2.1 by Bassoon might play an important role in fine-tuning

of synaptic transmission and occur during synaptic plasticity.

Different Roles for Bassoon in Regulating Synaptic
Transmission
Bassoon was functionally linked to Ca2+ channel function in pre-

vious studies showing an aberrant alignment of presynaptic

CaV1.3 at ribbon synapses of inner ear hair cells in Bsn�/�

mice (Frank et al., 2010; Jing et al., 2013). CaV1.3 binds RBPs

(Hibino et al., 2002) and thus could be regulated by Bassoon

via RBPs at these synapses. Moreover, the release site reusage

is decelerated in Bsn�/� mice (Frank et al., 2010; Hallermann

et al., 2010), what might be at least partially caused by delayed

release site reassembly due to impaired coupling to CaV2.1 in

the absence of Bassoon. Bassoon-mutant mice suffer from

rapidly generalizing epileptic seizures (Altrock et al., 2003; Ghi-

glieri et al., 2009). Mutations affecting function of CaV2.1 were

also associated with epilepsy (Rajakulendran et al., 2012) sug-

gesting that defect in CaV2.1-dependent synaptic transmission

might contribute to the epileptic phenotype of Bassoonmutants.

We observed a reduced spontaneous release from Bsn�/� neu-

rons, which can partially be explained by impaired CaV2.1

recruitment (Ermolyuk et al., 2013). Moreover, this observation

is in line with a reduction of the release-ready pool of synaptic

vesicles in the absence of Bassoon (Altrock et al., 2003; Jing

et al., 2013; Khimich et al., 2005). Although the underlyingmolec-

ular mechanism remains to be clarified, it supports the view that

the large presynaptic scaffold protein Bassoon is crucially

involved in the molecular linkage of multiple steps of neurotrans-

mitter release (Figure 8) mutually shaping presynaptic plasticity.
EXPERIMENTAL PROCEDURES

A detailed description of antibodies and other materials is provided in the

Supplemental Information. Detailed methods for the generation of DNA con-

structs, library screening and mapping of interaction sites with the Y2H sys-

tem, immunoblotting analyses and immunoprecipitation, surface plasmon
192 Neuron 82, 181–194, April 2, 2014 ª2014 Elsevier Inc.
resonance analyses, and electrophysiology are described in the Supplemental

Experimental Procedures.

Cell Culture and Treatment

Corecruitment assays in COS7 cells using themito-targeting systemwere per-

formed essentially as described (Fejtova et al., 2009). Preparation of primary

neurons from rat and mouse hippocampi and transfection using the Ca2+

phosphatemethod (rat) or Lipofectamine (mouse) are described in the Supple-

mental Information. Bsn�/� mice originating from Omnibank ES cell line

OST486029 by Lexicon Pharmaceuticals were described previously

(Hallermann et al., 2010). Immunostaining and synaptotagmin-antibody up-

take assays in neurons were done as described earlier (Lazarevic et al.,

2011). TAT-peptides (1 mM, TAT-WT: YGRKKRRQRRRPNGLVRKVKRTLPSP

PPEEA and TAT-RBM: YGRKKRRQRRRPNGLVRKVKATLASPAPEEA) were

added 2 hr before analysis directly to the culture medium. Details of treatment

and pharmacology are reported in the Supplemental Information.

Image Acquisition and Analysis

Images were acquired with a confocal microscope (SP5; Leica). Figures 1B,

3A, 3E, 4A, 4E–4H, S1A, S1B, and S3A equipped with LCS software (Leica)

or with an upright microscope (Axio Imager, Carl Zeiss). Figures 2C, 5B, 6A,

and S5A–S5D equipped with a CCD camera (CoolSNAP EZ, Photometrics)

and VisiView software (Visitron Systems GmbH).

In general, single images were acquired using camera or photomultiplier

settings identically applied to all samples quantified in one experiment.

Maximal projections of confocal stacks and threshold subtraction were done

using NIH ImageJ software. Synapse definition and IF intensity measurement

was performed semiautomatically using OpenView software (Tsuriel et al.,

2006) as described in detail in the Supplemental Information. Details on the

colocalization and synaptic density analysis, Pearson’s correlation coefficient

calculation, and measurement of synaptic and total IF for CaVs are provided in

the same section. Statistics were performed with Prism5 software (GraphPad

Software,) using one-way ANOVA or Student’s t test as indicated for each

experiment. All results of quantitative analyses are given as means ± SEM in

text and figures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2014.02.012.
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