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a b s t r a c t

In the problem of online time series search introduced by El-Yaniv et al. (2001) [1], a player
observes prices one by one over time and shall select exactly one of the prices on its arrival
without the knowledge of future prices, aiming to maximize the selected price. In this
paper, we extend the problem by introducing profit function. Considering two cases where
the search duration is either known or unknown beforehand, we propose two optimal
deterministic algorithms respectively. Themodels and results in this paper generalize those
of El-Yaniv et al. (2001) [1].
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1. Introduction

The problem of online time series searchwas introduced by El-Yaniv et al. [1], where a player observes a series of n prices
sequentially in order to select the highest price in the series. On the observation of each price presented, the player has to
decide immediately whether to accept the price or not without the knowledge of future prices. The profit depends on the
price selected by the player. El-Yaniv et al. [1] proved that if the prices are bounded within interval [m,M] (0 < m < M),
the optimal algorithm is to accept the first price no less than

√
Mm and the competitive ratio is

√
M/m. Damaschke, Ha

and Tsigas [2] studied another case where the upper and lower bounds of prices vary as time goes on. The approach is also
adopted by Lorenz, Panagiotou and Steger [3] for the k-search problem to search for the k highest (or lowest) prices in one
series. All the above work assumes that the profit to accept a price is exactly the price itself, ignoring when the price shows
up in the series. In many real scenarios, however, this is not the case. For example, the player may need to pay a sampling
cost at each time period to observe a price, and then the accumulated sampling cost increases as time goes on. Hence, the
profit to accept a price at some period can be regarded as a function of the price, such as equaling the accepted price minus
the accumulated sampling cost. In this paper, we will extend the basic model in [1] by introducing profit function, and give
more general results on competitiveness.

1.1. Related work

The problem of time series search has received considerable attention in mathematical economics and operations
research since 1960s. It is quite related to the optimal stopping problem (see [4]) and the secretary problem (see [5,6]),
both of which have many extensions such as secretary problem with discounts (see [7]) and with inspection costs (see
[8]). Most of the previous work follows Bayesian approach, and algorithms are developed under assumption that prices are
generated by some (e.g. uniform) distribution which is known beforehand (see [6]). Since the distribution of prices may
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not be known to the player in many situations, some research attempts to relax the assumption. Rosenfield and Shapiro [9]
studied the case where the price distribution is a random variable.

Another related line is one-way trading problem. El-Yaniv et al. [1] pointed out that any algorithm for the problem can
be viewed as a randomized search algorithm and they presented one optimal algorithm. Fujiwara et al. [11] studied the
problemwith average-case competitive analysis, adopting different optimization measures and deriving optimal strategies
for thosemeasures respectively. Kakade et al. [12] introduced several onlinemodels inmodern financialmarkets considering
two important aspects VolumeWeighted Average Price trading and limit order books. They gave an extensive study for the
models and related them to previous algorithms in stock trading.

1.2. Competitive ratio

Sleator and Tarjan [10] proposed to evaluate the performance of online algorithms by competitive analysis. For an
arbitrary given price sequence σ , the profit of an online algorithm ALG is compared with that of an offline player’s algorithm
OPT , which knows all the prices in advance. Let ALG(σ ) and OPT (σ ) denote the profits of ALG and OPT in σ respectively. The
competitive ratio of ALG is then defined as

α = sup
σ

OPT (σ )

ALG(σ )

We also say that ALG is α-competitive. Given that there are not any online algorithms with competitive ratio less than α,
ALG is called an optimal online algorithm.

The rest of the paper is organized as follows. Section 2models the time series search problemand gives some assumptions
as well. In Section 3 we investigate the case with known duration, and in Section 4 we discuss the case with unknown
duration. Finally, Section 5 concludes the paper.

2. Problem statement and assumptions

The problem: A player is searching for one price of some asset in a price quotation sequence aiming tomaximize the profit.
There is only one chance for the player to select a price. At each time period i = 1, 2, . . . , n where the time horizon n is a
natural number, a price quotation pi is received. The player has to decide immediately whether to accept the price. Once it
is accepted at period i, the player cannot accept another price in later periods and the profit for pi is denoted by fi(pi), i.e.,
the profit function at period i. Otherwise pi expires and pi+1 arrives in the next period. Note that the price series may end at
some period l ≤ n, i.e., the last price is pl, and we call l the duration of the series.

For the online time series search problem, there are three basic assumptions below.
(1) The prices varywithin interval [m,M], where 0 < m < M . The values of n,m,M and the functions fi(p), i = 1, 2, . . . , n

are known beforehand to the player.
(2) The profit function fi(p) (i = 1, 2, . . . , n) is continuous and increasing in p.
(3) For an arbitrary p ∈ [m,M], f1(p) ≥ f2(p) ≥ · · · ≥ fn(p) > 0.
In assumption (1), if n = 1, the case is trivial since both online and offline players will accept the unique price with the

same profit. So, we will focus on the case that n ≥ 2 in the following. The second and third assumptions tell that at each
period larger price results in larger profit and for a specific price p, the profit is larger in an earlier period than in a later one,
respectively. In the following, we will divide the problem into two cases according to the knowledge of duration.

Variant 1: Known duration. The duration of the price quotation sequence is equal to nwhich is known to the player at the
first beginning. The player can have at least a profit of fn(pn) by accepting the last price pn.

Variant 2: Unknown duration. The player has the only information that the duration of the price quotation sequence is at
most n beforehand. At the beginning of each period the player is told whether the sequence ends at the period or not.

Note that in both variants, it is sufficient to analyze the case where fi+1(M) > fi(m) for i = 1, 2, . . . , n − 1, otherwise
if fi+1(M) ≤ fi(m) holds at some period i, the player will accept a price and the game ends on or before period i since he
gains a profit fj(pj) ≥ fi(m) to accept pj (1 ≤ j ≤ i) at period j more than that to accept pk (i + 1 ≤ k ≤ n) at period k
with fk(pk) ≤ fi+1(pk) ≤ fi+1(M) ≤ fi(m). In the rest of the work, we will focus on the case such that fi+1(M) > fi(m) for
1 ≤ i ≤ n − 1 in a price series.

3. Online time series search problem with known duration

In this section, we will discuss the case with known duration n, and present an optimal deterministic algorithm.

3.1. The online algorithm

The main idea of the online algorithm is to decide whether to accept or reject price pi at period i (1 ≤ i ≤ n). If pi is less
than some predetermined value p∗

i , then the price is rejected and goes to the next period, otherwise the price is accepted
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and game ends. The calculation of p∗

i is basically according to the worst case given that the online algorithm accepts pi at
period i. Before describing the algorithm formally, we give some preliminary definitions. Let

α = min


max


fi+1(M)

fi(m)
,


f2(M)

fi(m)


, i = 1, 2, . . . , n − 1


,


f2(M)

fn(m)


(1)

Note that α ≥ 1 since fi+1(M) > fi(m) and f2(M) ≥ fn(m). By the definition of α, there exists a natural number r

such that either α =
fr+1(M)

fr (m)
for r ≤ n − 1 or α =


f2(M)

fr (m)
for r ≤ n. Ties are broken by selecting the smallest r . If

α =
fr+1(M)

fr (m)
, let p∗

i (1 ≤ i ≤ r) either be the solution of equation αfi(p∗

i ) = fi+1(M) or p∗

i = m in the case that there is

no solution for the equation. Ties are broken by selecting the p∗

i with the smallest value. Otherwise if α =


f2(M)

fr (m)
, then

let i∗ = max{i|fi+1(M) ≥
√
f2(M)fr(m)}. Let p∗

i = m for min{i∗, r − 1} < i ≤ r , and for 1 ≤ i ≤ min{i∗, r − 1},
p∗

i either be the solution of equation αfi(p∗

i ) = fi+1(M) or p∗

i = m in the case that there is no solution for the equation.

Note that for i = 1, f2(M) > f1(m) and then max{ f2(M)

f1(m)
,


f2(M)

f1(m)
} =

f2(M)

f1(m)
. Together with formula (1), α ≤

f2(M)

f1(m)
and thus

f1(m) ≤
f2(M)

α
≤ f2(M) ≤ f1(M), implying that p∗

1 is only defined by the solution of equation αf1(p∗

1) = f2(M). Moreover,
p∗
r = m by the above discussion.

Algorithm AKD (Algorithm with Known Duration):
Step 1. Let i = 1.
Step 2. At period i, if pi ≥ p∗

i then accept pi with profit fi(pi), otherwise if pi < p∗

i , go to Step 3.
Step 3. If i < n then i = i + 1 and go to Step 2, otherwise if i = n then accept pn and the game ends.
Note that AKDwill accept a price on or before period r since p∗

r = m.

3.2. Competitive analysis

Lemma 1. If AKD accepts pi at some period i (1 ≤ i ≤ r), then m < p∗

j ≤ M for 1 ≤ j ≤ i − 1.

Proof. For the first inequality, if otherwise p∗

j = m, AKD will accept a previous price on or before period j since pj ≥ m.

Moreover, p∗

j ≤ M due to fj(p∗

j ) =
fj+1(M)

α
≤ fj+1(M) ≤ fj(M) and assumption (2). The lemma follows. �

Lemma 1 implies that p∗

j shall be the solution of equation αfj(p∗

j ) = fj+1(M) for 1 ≤ j ≤ i − 1.

Theorem 1. AKD has competitive ratio of α for the online time series search problem with known duration.

Proof. Let ε denote an arbitrarily small positive real number. We discuss two cases according to different values of α.
Case 1. α =

fr+1(M)

fr (m)
. According to formula (1), fr+1(M)

fr (m)
≥


f2(M)

fr (m)
which implies fr+1(M) ≥

f2(M)fr (m)

fr+1(M)
=

f2(M)

α
= f1(p∗

1).
As AKD accepts a price on or before period r , assume without loss of generality that it accepts pi at period i (1 ≤ i ≤ r).
By Lemma 1, m < p∗

j − ε < M for j = 1, 2, . . . , i − 1. So, the worst price sequence to AKD is σ1 = (p∗

1 − ε, . . . , p∗

i−1 −

ε, p∗

i ,M, . . .). The profit of AKD in σ1 is AKD(σ1) = fi(p∗

i ) =
fi+1(M)

α
. For OPT , combining fj(p∗

j ) =
fj+1(M)

α
(1 ≤ j ≤ i − 1) and

assumption (3), f1(p∗

1) ≥ · · · ≥ fi(p∗

i ) As ε → 0, OPT ’s profit is as follows.

OPT (σ1) ≈ max{f1(p∗

1), . . . , fi(p
∗

i ), fi+1(M)}

= max{f1(p∗

1), fi+1(M)}

= fi+1(M)

The last equation holds since fi+1(M) ≥ fr+1(M) ≥ f1(p∗

1). So,
OPT (σ1)
AKD(σ1)

= α in this case.

Case 2. α =


f2(M)

fr (m)
. According to formula (1), if r ≤ n − 1, then


f2(M)

fr (m)
≥

fr+1(M)

fr (m)
. By the definition of p∗

i in the case of

α =


f2(M)

fr (m)
, p∗

min{i∗,r−1}+1 = m. So, AKD will accept a price on or before period min{i∗, r − 1} + 1. Assume without loss of
generality that it accepts pi at some period i (1 ≤ i ≤ min{i∗, r − 1} + 1). We divide the case into two sub-cases according
to different values of i.

Case 2.1. 1 ≤ i ≤ min{i∗, r − 1}. In this sub-case, noting that since i ≤ i∗, fi+1(M) ≥
√
f2(M)fr(m) =

f2(M)

α
= f1(p∗

1), the
worst price sequence and the following discussion are the same as those in Case 1.

Case 2.2. i = min{i∗, r − 1} + 1. i = i∗ + 1 if i∗ ≤ r − 2 and i = r if i∗ > r − 2. We already know thatm < p∗

j − ε < M
for j = 1, 2, . . . , i − 1. So, the worst price sequence to AKD is

σ2 =


(p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m,M, . . .) : i = i∗ + 1
(p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m,M, . . .) : i = r ≤ n − 1
(p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m) : i = r = n

We further discuss three sub-cases according to the three worst price sequences.
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Case 2.2.1. i = i∗ + 1 and σ2 = (p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m,M, . . .). The profit of AKD is AKD(σ2) = fi(m). For OPT ,
as ε → 0,

OPT (σ2) ≈ max{f1(p∗

1), . . . , fi−1(p∗

i−1), fi(m), fi+1(M)}

= max{f1(p∗

1), fi+1(M)}

= f1(p∗

1)

where the second equation holds since f1(p∗

1) ≥ · · · ≥ fi−1(p∗

i−1) ≥ fi(m), and the third equation holds since fi+1(M) <
√
f2(M)fr(m) = f1(p∗

1) due to i > i∗ and the definition of i∗. Hence, OPT (σ2)
AKD(σ2)

=
f1(p∗

1)

fi(m)
≤

f1(p∗
1)

fr (m)
=

f2(M)/α

fr (m)
= α in this sub-case.

Case 2.2.2. i = r ≤ n − 1 and σ2 = (p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m,M, . . .). Then AKD(σ2) = fi(m) = fr(m). For
OPT , OPT (σ2) ≈ max{f1(p∗

1), fr+1(M)} with similar reasoning as in Case 2.2.1. In the previous sub-case, we already have
f1(p∗

1)

fr (m)
= α. Moreover, fr+1(M)

fr (m)
≤


f2(M)

fr (m)
= α where the inequality holds by the condition of Case 2 and r ≤ n − 1. So,

OPT (σ2)
AKD(σ2)

≤ α in this sub-case.
Case 2.2.3. i = r = n and σ2 = (p∗

1 − ε, p∗

2 − ε, . . . , p∗

i−1 − ε,m). In this sub-case, AKD(σ2) = fi(m) = fr(m). For OPT ,
combining f1(p∗

1) ≥ · · · ≥ fi−1(p∗

i−1) ≥ fi(m) with ε → 0, OPT (σ2) ≈ f1(p∗

1). Hence,
OPT (σ2)
AKD(σ2)

= α. The theorem follows. �

In the following, we will show that no deterministic algorithms behave better than AKD in competitiveness for Variant 1
of the problem.

Theorem 2. For the online time series search problemwith known duration, no deterministic algorithm has competitive ratio less
than α.

Proof. LetALG be any deterministic algorithm.Wewill construct a price sequence σ̂ = (p̂1, p̂2, . . . , p̂n) such thatALG cannot
achieve a competitive ratio less than α.

The sequence σ̂ is constructed as follows. First, similar to the discussion on the existence of p∗

1 to equation αf1(p∗

1) =

f2(M), we can define price p̂1 ∈ [m,M] given by equation αf1(p̂1) = f2(M). At period 1, we present p̂1 to ALG, if ALG accepts
the price, we further present the rest n − 1 prices p̂2 = · · · = p̂n = M , otherwise we present p̂2 = m and go to the next
period. Similarly, at period 2, if ALG accepts p̂2, then we further present the rest n − 2 prices p̂3 = · · · = p̂n = M , otherwise
we present p̂3 = m and go to the next period. This is repeated until either at some period i (2 ≤ i ≤ n − 1), ALG accepts p̂i
or ALG accepts p̂n = m at period n. In the first case, we further present the rest n − i prices p̂i+1 = · · · = p̂n = M .

Assume that ALG accepts p̂i at period i. We discuss three cases depending on the value of i.
Case 1. i = 1. In this case OPT (σ̂ ) ≥ f2(M) and ALG(σ̂ ) = f1(p̂1) implying OPT (σ̂ )

ALG(σ̂ )
≥

f2(M)

f1(p̂1)
= α.

Case 2. 2 ≤ i ≤ n − 1. In this case we further divide the case into the following two sub-cases.
Case 2.1. fi+1(M)

fi(m)
≥


f2(M)

fi(m)
. By the definition of α, fi+1(M)

fi(m)
≥ α. OPT will gain a profit satisfying OPT (σ̂ ) ≥ fi+1(M) while

ALG’s profit ALG(σ̂ ) = fi(m). Hence, OPT (σ̂ )

ALG(σ̂ )
≥

fi+1(M)

fi(m)
≥ α.

Case 2.2. fi+1(M)

fi(m)
<


f2(M)

fi(m)
. In this case,


f2(M)

fi(m)
≥ α. For OPT , OPT (σ̂ ) ≥ f1(p̂1) while ALG’s profit ALG(σ̂ ) = fi(m). Hence,

OPT (σ̂ )

ALG(σ̂ )
≥

f1(p̂1)
fi(m)

≥
f2(M)

αfi(m)
≥

α2

α
= α.

Case 3. i = n. By the definition ofα,


f2(M)

fn(m)
≥ α.OPT ’s profit satisfiesOPT (σ̂ ) ≥ f1(p̂1)while ALG’s profit ALG(σ̂ ) = fn(m).

Hence, OPT (σ̂ )

ALG(σ̂ )
≥

f1(p̂1)
fn(m)

≥
f2(M)

αfn(m)
≥

α2

α
= α.

According to the above discussion, ALG cannot have a competitive ratio less than α. The theorem follows. �

4. Online time series search problem with unknown duration

4.1. The online algorithm

Remember that in the description of algorithm AKD in Section 3.1, we calculate the unique value of α, which is related to
the given duration. In this model with unknown duration, the online algorithmwill similarly calculate αl for each supposed
duration l (2 ≤ l ≤ n), and find the largest αl. According to the largest αl together with the corresponding l, the online
algorithm will then calculate each p∗

i as AKD does. Before describing the algorithm, we give some preliminary definitions.
For every natural number l (2 ≤ l ≤ n), let

αl = min


max


fi+1(M)

fi(m)
,


f2(M)

fi(m)


, i = 1, 2, . . . , l − 1


,


f2(M)

fl(m)


(2)

Note that αl ≥ 1 since fi+1(M) > fi(m) and f2(M) ≥ fl(m). Let L̄ = max{L|L = arg max
2≤l≤n

αl}. Obviously, αL̄ ≥ αl for every

l (2 ≤ l ≤ n). By the definition of αL̄, there exists a natural number s such that either αL̄ =
fs+1(M)

fs(m)
for s ≤ L̄ − 1 or
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αL̄ =


f2(M)

fs(m)
for s ≤ L̄. Ties are broken by selecting the smallest s. If αL̄ =

fs+1(M)

fs(m)
, let p̄∗

i (1 ≤ i ≤ s) either be the solution
of equation αL̄fi(p̄

∗

i ) = fi+1(M) or p̄∗

i = m in the case that there is no solution for the equation. Ties are broken by selecting

the p̄∗

i with the smallest value. Otherwise if αL̄ =


f2(M)

fs(m)
, then let ī∗ = max{i|fi+1(M) ≥

√
f2(M)fs(m)}. Let p̄∗

i = m for

min{ī∗, s − 1} < i ≤ s, and for 1 ≤ i ≤ min{ī∗, s − 1}, p̄∗

i either be the solution of equation αL̄fi(p̄
∗

i ) = fi+1(M) or p̄∗

i = m in

the case that there is no solution for the equation. For i = 1, f2(M) > f1(m) and thenmax{ f2(M)

f1(m)
,


f2(M)

f1(m)
} =

f2(M)

f1(m)
. Combining

formula (2) and the definition of L̄, αL̄ ≤
f2(M)

f1(m)
and thus f1(m) ≤

f2(M)

αL̄
≤ f2(M) ≤ f1(M), implying that p̄∗

1 is defined by the
solution of equation αL̄f1(p̄

∗

1) = f2(M). Moreover, according to the above discussion, p̄∗
s = m.

Algorithm AUD (Algorithm with Unknown Duration):
Step 1. Let i = 1.
Step 2. At period i, if pi ≥ p̄∗

i or the duration is exactly i then accept pi and the game ends, otherwise if pi < p̄∗

i , go to
Step 3.

Step 3. i = i + 1 and go to Step 2.
Note that AUDwill accept a price on or before period s since p̄∗

s = m.

4.2. Competitive analysis

Let L = min{L|L = arg max
2≤l≤n

αl}. Obviously, αL̄ = αL. In the following we will give several lemmas.

Lemma 2. If AUD accepts pi at some period i (1 ≤ i ≤ s), then m < p̄∗

j ≤ M for 1 ≤ j ≤ i − 1.

The proof of Lemma 2 is the same as that of Lemma 1. Lemma 2 implies that p̄∗

j shall be the solution of equation
αL̄fj(p̄

∗

j ) = fj+1(M) for 1 ≤ j ≤ i − 1.

Lemma 3. For each natural number l < L, αl =


f2(M)

fl(m)
< αL.

Proof. By the definition of αl, there exists a natural number i < l such that either αl = max{ fi+1(M)

fi(m)
,


f2(M)

fi(m)
} or αl =


f2(M)

fl(m)
.

If αl = max{ fi+1(M)

fi(m)
,


f2(M)

fi(m)
} together with i < l < L, αL ≤ max{ fi+1(M)

fi(m)
,


f2(M)

fi(m)
} = αl, contradicting to the definition of L.

So, αl =


f2(M)

fl(m)
, and by the definition of L, αl < αL. The lemma follows. �

Lemma 4. For each natural number i < s,


f2(M)

fi(m)
< αL.

Proof. By the definition of αL, there exists a natural number t such that either αL =
ft+1(M)

ft (m)
for t ≤ L− 1 or αL =


f2(M)

ft (m)
for

t ≤ L. Ties are broken by selecting the smallest t . Combining the definitions of t and s and equation αL̄ = αL, we have t = s

and then i < s = t ≤ L. By Lemma 3,


f2(M)

fi(m)
= αi < αL follows. �

Theorem 3. AUD has competitive ratio of αL̄ for the online time series search problem with unknown duration.

Proof. Let ε denote an arbitrarily small positive real number. Assume that AUD accepts pi at some period i. We will discuss
two cases according to different conditions for AUD to accept pi.

Case 1. AUD accepts pi due to pi ≥ p̄∗

i . We will discuss two sub-cases according to different values of αL̄.
Case 1.1. αL̄ =

fs+1(M)

fs(m)
. The discussion of this case is the same as that of Case 1 in Theorem 1, replacing p∗

k by p̄∗

k (k = i, j).

Case 1.2. αL̄ =


f2(M)

fs(m)
. By the definition of p̄∗

i in the case, p̄∗

min{ī∗,s−1}+1
= m. So, AUD will accept a price on or before

period min{ī∗, s − 1} + 1. Assume without loss of generality that it accepts pi at period i (1 ≤ i ≤ min{ī∗, s − 1} + 1). We
further discuss two sub-cases according to different values of i.

Case 1.2.1. 1 ≤ i ≤ min{ī∗, s − 1}. The discussion of this case is the same as that of Case 2.1 in Theorem 1, replacing p∗

k
by p̄∗

k (k = i, j), and replacing i∗ and r by ī∗ and s respectively.
Case 1.2.2. i = min{ī∗, s−1}+1. There are four sub-cases in this case. For the caseswhere i = ī∗+1 andwhere i = s = n,

the discussions are the same as those of Case 2.2.1 and Case 2.2.3 respectively in Theorem 1. For the casewhere i = s ≤ n−1
and s ≠ L̄, the discussion is the same as that of Case 2.2.2 in Theorem1. Sowewill focus on the fourth casewhere i = s = L̄ ≤

n−1. By case condition, αL̄ =


f2(M)

fL̄(m)
. By Lemma 2,m < p̄∗

j −ε < M for j = 1, 2, . . . , i−1. Theworst price sequence to AUD

is σ1 = (p̄∗

1 − ε, p̄∗

2 − ε, . . . , p̄∗

L̄−1
− ε,m,M, . . .). The profit of AUD is AUD(σ1) = fL̄(m). For OPT , combining fj(p̄∗

j ) =
fj+1(M)

αL̄

(1 ≤ j ≤ L̄) and assumption (3), f1(p̄∗

1) ≥ · · · ≥ fL̄−1(p̄
∗

L̄−1
) ≥ fL̄(m) implying OPT (σ1) ≈ max{f1(p̄∗

1), fL̄+1(M)}. We claim by
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s = L̄ ≤ n− 1 that
fL̄+1(M)

fL̄(m)
<


f2(M)

fL̄(m)
= αL̄ since otherwise by the definitions of αL̄ and αL̄+1, αL̄+1 ≥ αL̄ which contradicts to

the definition of L̄. Moreover, f1(p̄∗
1)

fL̄(m)
=

f2(M)

αL̄fL̄(m)
=

α2
L̄

αL̄
= αL̄. Hence,

OPT (σ1)
AUD(σ1)

≈
max{f1(p̄∗

1),fL̄+1(M)}

fL̄(m)
≤ αL̄.

Case 2. AUD accepts pi due to the duration is met in period i (i < s). By Lemma 2,m < p̄∗

j − ε < M for j = 1, 2, . . . , i− 1.
The worst price sequence to AUD is σ2 = (p̄∗

1 − ε, p̄∗

2 − ε, . . . , p̄∗

i−1 − ε,m). In this case, AUD(σ2) = fi(m). For OPT , as ε → 0,

OPT (σ2) ≈ f1(p̄∗

1) due to f1(p̄∗

1) ≥ · · · ≥ fi−1(p̄∗

i−1) ≥ fi(m). So, OPT (σ2)
AUD(σ2)

≈
f1(p̄∗

1)

fi(m)
=

f2(M)

αL̄fi(m)
. Combining i < s and Lemma 4,

f2(M)

fi(m)
< α2

L . Hence,
OPT (σ2)
AUD(σ2)

<
α2
L

αL̄
=

α2
L̄

αL̄
= αL̄. The theorem follows. �

In the following we will prove that no deterministic algorithm can do better than AUD in competitiveness for variant 2
of the problem.

Theorem 4. For the online time series search problemwith unknown duration, no deterministic algorithm has a competitive ratio
less than αL̄.

Proof. We construct a price sequence σ̂ = (p̂1, p̂2, . . . , p̂L̄), that is, L̄ = n, and it is sufficient to prove that an arbitrary
online algorithm ALG cannot have a profit larger than 1/αL̄ times of OPT ’s in σ̂ . The rest reasoning is the same as that in the
proof of Theorem 2. �

Remark. Note that in formulas (1) and (2), if the profit function satisfies fi(pi) = pi for 1 ≤ i ≤ n, then α = αl =


M
m and

thus algorithms AKD and AUD have optimal competitive ratio the same as that in El-Yaniv et al. [1].

5. Conclusion

In this paper, we extended the original online time series search problem by introducing profit function. We investigate
two cases where the player knows the duration of price series and where he has no knowledge of the duration beforehand.
We propose two algorithms AKD and AUD, and prove that they are optimal in the two cases respectively. The problem
with profit function is a generalization of that in El-Yaniv et al. [1]. For the problem with different profit functions, it is an
interesting work to design randomized algorithms to break the lower bounds of competitive ratio.
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