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1. I N T R O D U C T I O N  

We denote  the norm on R m by I[" II. ( Rm, R ~ )  is an ordered Hilbert space with an ordering 
in R m defined by the convex cone R m +,  

Vy, x E R m, y < x v* x - y E R'~. 

If  int R ~  denotes  the interior of  R ~ ,  then a weak ordering in •m is also defined by 

Vy, x E R "~, y ~ x ¢~ x -  y ~ int R~ .  

A subset  K c R n is said to have "rpconnectedness" proper ty  if, for each x, y E K ,  A E [0, 1], 

there exists a vector ~?(x, y) E R '~, such tha t  y + A~?(x, y) E K.  

Consider  a vector  opt imizat ion problem 

w- min f ( x )  subject  to  x E K, (1.1) 

where K c R '~ is nonempty  "~?-connected" set, f : R n ~ R m is a vector-valued function, 

and w - m i n  denotes weak minimum. We note tha t  the problem (1.1) has a weak min imum at 

x = x0 E K if and only if 

f ( x )  - f (xo) ~ - int R ~ ,  Vx e K, 

see, for example,  [1,2]. 
Following [3], a function f : K 

K × K ---* R m, if, for each x, y E K 

, R m is called RT-invex,  with respect ot a function ~? : 

f ( x )  - f ( y )  -- ( i f ( y ) ,  r/(x, y)) e R~ ,  (1.2) 

where f~(y)  denotes the  Fr~chet derivative of f at  y. I f  we take R and R+ in place of R m 
and R ~ ,  respectively, then f is called invex. Invex functions were first considered by Hanson [4], 
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who showed that  if, instead of the usual convexity conditions, the objective function and each of 
the constraints of a nonlinear program axe all invex for the same r/(x, y) then the sufficiency of 
the Kuhn-Tucker conditions [5], and weak [6] duality still holds. Morever, Craven and Glover [7] 
showed that  the class of real-valued invex functions is equivalent to the class of functions whose 
stat ionary points are global minima. 

Following Ben-Israel and Mond [8] and Hanson and Mond [9], consider a function f : K - - o  R m 
having the property that  there exists a function r/: K x K ---* R m such that,  for each x, y • K 
and A • [0, 1], y + Ar/(x, y) • K and 

)~f(x) q- (1 - ~k)f(y) - f (y q- ~r/(x, y)) • R~. (1.3) 

It is observed that  if f is Fr~chet differentiable and satisfies (1.3) that  f also satisfies (1.2). 
This can be seen by rewriting (1.3) as 

- f ( y ) )  - [ f ( y  + y) )  - S (x) ]  • R T ,  

and then divided by A > 0 and taking the limit as A ~ 0+ gives 

f ( x )  - f (y )  - ( f ' ( y ) ,u (x ,y ) )  • R ~ .  

In view of this observation, the functions satisfying (1.3) will be called R~-preinvex. It is also 
noted that  the set K should have the "r/-connectedness" property. Note also that  if r/(x, y) - 
a(x,  y)(x - y) where0 < a(x,  y) < 1, then K should be star-shaped [10]. If we take R and R+ in 
place of R m and R~', respectively, and if f satisfies (1.3), then f is called preinvex. 

In many papers, see, for example, [11-14] dealing with the existence of optimal solutions for 
vector optimization, some kind of compactness in the value space of the objective functions is 
assumed. This is often difficult to verify in applications. 

In this paper, a sufficient condition is given for the existence of optimal solutions for prob- 
lem (1.1) by making use of vector variational-like inequality and preinvex functions. 

2. E X I S T E N C E  O F  S O L U T I O N S  

First we establish the equivalence relation between the vector optimization problem (1.1) and 
the vector variational-like inequality problem of finding x0 E K such that  

(f '(xo),  rl(x, xo)) ~ - int R~,  Vx E K. (2.1) 

We need the following lemma [15]. 

LEMMA 2.1. Let  (X, P)  be an ordered topological vector space with a closed, pointed and convex 
cone P with int P ~ 0. Then, Vx, y E X, we have 

(i) y - x E int P and y ~ int P imply x ~ int P; 
(ii) y - x E P, and y ~ int P imply x ¢ int P; 

(iii) y - x E - int P and y ~ - int P imply x q~ - int P; and 
(iv) y - x E - P  and y q~ - int P imply x ~ - int P.  

Let W = R m \ ( -  int R~) .  

THEOREM 2.1. Let the set K be satisfy the ~l-connectedness property, and let the function f 
be Nr~-preinvex and Frdchet differentiable. Then the vector optimization problem (1.1) and the 
vector variational-like inequality problem (2.1) have the same solution set. 

PROOF. Let x0 be a w e a k  minimum of problem (1.1). I f x  E K and 0 < a <_ 1, then x 0 +  
arl(x, Xo) • K since K have the r/-connectedness property. Hence, 

a -1  f / ( x 0  + ( z ,  z 0 ) )  - I (x0)] • w ,  • (0 ,1] .  
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Since W is closed and f is Fr6chet differentiable, it follows that  

( f ' ( xo) ,~(x ,  xo)) ¢ - i n t R  ~ +.  

Conversely, let x0 E K satisfy (2.1) Since f is R~-preinvex and K has the ~-connectedness 
property, then it follows that  

f ( x )  - f (XO) - ( f '  (Xo), 71 (x, xo)) E R~.  

Hence, 

f ( x )  - f (xo) ~ - int R~  (by (iv) of Lemma 2.1). 

This completes the proof. 

Now we are able to prove the main result of this paper, but before stating this, we quote the 
following theorem (KKM-Fan Theorem [16]) which play an important role in the proof of our 
main result. 

THEOREM 2.2. Let E be a subset of the topological vector space X .  For each x E E, let a closed 
set F(x)  in X be given such that F(x)  is compact for at least one x E E. If  the convex hull of 
every finite subset {x l ,  x 2 , . . . ,  xn} of E is contained in the corresponding union U~=lF(xi) , then 
nxesF(x) ~ 0. 

THEOREM 2.3. Let K be a nonempty compact convex set in ]~'~ and satisfy the ~?-connectedness 
property; let f : K ~ R m be ~dchet  differentiable and R~-preinvex; let the set 

(y  E K :  ( f ' ( x ) ,~ (y ,x ) )  E - i n t  R~}  

be convex for each fixed x E K; let ~ be continuous and satisfy ~l(x, x) = 0 for each x E K.  Then 
the vector optimization problem (1.1) has a weak minimum x0. 

PROOF. By Theorem 2.1, it is sufficient to show that  the vector variational-like inequality prob- 
lem (2.1) has a solution x0. For y E K,  define 

F(y)  = ( x  e K :  (f'(x),~?(y,x)) ~ - i n t  R ~ } .  

Let (x l ,  x 2 , . . . ,  xm} C K.  Claim that  the convex hull of every finite subset (x l ,  x 2 , . . . ,  xm} is 
contained in the corresponding union U'~=lF(xi ), i.e., cony {xl ,  x 2 , . . . ,  xm} c U~=lF(X~ ). Indeed 
let t~i > 0, 1 < i < m, with m Suppose that  x ,n -- ~-~i=l OQ = 1. = ~i=lm aiXi  ~ Ui=IF(Xi  ), then 

( f ' (x) ,  ~/(x,, x)) E - int R~,  Vi. 

Since, for each fixed x E K,  the set 

G(x) = {y G K :  (f'(x),~?(y, x)) e - i n t  R~}  

is convex. Hence, by convex property of G(x), we have 

f~ a i x ~  , ~/ a ix~ ,  (~x~ E - int  R ~ ,  
\i=l 

which is a contradiction and our claim is then verified. 
Next, we claim that  for each y E K,  F(y)  is closed. Indeed, let y E K and let a sequence 

( x k }  c f ( y )  sat i s fy  IIx~ - ~ll ~ 0. 



22 K . R .  KAZMI 

Since f ' ( . )  is continuous on K, {f '(xk)} ----0 if(x) uniformly on K.  Then 

t[(f' (xk),~(y, xk)) -- (f'(x),~(y,x))[[ 

[[(f' (Xk),~(y, xD) -- (f '(x),~(y, xk))H 

+ II ( f t ( x ) ,  ~1 (Y, xk))  -- ( f ' ( x ) ,  ~(y,  x))II 

< Ilf' (Xk) - f ' (x ) [ [  1]~ (y, x/c)II + Ilf'(x)ll I1~ (y, xk) -- 7](y, x)l  ] 

, 0  

as n , c¢, since ~/is continuous on K.  

Since W is closed and (f'(xk), ~(y, Xk)l • W, Vk, 

• w, 

tha t  is 
(f'(x), y(y, x)) ¢ - int R~, 

and our claim is verified. Also F(y) is nonempty since y • F(y) ,  for all y • K .  Since F(y) is 
closed, and hence, compact  for each y • K.  Thus, by Theorem 2.2, it follows that  there exists at 

least one point xo • NveKF(y), that  is x0 • K such that  

( f  (x0), 77 (y, x0)) ¢ - int R T, Yy • K. 

This completes the proof. 

I t  is remarked tha t  the results of this paper  generalize some results of Chen and Craven [17]. 
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