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1. Introduction and main results

An almost para-complex structure on a smooth manifold M is an endomorphism J of T M such that J 2 = Id (where “Id”
denotes the identity endomorphism) and the two distributions Ker( J ± Id) have the same rank. We say that J is integrable
(or is a para-complex structure) if its Nijenhuis tensor

N J (X, Y ) := [X, Y ] + [ J X, J Y ] − J
([ J X, Y ] + [X, J Y ]), ∀X, Y ∈ X (M)

is zero.
An almost para-quaternionic structure on a smooth manifold M of dimension 4m � 8 is a rank three sub-bundle P ⊂

End(T M) locally spanned by almost para-hypercomplex structures, i.e. by triples { J1, J2, J3} where J1 is an almost complex
structure, J2 and J3 are anti-commuting almost para-complex structures and J3 = J1 J2. We shall often refer to such a triple
as an admissible basis of P . The bundle P comes with a standard Lorenzian metric 〈·,·〉 defined in terms of an admissible
basis by〈

3∑
i=1

ai J i,

3∑
j=1

b j J j

〉
:= −a1b1 + a2b2 + a3b3.

A para-quaternionic connection on (M, P ) is a linear connection on M which preserves the bundle P . We say that P is
integrable, or is a para-quaternionic structure, if (M, P ) has a torsion-free para-quaternionic connection; equivalently, if the
torsion tensor of P is zero.

We begin the paper by recalling briefly, in Section 2, the theory of G-structures. We then apply these considerations
to almost para-quaternionic manifolds. A central role in our paper is played by the torsion tensor of an almost para-
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quaternionic manifold (M, P ). In Section 3 we give an account on the torsion tensor of (M, P ), providing more insight of
some of the results developed in Section 2 of [13]. We define a canonical family of para-quaternionic connections (also called
“minimal para-quaternionic connections”) on (M, P ), which consists of all para-quaternionic connections whose torsion is
equal to the torsion tensor of P . These connections are parametrized by 1-forms and are similar to the so called “Oproiu
connections” of almost quaternionic manifolds, which were introduced for the first time in [10] and have been used in [2]
to define a canonical almost complex structure on the twistor space of an almost quaternionic manifold.

In Section 4 we prove that if an almost para-quaternionic manifold (M, P ) admits two independent, compatible, globally
defined, (para)-complex structures I1 and I2, such that either I1 or I2 is a complex structure, or otherwise both I1 and
I2 are para-complex structures and, for any p ∈ M , Span{I1(p), I2(p)} is a non-degenerate 2-plane of P p (with its Loren-
zian metric 〈·, ·〉), then (M, P ) is a para-quaternionic manifold (see Theorem 11). (An almost (para)-complex structure on
(M, P ) is compatible with P if it is a section of the bundle P ; two almost (para)-complex structures I i and I j are inde-
pendent if Ii(p) �= ±I j(p) at any point p.) If, however, I1 and I2 are both para-complex and, for any p ∈ M , the 2-plane
Span{I1(p), I2(p)} is degenerate, then we need an additional compatible para-complex structure I3, such that {I1, I2, I3} are
pairwise independent but dependent at any point, to conclude that P is para-quaternionic (see Theorem 11). At the end
of Section 4 we construct a class of almost para-quaternionic manifolds (M, P ) which are not para-quaternionic but admit
three independent, globally defined, compatible para-complex structures I1, I2 and I3, such that, at any point p ∈ M and
for any i �= j, the 2-plane Span{Ii(p), I j(p)} is degenerate (see Proposition 18). Recall that for almost quaternionic manifolds
the existence of two independent, globally defined, compatible, complex structures insures the integrability of the almost
quaternionic structure (see Theorem 2.4 of [2]). For conformal oriented 4-manifolds, the existence of three pairwise inde-
pendent, globally defined, orthogonal complex structures is needed to deduce that the conformal structure is self-dual (see
[12, p. 121]).

In Section 5 we consider the twistor space Z− and the reflector space Z+ of (M, P ), consisting of all compatible,
complex, respectively para-complex structures of tangent spaces of M , i.e.

Z± = {
A ∈ P : A2 = ±Id

} ⊂ End(T M). (1)

It is known that a para-quaternionic connection ∇ on (M, P ) induces an almost complex structure J ∇,− (respectively, an
almost para-complex structure J ∇,+) on the twistor space Z− (respectively, on the reflector space Z+) and the way J ∇,±
depend on ∇ has been studied in [8]. Our main observation in this setting is that J ∇,± are independent of the choice of
∇ , provided that ∇ is minimal. Using minimal para-quaternionic connections we define an almost complex structure J −
on Z− and an almost para-complex structure J + on Z+ , both J − and J + being canonical (since they depend only on the
torsion tensor of P ). We use J ± to prove that (M, P ) is integrable if and only if it has plenty of locally defined, compatible,
complex and para-complex structures (see Theorem 21). Similar considerations hold for almost quaternionic manifolds, the
role of minimal connections on (M, P ) being played by the Oproiu connections of an almost quaternionic manifold (see [2]).
The geometry of twistor and reflector spaces of para-quaternionic manifolds with an additional compatible metric (the so
called “para-quaternionic Hermitian” and “para-quaternionic Kähler manifolds”) has already been studied in the literature,
see for example, [4,6,7].

2. G-structures

In this section we recall the definition of the torsion tensor of a G-structure [3,9]. We follow closely the treatment
developed in [5], Section 2.1.

Let G be a closed subgroup of the general linear group GLn(V ), where V = R
n . A G-structure on an n-dimensional

manifold M is a principal G sub-bundle P of the frame bundle of M . A linear connection on M is adapted to the G-structure
if it is induced by a G-invariant connection on P . Any two adapted connections ∇ and ∇′ are related by ∇′ = ∇ + η, where
η ∈ Ω1(M,ad(P )) is a 1-form with values in ad(P ), the vector bundle on M associated to the adjoint representation of G
on its Lie algebra. Define the linear torsion map

δ : Ω1(M,ad(P )
) → Ω2(M, T M), (δη)(X, Y ) := η(X, Y ) − η(Y , X), (2)

where X, Y ∈ T M . The image of the torsion T ∇ ∈ Ω2(M, T M) of an adapted connection ∇ into the quotient space Ω2(M,T M)
Im δ

is independent of the choice of ∇ and is called the torsion tensor of the G-structure P . It will be denoted by T P .
Suppose now that it is given a complement C(ad(P )) of δΩ1(M,ad(P )) in Ω2(M, T M), i.e. a decomposition

Ω2(M, T M) = δΩ1(M,ad(P )
) ⊕ C

(
ad(P )

)
. (3)

The decomposition (3) identifies the quotient Ω2(M,T M)
Im δ

with C(ad(P )). An adapted connection with torsion equal to T P ∈
C(ad(P )) is called minimal. Any two minimal connections ∇ and ∇′ are related by ∇′ = ∇ + η, where η ∈ Ω1(M,ad(P ))

belongs to the kernel of δ.
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3. Almost para-quaternionic manifolds

3.1. Torsion of almost para-quaternionic manifolds

Let (M, P ) be an almost para-quaternionic manifold of dimension n = 4m � 8 (in this paper we will always assume that
the dimension of the almost para-quaternionic manifolds is bigger or equal to eight). The almost para-quaternionic structure
P defines a G = GLm(H+)Sp(1,R) structure on M , where Sp(1,R) is the group of unit para-quaternions acting on R

n and
GLm(H+) is the group of automorphisms which commutes with the action of Sp(1,R) (for details see, for example, [8]).
We denote by Z(P ) and N(P ) = Z(P ) ⊕ P the centralizer, respectively the normalizer of P in End(T M). They are vector
bundles on M associated to the adjoint representations of GLm(H+) and G on their Lie algebras.

The aim of this section is to show that δΩ1(M, Z(P )) and δΩ1(M, N(P )) have canonical complements in Ω2(M, T M),
where δ is the linear torsion map. We then relate the torsion tensor T P of P with the torsion tensor T H of any compatible
almost para-hypercomplex structure H and we determine conditions on T H which insure the integrability of P . We shall
need these considerations (especially Corollary 9) in the proof of Theorem 11. Our arguments are similar to those employed
in [5] and [2]. This section is intended mostly for completeness of the text: except the different treatment, some results of
this section were already proved in [13].

Notations 1. To unify notations, we define an (almost) ε-complex structure on M (with ε = ±1) to be an (almost) complex
structure when ε = −1 and an (almost) para-complex structure when ε = 1. In particular, the Nijenhuis tensor of an almost
ε-complex structure J is

N J (X, Y ) = ε[X, Y ] + [ J X, J Y ] − J
([ J X, Y ] + [X, J Y ]), ∀X, Y ∈ X (M).

For an admissible basis { J1, J2, J3} of P , we define εi ∈ {−1,+1} by the conditions J 2
i = εi Id, for any i ∈ {1,2,3}; hence

ε1 = −1 and ε2 = ε3 = 1.

Notations 2. An operator, expression, etc., defined in terms of an admissible basis of P but independent of the choice of
admissible basis will be considered, without further explanation, defined on M .

In the next lemma we show that δΩ1(M, Z(P )) has a canonical complement in Ω2(M, T M).

Lemma 3. Let { J1, J2, J3} be an admissible basis of P . Define an endomorphism

P : Ω2(M, T M) → Ω2(M, T M), P (T ) := 2

3

3∑
i=1

Π
0,2
J i

(T ), (4)

where, for any T ∈ Ω2(M, T M) and X, Y ∈ T M,

Π
0,2
J i

(T )(X, Y ) := 1

4

{
T (X, Y ) + εi T ( J i X, J i Y ) − εi J i

(
T ( J i X, Y ) + T (X, J i Y )

)}
.

Then P is independent of the choice of { J1, J2, J3}, is a projector (i.e. P 2 = P ) and Ker(P ) = δΩ1(M, Z(P )). In particular,

Ω2(M, T M) = δΩ1(M, Z(P )
) ⊕ Im(P ). (5)

Proof. Note that the expressions
∑3

i=1 εi T ( J i X, J i Y ),
∑3

i=1 εi J i T ( J i X, Y ) and
∑3

i=1 εi J i T (X, J i Y ) are independent of the
choice of admissible basis of P . The same holds for P , which is a well-defined endomorphism of Ω2(M, T M).

We now prove that P is a projector. We shall use the notation J i j for the composition J i ◦ J j and εi j for εiε j . For any i,

Π
0,2
J i

is a projector of Ω2(M, T M) and for any i �= j,

Π
0,2
J i

◦ Π
0,2
J j

= 1

4

(
Π

0,2
J i

+ Π
0,2
J j

− Π
0,2
J i j

) + 1

16
Ei j,

where the endomorphism Ei j of Ω2(M, T M) has the following expression: for any T ∈ Ω2(M, T M) and X, Y ∈ T M ,

Ei j(T )(X, Y ) = εi j J j
(
T ( J i j X, J i Y ) + T ( J i X, J i j Y )

)
+ εi j J i

(
T ( J i j X, J j Y ) + T ( J j X, J i j Y )

)
+ εi j J i j

(
T ( J i X, J j Y ) + T ( J j X, J i Y )

)
.

Since Ei j is anti-symmetric in i and j,

Π
0,2
J ◦ Π

0,2
J + Π

0,2
J ◦ Π

0,2
J = 1 (

Π
0,2
J + Π

0,2
J − Π

0,2
J

)
, (6)
i j j i 2 i j i j
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for any i �= j. Relation (6) implies that P 2 = P . We now prove that Ker(P ) = δΩ1(M, Z(P )). It is easy to show, using
definitions, that δΩ1(M, Z(P )) is included in the kernel of P . Conversely, in order to show that Ker(P ) ⊂ δΩ1(M, Z(P )) we
define an endomorphism π of Ω2(M, T M) by

π(T )(X, Y ) := 1

4
T (X, Y ) + 1

4

3∑
i=1

εi J i T (X, J i Y )

− 1

12

3∑
i=1

εi J i T ( J i X, Y ) − 1

12

3∑
i, j=1

εiε j J j J i T ( J i X, J j Y ),

where T ∈ Ω2(M, T M) and X, Y ∈ T M . The endomorphism π is independent of the choice of admissible basis of P and its
image is included in Ω1(M, Z(P )). Moreover, it can be checked that

δ ◦ π(T ) = T − P (T ), ∀T ∈ Ω2(M, T M). (7)

Relation (7) implies the converse inclusion Ker(P ) ⊂ δΩ1(M, Z(P )). We deduce that Ker(P ) = δΩ1(M, Z(P )). Since P 2 = P ,
the decomposition (5) follows. �
Corollary 4. Let H = { J1, J2, J3} be an admissible basis of P and ∇ a linear connection which preserves all J i . Then

T H := P
(
T ∇) = −1

6

3∑
i=1

εi N J i (8)

is independent of the choice of ∇ and is the torsion tensor of the almost para-hypercomplex structure H.

Proof. If J is an almost ε-complex structure on a manifold M and ∇ is a linear connection on M which preserves J , then

Π
0,2
J

(
T ∇)

(X, Y ) = −ε

4
N J (X, Y ), ∀X, Y ∈ T M. (9)

The first claim follows from (9) and the definition of P . The second claim is trivial, from our considerations of Section 2 and
from Lemma 3. �
Remark 5. The linear torsion map δ is injective for GLm(H+)-structures. Given an almost para-hypercomplex structure H
there is a unique linear connection, called the Obata connection, which preserves H and whose torsion is equal to T H (see
[13, Proposition 2.1]).

We need the following lemma for the proof of Proposition 7.

Lemma 6. Let P be the projector defined in Lemma 3. For any admissible basis { J1, J2, J3} of P and T ∈ Im(P ) ⊂ Ω2(M, T M),

3∑
i=1

εi J i T ( J i X, Y ) = −T (X, Y ), ∀X, Y ∈ T M. (10)

In particular,

3∑
i=1

εi tr( J i T J i X ) = 0, ∀X ∈ T M. (11)

Above, T Y := T (Y , ·) denotes the interior product of a tangent vector Y ∈ T M with the T M-valued 2-form T .

Proof. Relation (10) can be checked by writing T = P (A), for A ∈ Ω2(M, T M), and using the definition of P . Relation (11)
follows from (10) and the observation that tr(T X ) = 0 for any T ∈ Im(P ) and X ∈ T M . �

We now state the main result of this section.

Proposition 7. Let { J1, J2, J3} be an admissible basis of P . The subspace

C
(
N(P )

) := {
T ∈ Im(P ): tr( J i T X ) = 0, ∀X ∈ T M, ∀i = 1,2,3

}
is a complement of δΩ1(M, N(P )) in Ω2(M, T M). The projection on the second factor of the decomposition

Ω2(M, T M) = δΩ1(M, N(P )
) ⊕ C

(
N(P )

)
(12)
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is the map

Ω2(M, T M) 
 T → P (T ) − δ(τ1 ⊗ J1 + τ2 ⊗ J2 + τ3 ⊗ J3), (13)

where P is the projector of Lemma 3 and the 1-forms τi are defined by

τi(X) = εi tr( J i P (T )X )

n − 2
, ∀i ∈ {1,2,3}. (14)

Proof. We define two subspaces of Ω1(M, P ):

Ω1
0 (M, P ) :=

{
3∑

i=1

γi ⊗ J i:
3∑

i=1

γi( J i X) = 0, ∀X ∈ T M

}
;

C(M) :=
{

T α :=
3∑

i=1

εi(α ◦ J i) ⊗ J i, ∀α ∈ Ω1(M)

}
.

Clearly, Ω1
0 (M, P ) and C(M) have trivial intersection. Consider now an arbitrary P -valued 1-form

∑3
i=1 αi ⊗ J i and define

α := − 1
3

∑3
i=1 αi ◦ J i . Then

A :=
3∑

i=1

αi ⊗ J i + T α =
(

2

3
α1 − 1

3
α2 ◦ J3 + 1

3
α3 ◦ J2

)
⊗ J1

+
(

2

3
α2 − 1

3
α1 ◦ J3 − 1

3
α3 ◦ J1

)
⊗ J2

+
(

2

3
α3 + 1

3
α1 ◦ J2 + 1

3
α2 ◦ J1

)
⊗ J3

belongs to Ω1
0 (M, P ). Therefore, Ω1(M, P ) decomposes as

Ω1(M, P ) = C(M) ⊕ Ω1
0 (M, P ). (15)

Next, we show that Im(P ) decomposes as

Im(P ) = δΩ1
0 (M, P ) ⊕ C

(
N(P )

)
. (16)

With the previous notations, it can be checked that δ(A) = Pδ(
∑3

i=1 αi ⊗ J i). This implies that δΩ1
0 (M, P ) is included in

Im(P ). We now show that δΩ1
0 (M, P ) and C(N(P )) have trivial intersection. For this, we need the following observation:

for any B = ∑3
i=1 βi ⊗ J i ∈ Ω1

0 (M, P ),

βi(X) = εi tr( J i(δB)X )

n − 2
, ∀X, ∀i ∈ {1,2,3}. (17)

Relation (17) can be checked using definitions: we first write the coefficients βi of B in the form

β1 = 2

3
γ1 − 1

3
γ2 ◦ J3 + 1

3
γ3 ◦ J2,

β2 = 2

3
γ2 − 1

3
γ1 ◦ J3 − 1

3
γ3 ◦ J1,

β3 = 2

3
γ3 + 1

3
γ1 ◦ J2 + 1

3
γ2 ◦ J1,

for some 1-forms γ1, γ2, γ3 and then we apply the definition of the torsion map δ, we take traces, etc., and we get (17).
Suppose now that δ(B) ∈ C(N(P )). Then, from (17) and the definition of C(N(P )),

0 = tr
(

J i(δB)X
) = (n − 2)εiβi(X), ∀X, ∀i ∈ {1,2,3},

which implies that B = 0. We proved that δΩ1
0 (M, P ) and C(N(P )) intersect trivially. We now prove that δΩ1

0 (M, P ) and
C(N(P )) generate Im(P ). For this, let T ∈ Ω2(M, T M) and write

P (T ) =
(

P (T ) − δ

(
3∑

τi ⊗ J i

))
+ δ

(
3∑

τi ⊗ J i

)
(18)
i=1 i=1
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with 1-forms τi defined in (14). Lemma 6 and the definition of τi imply that
∑3

i=1 τi ⊗ J i belongs to Ω1
0 (M, P ). Moreover,

the first term of (18) belongs to C(N(P )): it belongs to Im(P ) since
∑3

i=1 τi ⊗ J i ∈ Ω1
0 (M, P ) and δΩ1

0 (M, P ) is included in
Im(P ) (from what we already proved); moreover, for any i ∈ {1,2,3} and X ∈ T M ,

tr
(

J i P (T )X
) − tr

(
J iδ

(
3∑

k=1

τk ⊗ Jk

)
X

)
= tr

(
J i P (T )X

) − (n − 2)εiτi(X) = 0

where the first equality holds from (17), since
∑3

i=1 τi ⊗ J i ∈ Ω1
0 (M, P ), and the second equality is just the definition of τi .

The decomposition (16) follows.
We can now prove the decomposition (12). Using (16) and Lemma 3, we obtain the following decomposition of

Ω2(M, T M):

Ω2(M, T M) = δΩ1(M, Z(P )
) ⊕ δΩ1

0 (M, P ) ⊕ C
(
N(P )

)
. (19)

On the other hand, we claim that

δΩ1(M, N(P )
) = δΩ1(M, Z(P )

) ⊕ δΩ1
0 (M, P ), (20)

or, equivalently, that δΩ1(M, Z(P )) and δΩ1
0 (M, P ) generate δΩ1(M, N(P )) (since δΩ1(M, Z(P )) and δΩ1

0 (M, P ) have
trivial intersection, from (19)). Recall that N(P ) = Z(P ) ⊕ P . From (15), we notice that in order to prove (20) it is enough
to show that δC(M) is included in δΩ1(M, Z(P )). Let T α = ∑3

i=1 εi(α ◦ J i) ⊗ J i ∈ C(M), where α ∈ Ω1(M) is an arbitrary
1-form. It can be checked that δ(T α) = δ(Eα), where Eα , defined by

Eα(X, Y ) := −
(
α(Y )X +

3∑
i=1

εiα( J i Y ) J i X + α(X)Y

)
, ∀X, Y ∈ T M,

belongs to Ω1(M, Z(P )). This implies that δC(M) is included in δΩ1(M, Z(P )) as claimed. Decomposition (20) follows and
implies, together with (19), decomposition (12). Clearly, the map (13) is the projection onto the second factor of (12). �

As a consequence, we recover Proposition 2.5 of [13].

Corollary 8. The torsion tensor T P of an almost para-quaternionic structure P is related to the torsion tensor T H of a compatible
almost para-hypercomplex structure H = { J1, J2, J3} by

T P := T H − δ(τ1 ⊗ J1 + τ2 ⊗ J2 + τ3 ⊗ J3),

where, for any tangent vector X,

τi(X) := εi tr( J i T H
X )

n − 2
, ∀i ∈ {1,2,3}. (21)

Proof. The torsion tensor T P ∈ C(N(P )) is the projection of T H ∈ Im(P ) with respect to the decomposition (16). �
We will need the following corollary in the proof of Theorem 11. This Corollary is analogue to Proposition 2.3 of [2] and

can be proved in a similar way. A similar result has been proved in [13].

Corollary 9. The torsion T P of an almost para-quaternionic manifold (M, P ) is zero if and only if the torsion T H of any compatible
almost para-hypercomplex structure H = { J1, J2, J3} is of the form

T H = δ

(
3∑

i=1

αi ⊗ J i + α ⊗ Id

)
(22)

where α,α1,α2,α3 are 1-forms.

3.2. Minimal para-quaternionic connections

Let (M, P ) be an almost para-quaternionic manifold. A para-quaternionic connection ∇ is minimal if its torsion T ∇ is
equal to the torsion tensor T P ∈ C(N(P )) of the almost para-quaternionic structure P . Minimal para-quaternionic con-
nections always exist (see [13], Proposition 2.5). Moreover, they are parametrized by 1-forms, as stated in the following
lemma.
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Lemma 10. Let { J1, J2, J3} be an admissible basis of P . Any two minimal para-quaternionic connections ∇ and ∇′ on (M, P ) are
related by ∇′ = ∇ + Sα , where α ∈ Ω1(M) and

Sα
X (Y ) := α(Y )X − α( J1Y ) J1 X + α( J2Y ) J2 X + α( J3Y ) J3 X

+ α(X)Y − α( J1 X) J1Y + α( J2 X) J2Y + α( J3 X) J3Y ,

for any X, Y ∈ T M.

Proof. The statement is more general: two para-quaternionic connections ∇ and ∇′ have the same torsion if and only if
there is a 1-form α ∈ Ω1(M) such that ∇′ = ∇ + Sα . This comes from the fact that the map which associates to a covector
α ∈ T ∗M the tensor Sα ∈ T ∗M ⊗End(T M) defined as above is an isomorphism between T ∗M and (T ∗M ⊗ N(P ))∩(S2 T ∗M ⊗
T M), where S2T ∗M is the bundle of symmetric (2,0)-tensors on M . �
4. Compatible (para)-complex structures

In our conventions, a system {Ii} of almost complex and/or almost para-complex structures on a manifold M is indepen-
dent if it is pointwise independent, i.e. for any p ∈ M , the system {Ii(p)} is independent. In particular, two almost complex
or almost para-complex structures I1, I2 on M are independent if I1(p) �= ±I2(p) at any p ∈ M .

Our main result in this section is the following criterion of integrability of almost para-quaternionic structures. Similar
results are known for conformal 4-manifolds and for almost quaternionic manifolds (see [2,11] and [12]).

Theorem 11. Let (M, P ) be an almost para-quaternionic manifold of dimension 4m � 8. Suppose one of the following situations holds:

1. There are two globally defined, independent, compatible, complex or para-complex structures I1 and I2 such that either I1 or I2 is
a complex structure.

2. There are two globally defined, independent, compatible, para-complex structures I1 and I2 such that at any p ∈ M, the 2-plane
Span{I1(p), I2(p)} is non-degenerate (with respect to the standard Lorenzian metric 〈·, ·〉 of P ).

3. There are three globally defined, pairwise independent, compatible, para-complex structures I1 , I2 and I3 , such that at any p ∈ M,
I1(p), I2(p) and I3(p) are linearly dependent and for any i �= j, the 2-plane Span{Ii(p), I j(p)} is degenerate.

Then (M, P ) is para-quaternionic.

We divide the proof of Theorem 11 into several lemmas and propositions. We begin with Lemmas 12 and 13, which are
mild generalizations of (3.4.1) and (3.4.4) of [1] and can be proved in a similar way.

Lemma 12. Let J i (i ∈ {1,2}) be two anti-commuting almost εi -complex structures on a manifold M. The Nijenhuis tensors of J1 , J2
and J1 ◦ J2 are related by

2N J1◦ J2 (X, Y ) = N J1 ( J2 X, J2Y ) − ε1N J2 (X, Y ) − J1N J2 ( J1 X, Y )

− J1N J2 (X, J1Y ) − ε2N J1 (X, Y ) + N J2 ( J1 X, J1Y )

− J2N J1 (X, J2Y ) − J2N J1 ( J2 X, Y ),

for any vector fields X, Y ∈ X (M). In particular, if J1 and J2 are integrable, also J1 ◦ J2 is.

Recall that if A, B ∈ End(T M) are two endomorphisms of T M , their Nijenhuis bracket is a new endomorphism of T M ,
defined, for any vector fields X, Y ∈ X (M), by

[A, B](X, Y ) = [A X, BY ] + [B X, AY ] − A
([B X, Y ] + [X, BY ])

− B
([X, AY ] + [A X, Y ]) + (AB + B A)[X, Y ].

Note that if J is an almost ε-complex structure, then [ J , J ] = 2N J .

Lemma 13. Let ∇ be a linear connection on a manifold M, which preserves two endomorphisms A, B ∈ End(T M). Denote by T ∇ the
torsion of the connection ∇ . For any vector fields X, Y ∈ X (M),

[A, B](X, Y ) = A
(
T ∇ (B X, Y ) + T ∇ (X, BY )

)
+ B

(
T ∇(X, AY ) + T ∇(A X, Y )

)
− T ∇(A X, BY ) − T ∇(B X, AY ).
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In the next lemma we collect some simple algebraic properties of compatible almost para-complex structures on almost
para-quaternionic manifolds.

Lemma 14. Let (M, P ) be an almost para-quaternionic manifold.

(i) Suppose that I1 and I2 are two globally defined, compatible, independent, almost para-complex structures and let p ∈ M. The
2-plane Span{I1(p), I2(p)} is degenerate if and only if |〈I1(p), I2(p)〉| = 1, if and only if prI⊥1

(I2) = I2 −〈I2, I1〉I1 or prI⊥2
(I1) =

I1 − 〈I1, I2〉I2 is null (i.e. squares to the trivial endomorphism) at the point p.
(ii) Suppose that I1 , I2 and I3 are three pairwise independent, globally defined, compatible, almost para-complex structures, such that

Span{Ii(p), I j(p)} is degenerate, for any i �= j and any p ∈ M. Moreover, assume that

〈I1, I2〉〈I2, I3〉〈I1, I3〉 = 1.

Then the system {I1, I2, I3} is linearly dependent at any point and (eventually changing the order of {Ii} and replacing Ii with −Ii
if necessary) there is, in a neighborhood of any point, an admissible basis { J1, J2, J3} of P such that

I1 = J2,

I2 = J1 − J2 + q J3,

I3 = a J1 + J2 + aq J3,

where a is a smooth function, non-vanishing and different from −1 at any point, and q ∈ {−1,1}.
(iii) Suppose that I1 , I2 and I3 are like in (ii), but

〈I1, I2〉〈I2, I3〉〈I1, I3〉 = −1.

Then the system {I1, I2, I3} is linearly independent and (eventually changing the order of {Ii} and replacing Ii with −Ii if neces-
sary) there is a global admissible basis { J1, J2, J3} of P such that

I1 = J2,

I2 = J1 + J2 + J3,

I3 = J1 + J2 − J3.

Proof. The first statement is easy. To prove (ii), suppose that 〈I1, I3〉 = 1. Replacing I2 with −I2 if necessary, we can
moreover assume that both 〈I1, I2〉 and 〈I2, I3〉 are equal to −1. Then I1 + I2 and I3 − I1 belong to I⊥1 , are null and
orthogonal. Therefore, they must be proportional (the restriction of 〈·, ·〉 to I⊥1 being non-degenerate). We deduce that
{I1, I2, I3} are dependent at any point. Clearly, we can find an admissible basis of P such that I1 = J2 and I2 = J1 − J2 +q J3,
where q ∈ {−1,1}. Since I1 + I2 and I3 − I1 are proportional, I3 = I1 + a( J1 + q J3) for a smooth function a. Since I1, I2 and
I3 are pairwise independent, a is non-vanishing and different from −1 at any point. The second claim follows. The third
claim is equally easily. �

Using the previous lemmas, we can now prove Theorem 11. We first assume in Proposition 15 that (M, P ) admits a
pair of (integrable) complex or para-complex structures like in the first two cases of Theorem 11 and we show that P is
para-quaternionic. The remaining case of Theorem 11 will be treated in Proposition 16.

Proposition 15. Let (M, P ) be an almost para-quaternionic manifold of dimension n = 4m � 8. Suppose that P admits two globally
defined, independent, compatible, complex or para-complex structures I1 and I2 , such that one of the following conditions holds:

(i) Either I1 or I2 is a complex structure.
(ii) Both I1 and I2 are para-complex structures and Span{I1(p), I2(p)} is non-degenerate at any p ∈ M.

Then (M, P ) is a para-quaternionic manifold.

Proof. Our argument is similar to the one employed in the proof of Theorem 2.4 of [2]. In a neighborhood of any point we
consider two almost εi -complex structures J i (i ∈ {1,2}), with 〈 J1, J2〉 = 0, such that I1 = J1 and I2 = a J1 + b J2, where
a,b are smooth functions, with b non-vanishing (this is possible since prI⊥1

(I2) is non-null when I1 is complex — the metric

on I⊥1 being positive definite — and also when both I1 and I2 are para-complex, from the non-degeneracy of the 2-planes
Span{I1(p), I2(p)} and Lemma 14). Since 〈 J1, J2〉 = 0, J1 and J2 anti-commute and the composition J3 := J1 ◦ J2 is an
almost ε3-complex structure, with ε3 := −ε1ε2 ∈ {−1,+1}. We divide the proof into three steps.

Step one: we prove that the torsion T H of the almost para-hypercomplex structure H defined by J1, J2 and J3 has the
following expression: for any vector fields X , Y ,
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−12T H (X, Y ) = 3ε2N J2 (X, Y ) − ε3 J1N J2 ( J1 X, Y ) − ε3 J1N J2 (X, J1Y ) + ε3N J2 ( J1 X, J1Y ).

We prove this in the following way: since J1 = I1 is integrable, Lemma 4 implies that

T H = −1

6
(ε2N J2 + ε3N J3 ). (23)

From Lemma 12 and the integrability of J1,

2N J3 (X, Y ) = −ε1N J2 (X, Y ) − J1N J2 ( J1 X, Y ) − J1N J2 (X, J1Y ) + N J2 ( J1 X, J1Y ). (24)

Combining (23) with (24) we get our first claim.
Step two: we prove that the Nijenhuis bracket [ J1, J2] has the following expression:

2[ J1, J2](X, Y ) = ε2 J3N J2 (X, Y ) − ε3 J3N J2 ( J1 X, J1Y ) − ε2 J2
(
N J2 ( J1 X, Y ) + N J2 (X, J1Y )

)
.

To prove this claim, we apply Lemma 13 to A := J1, B := J2 and the Obata connection ∇ of H (which preserves J1, J2 and
J3). Since T H = T ∇ , from Lemma 13,

[ J1, J2](X, Y ) = J1
(
T H ( J2 X, Y ) + T H (X, J2Y )

)
+ J2

(
T H ( J1 X, Y ) + T H (X, J1Y )

)
− T H ( J1 X, J2Y ) − T H ( J2 X, J1Y ).

We now evaluate T H ( J2 X, Y ) + T H (X, J2Y ), T H ( J1 X, Y ) + T H (X, J1Y ) and T H ( J1 X, J2Y ) + T H ( J2 X, J1Y ) in terms of the
Nijenhuis tensor N J2 . It can be checked that the Nijenhuis tensor of any almost ε-complex structure J has the following
symmetries:

N J ( J X, Y ) = N J (X, J Y ) = − J N J (X, Y ), ∀X, Y ∈ X (M). (25)

Using the expression of T H determined in the first step, relation (25) for J := J2 and the anti-commutativity J1 J2 = − J1 J2
we obtain

6
(
T H ( J1 X, Y ) + T H (X, J1Y )

) = ε3 J1N J2 ( J1 X, J1Y ) − ε2 J1N J2 (X, Y ) − ε2
(
N J2 ( J1 X, Y ) + N J2 (X, J1Y )

)
,

6
(
T H ( J2 X, Y ) + T H (X, J2Y )

) = 3ε2 J2N J2 (X, Y ) − ε3 J2N J2 ( J1 X, J1Y ),

6
(
T H ( J1 X, J2Y ) + T H ( J2 X, J1Y )

) = 2ε2 J2
(
N J2 ( J1 X, Y ) + N J2 (X, J1Y )

) + ε3 J3
(
N J2 ( J1 X, J1Y ) − ε1N J2 (X, Y )

)
.

Replacing these relations in the expression of [ J1, J2] above we get our second claim.
Step three: we prove that T H ≡ 0, where the sign “≡” means equality, modulo terms of the form δ(α1 ⊗ J1 + α2 ⊗ J2 +

α3 ⊗ J3 + α ⊗ Id), where α,α1,α2,α3 are 1-forms. To prove this claim, we notice that, since I2 = a J1 + b J2, is integrable

a2N J1 + b2N J2 + ab[ J1, J2] ≡ 0. (26)

The integrability of J1 together with (26) imply that

b2N J2 + ab[ J1, J2] ≡ 0. (27)

On the set of points M0 ⊂ M where a = 0, (27) implies that N J2 ≡ 0 (because b is non-vanishing). We use now the expres-
sion of [ J1, J2] determined in step two to show that (27) implies that N J2 ≡ 0 also on M \ M0. On M \ M0, we can divide
(27) by a and, using the expression of [ J1, J2] provided by step two, we obtain

−2b

a
N J2 (X, Y ) ≡ ε2 J3N J2 (X, Y ) − ε3 J3N J2 ( J1 X, J1Y ) − ε2 J2

(
N J2 ( J1 X, Y ) + N J2 (X, J1Y )

)
.

Replacing (X, Y ) with ( J2 X, J2Y ) in this relation, using again (25) for J = J2 and the anti-commutativity J1 J2 = − J2 J1 we
get two relations:

−2b

a
N J2 (X, Y ) ≡ ε2 J3N J2 (X, Y ) − ε3 J3N J2 ( J1 X, J1Y ) (28)

and

N J2 ( J1 X, Y ) + N J2 (X, J1Y ) ≡ 0. (29)

Relation (29) implies that

N J2 ( J1 X, J1Y ) ≡ −ε1N J2 (X, Y ). (30)

Replacing (30) in (28) and using ε3 = −ε1ε2 we get N J2 ≡ 0. From (24), N J3 ≡ 0 as well and then, from (23), T H ≡ 0.
Corollary 9 implies that T P = 0. This concludes our proof. �
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Proposition 16. Let (M, P ) be an almost para-quaternionic manifold of dimension n = 4m � 8. Suppose that P admits three pairwise
independent, compatible, para-complex structures {I1, I2, I3}, such that at any p ∈ M, {I1(p), I2(p), I3(p)} are dependent and for any
i �= j, Span{Ii(p), I j(p)} is degenerate. Then (M, P ) is para-quaternionic.

Proof. Like in the proof of Proposition 15, we will determine, in a neighborhood of any point, a suitable compatible almost
para-hypercomplex structure H , for which T H ≡ 0. We divide the proof into two steps.

Step one: let H := { J1, J2, J3} be any admissible basis of P such that I1 = J2. In particular, J2 is integrable. We claim
that the torsion T H of H and the Nijenhuis brackets [ J1, J2], [ J1, J3] and [ J2, J3] have the following expressions: for any
vector fields X and Y ,

12T H (X, Y ) = 3N J1 (X, Y ) − N J1 ( J2 X, J2Y ) + J2
(
N J1 (X, J2Y ) + N J1 ( J2 X, Y )

)
(31)

and

2[ J1, J2](X, Y ) = J1
(
N J1 ( J2 X, Y ) + N J1 (X, J2Y )

) + J3
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

)
,

2[ J1, J3](X, Y ) = N J1 ( J2 X, Y ) + N J1 (X, J2Y ) − J2
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

)
,

2[ J2, J3](X, Y ) = J1
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

) + J3
(
N J1 ( J2 X, Y ) + N J1 (X, J2Y )

)
.

To prove these claims, notice that

T H = −1

6
(−N J1 + N J3 ) (32)

since J2 is integrable. On the other hand, applying Lemma 12 to J1 and J2 and using the integrability of J2 we get

2N J3 (X, Y ) = N J1 ( J2 X, J2Y ) − N J1 (X, Y ) − J2N J1 (X, J2Y ) − J2N J1 ( J2 X, Y ). (33)

Combining (32) with (33) we obtain (31). In order to evaluate the Nijenhuis brackets [ J1, J2], [ J1, J3] and [ J2, J3] we will
use Lemma 13, with ∇ the Obata connection of { J1, J2, J3}, so that T ∇ = T H . Using (31), the anti-commutativity of J1, J2,
J3 and (25) for J = J1, we obtain

6
(
T H ( J1 X, J2Y ) + T H ( J2 X, J1Y )

) = −2 J1
(
N J1 (X, J2Y ) + N J1 ( J2 X, Y )

) − J3
(
N J1 ( J2 X, J2Y ) − N J1 (X, Y )

)
,

6
(
T H ( J1 X, J3Y ) + T H ( J3 X, J1Y )

) = −N J1 (X, J2Y ) − N J1 ( J2 X, Y ) + J2
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

)
,

6
(
T H ( J2 X, J3Y ) + T H ( J3 X, J2Y )

) = − J1
(
3N J1 ( J2 X, J2Y ) + N J1 (X, Y )

)
,

6
(
T H ( J1 X, Y ) + T H (X, J1Y )

) = − J1
(
3N J1 (X, Y ) + N J1 ( J2 X, J2Y )

)
,

6
(
T H ( J2 X, Y ) + T H (X, J2Y )

) = J2
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

) + N J1 ( J2 X, Y ) + N J1 (X, J2Y ),

6
(
T H (X, J3Y ) + T H ( J3 X, Y )

) = −2 J1
(
N J1 ( J2 X, Y ) + N J1 (X, J2Y )

) + J3
(
N J1 ( J2 X, J2Y ) − N J1 (X, Y )

)
.

Applying Lemma 13 we get the expressions of [ J1, J2], [ J1, J3] and [ J2, J3] as stated.
Step two: using step one, we prove that P is integrable. From Lemma 14 we can chose, in a neighborhood of any point,

an admissible basis { J1, J2, J3} of P such that

I1 = J2, I2 = J1 − J2 + q J3, I3 = a J1 + J2 + aq J3,

where a is a smooth function, non-vanishing and different from −1 at any point, and q ∈ {−1,+1}. The integrability of I1
and I3 implies that

N J1 + N J3 + q[ J1, J3] ≡ 0,

[ J1, J2] + q[ J2, J3] ≡ 0,

where the sign ≡ has the same meaning as in the proof of Proposition 15. Using (33) and the expressions of [ J1, J2] and
[ J2, J3] previously determined, we get

(Id + q J2)
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y ) + qN J1 ( J2 X, Y ) + qN J1 (X, J2Y )

) ≡ 0,

(Id − q J2)
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y ) + qN J1 ( J2 X, Y ) + qN J1 (X, J2Y )

) ≡ 0.

Adding these relations,

N J1 ( J2 X, J2Y ) + N J1 (X, Y ) + q
(
N J1 ( J2 X, Y ) + N J1 (X, J2Y )

) ≡ 0. (34)

Replacing in (34) the pair (X, Y ) with ( J1 X, J1Y ) and using (25) for J = J1 we get
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N J1 ( J2 X, J2Y ) + N J1 (X, Y ) ≡ 0,

N J1 ( J2 X, Y ) + N J1 (X, J2Y ) ≡ 0.

Like in the proof of Proposition 15, we deduce that N J1 ≡ 0. From (33) it follows that N J3 ≡ 0 as well and therefore, T H ≡ 0.
We conclude that P is para-quaternionic. �

Proposition 16 concludes the proof of Theorem 11.
Theorem 11 raises the following question: does the existence of three globally defined, independent, compatible, para-

complex structures {I1, I2, I3} on an almost para-quaternionic manifold (M, P ), such that for any p ∈ M and i �= j, the
2-plane Span{Ii(p), I j(p)} is degenerate, imply the integrability of the almost para-quaternionic structure P ? We will now
show that the answer to this question is negative.

For this, it is convenient to express the integrability of I1, I2 and I3 in terms of the admissible basis { J1, J2, J3} of P
provided by Lemma 14, i.e. related to {I1, I2, I3} by

I1 = J2, I2 = J1 + J2 + J3, I3 = J1 + J2 − J3. (35)

Lemma 17. The integrability of the almost para-complex structures I1 , I2 and I3 is equivalent to the integrability of J2 together with
the integrability of the eigenbundle of J3 which corresponds to the eigenvalue +1.

Proof. From (35), the integrability of I1, I2 and I3 is equivalent to the integrability of J2 and the following two relations:

N J1 + N J3 + [ J1, J2] = 0,

[ J1, J3] + [ J2, J3] = 0.

We now express N J3 , [ J1, J2], [ J1, J3] and [ J2, J3] in terms of N J1 , using the computations of the proof of Proposition 16.
To simplify notations, define, for any vector fields X and Y ,

E(X, Y ) := N J1 ( J2 X, J2Y ) + N J1 (X, Y ) (36)

and

F (X, Y ) := N J1 ( J2 X, Y ) + N J1 (X, J2Y ). (37)

An easy argument shows that the previous two relations reduce to

(Id + J3)E(X, Y ) = 0 ∀X, Y . (38)

Multiplying (38) by J2 on the left and using (25) for J = J1 we obtain

J2
(
N J1 ( J2 X, J2Y ) + N J1 (X, Y )

) = N J1 ( J2 J1 X, J2Y ) − N J1 ( J1 X, Y ). (39)

Replacing in (39) X with J1 X we obtain

J2
(
N J1 ( J2 J1 X, J2Y ) + N J1 ( J1 X, Y )

) = −N J1 ( J2 X, J2Y ) + N J1 (X, Y ). (40)

On the other hand, multiplying (39) on the left with J2 we obtain

J2
(
N J1 ( J2 J1 X, J2Y ) − N J1 ( J1 X, Y )

) = N J1 ( J2 X, J2Y ) + N J1 (X, Y ). (41)

Using (40) and (41), we get that (38) is equivalent to

N J1 ( J3 X, J3Y ) = J3N J1 (X, Y ), ∀X, Y . (42)

Using (42), we easily get our claim: relation (33) expresses N J3 in terms of N J1 ; conversely, using Lemma 12 and the
integrability of J2, we can express N J1 in terms of N J3 as

2N J1 (X, Y ) = −N J3 (X, Y ) − J2N J3 ( J2 X, Y ) − J2N J3 (X, J2Y ) + N J3 ( J2 X, J2Y ). (43)

Using (33) and (43), it can be checked that (42) is equivalent to

J3N J3 (X, Y ) = N J3 (X, Y ), ∀X, Y ,

or to the integrability of the eigenbundle of J3 which corresponds to the eigenvalue +1. Our claim follows. �
Lemma 17 reduces the problem of finding independent, compatible, para-complex structures I1, I2 and I3 on (M, P ),

with Span{Ii(p), I j(p)} degenerate at any p ∈ M , for any i �= j, to the problem of finding admissible bases { J1, J2, J3} of P ,
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such that both J2 and Ker( J3 − Id) are integrable. We now show that these conditions, in turn, reduce to solving a certain
system of partial differential equations. Indeed, since J2 is integrable, locally M = M1 × M2 is a product manifold and
T M1, T M2 are the eigenbundles of J2 which correspond to the eigenvalues 1 and −1, respectively. The four distributions

D± := Ker( J3 ∓ Id), T M1 and T M2 are pairwise transverse. Therefore,

D± := {X + A± X, ∀X ∈ T M1}
where A+, A−, A+ − A− : T M1 → T M2 are isomorphisms. It is easy to check that J2 ◦ J3 = − J3 ◦ J2 is equivalent to
A+ + A− = 0. Note also that in terms of A := A+ ,

J1(X) = J3(X) = A(X), J1(Y ) = − J3(Y ) = −A−1(Y ),

for any X ∈ T M1 and Y ∈ T M2. Let (x1, . . . , x2m) and (y1, . . . , y2m) be local coordinates on M1 and M2 respectively. In these
coordinates,

A

(
∂

∂xi

)
:=

2m∑
j=1

f i j
∂

∂ y j
,

for some smooth functions f i j = f i j(xs, yr) (1 � i, j, r, s � 2m), with det( f i j) �= 0 at any point. The system of partial differen-
tial equations mentioned above comes from the integrability of D+ = Ker( J3 − Id): it can be checked that D+ is integrable
if and only if

∂ f jt

∂xi
− ∂ f it

∂x j
+

2m∑
k=1

(
f ik

∂ f jt

∂ yk
− f jk

∂ f it

∂ yk

)
= 0, ∀i �= j, ∀t. (44)

Reversing this argument, any solution ( f i j) of (44), with non-vanishing determinant det( f i j), defines an almost para-
quaternionic structure P( f i j) := Span{ J1, J2, J3}, which admits three independent, compatible, para-complex structures I1,
I2 and I3, related to { J1, J2, J3} by (35). The next proposition determines a class of solutions of (44), for which P is not
para-quaternionic.

Proposition 18. The functions fi j := f iδi j (1 � i, j � 2m), where

f1 := h

( ∑2m
j=2 x2

j∑2m
j=2 y2

j

)
, f i := xi

(∑2m
j=2 y2

j

)
yi

(∑2m
j=2 x2

j

) , 2 � i � 2m

and h is a smooth real function, is a solution of (44). Moreover, on any open connected subset of R
4m on which fi (1 � i � 2m) are

non-vanishing and

h

( ∑2m
j=2 x2

j∑2m
j=2 y2

j

)
+

∑2m
j=2 x2

j∑2m
j=2 y2

j

ḣ

( ∑2m
j=2 x2

j∑2m
j=2 y2

j

)
�= 0, (45)

the associated almost para-quaternionic structure P( f i j) is not para-quaternionic.

Proof. It is straightforward to check that ( f i j) is a solution of (44). We now show that P is not para-quaternionic. With the
previous notations, it can be checked that, for any i, j ∈ {1, . . . ,2m},

3T H
(

∂

∂xi
,

∂

∂x j

)
= 1

f j

∂ f j

∂xi

∂

∂x j
− 1

f i

∂ f i

∂x j

∂

∂xi
, (46)

where T H is the torsion of H := { J1, J2, J3}. Suppose now, by absurd, that P is para-quaternionic. Then T H is of the form

T H = δ(γ ⊗ Id + γ1 ⊗ J1 + γ2 ⊗ J2 + γ3 ⊗ J3) (47)

for some 1-forms γ , γ1, γ2 and γ3. Moreover, since

J1

(
∂

∂xi

)
= J3

(
∂

∂xi

)
= f i

∂

∂ yi
, J1

(
∂

∂ y j

)
= − J3

(
∂

∂ y j

)
= − 1

f j

∂

∂x j
,

for any 1 � i, j � 2m, relation (47) implies:

T H
(

∂

∂xi
,

∂

∂x j

)
= (γ + γ2)

(
∂

∂xi

)
∂

∂x j
+ f j(γ1 + γ3)

(
∂

∂xi

)
∂

∂ y j

− (γ + γ2)

(
∂

∂x

)
∂

∂x
− f i(γ1 + γ3)

(
∂

∂x

)
∂

∂ y
.

j i j i
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From (46) we deduce that (γ1 + γ3)(
∂

∂xi
) = 0 for any i and

1

f i

∂ f i

∂x j
= −(γ + γ2)

(
∂

∂x j

)
, ∀i �= j.

Equivalently, for any i �= k, the quotient f i
fk

depends only on xi, xk, y1, . . . , y2n . However, from the definition of the functions
f i , this is cannot hold: take i = 1, k � 2 arbitrary and use (45). We obtain a contradiction. We deduce that P is not para-
quaternionic. �
5. Twistor and reflector spaces

Let (M, P ) be an almost para-quaternionic manifold. Denote by πε : Zε → M the reflector bundle of (M, P ) when ε = 1
and the twistor bundle of (M, P ) when ε = −1. A para-quaternionic connection ∇ on (M, P ) induces an almost ε-complex
structure J ∇,ε on Zε as follows: let H∇,ε

J be the horizontal space at J ∈ Zε of the connection ∇ , acting on the bundle
πε : Zε → M , and

T J Zε = H∇,ε
J ⊕ T v

J Zε (48)

the induced decomposition of T J Zε into horizontal and vertical subspaces. On H∇,ε
J , identified with Tπε( J )M by means of

the differential (πε)∗ , J ∇,ε coincides with J (viewed as an endomorphism of Tπε( J )M); on T v
J Zε , it is

J ε
J (A) := J ◦ A, ∀A ∈ T v

J Zε

and is well defined, since

T v
J Zε = {A ∈ Pπε( J ): A ◦ J + J ◦ A = 0} ⊂ End(Tπε( J )M).

Consider now another para-quaternionic connection ∇′ . If ∇ and ∇′ have the same torsion, J ∇,ε = J ∇′,ε (see Corollary 3.4
of [8]).

Definition 19. Let (M, P ) be an almost para-quaternionic manifold. The twistor space Z− has a canonical almost complex
structure J − := J ∇,− . Similarly, the reflector space Z+ has a canonical almost para-complex structure J + := J ∇,+ . Here
∇ is (any) minimal para-quaternionic connection on (M, P ).

We need the following lemma in the proof of Theorem 21.

Lemma 20. Let (M, P ) be a para-quaternionic manifold and J a compatible almost ε-complex structure on (M, P ). Then J is inte-
grable if and only if the image Im(σ J ) ⊂ Zε of the tautological section σ J : M → Zε defined by J is J ε -stable.

Proof. The proof goes like in the quaternionic case (see [2], Sections 3 and 4), with the Oproiu connections of almost
quaternionic manifolds replaced by the minimal para-quaternionic connections of (M, P ). �

The next theorem is our main result of this section and is the para-quaternionic analogue of Theorem 4.2 of [2]. The
equivalence between the second and the third conditions bellow has already been proved in [8].

Theorem 21. Let (M, P ) be an almost para-quaternionic manifold of dimension n = 4m � 8. Denote by J + the canonical almost para-
complex structure of the reflector space Z+ and by J − the canonical almost complex structure of the twistor space Z− of (M, P ). The
following statements are equivalent:

(i) (M, P ) is a para-quaternionic manifold.
(ii) Both J + and J − are integrable.

(iii) Either J − or J + is integrable.
(iv) For any point p ∈ M and compatible ε-complex structure I p ∈ P p , there are infinitely many compatible ε-complex structures

defined in a neighborhood of p which extend I p .
(v) Any point of M has a neighborhood on which there are defined four compatible, pairwise independent, εi -complex structures Ii

(i ∈ {1,2,3,4}).

Proof. Let ∇ be a minimal para-quaternionic connection on (M, P ), so that T ∇ = T P and J ε = J ∇,ε , for ε ∈ {−1,1}.
We show the equivalence of the first three conditions. Suppose that P is a para-quaternionic structure. Then T P = 0,

the connection ∇ is torsion free and both J + , J − are integrable (see [8], Theorem 3.8). Conversely, suppose that J − or
J + is integrable. Then, again from Theorem 3.8 of [8],
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Π
0,2
J

(
T ∇) = 0, ∀ J ∈ P , J 2 = ±Id. (49)

Relation (49) implies that T P = P (T ∇ ) = 0 (where P is the projector of Lemma 3). It follows that P is para-quaternionic.
We now show that the fourth and the fifth conditions are equivalent to any of the first three conditions. From Theo-

rem 11, the fifth condition implies the first. Suppose now that the first (hence also the second and third) condition holds.
We will prove the fourth condition when I p is para-complex (the argument when I p is a complex structure is similar).
Since J + is integrable, the distributions T ± Z+ := Ker(J + ∓ Id) are involutive. Being transversal, there are local coordinates
(x1, . . . , xn+2) in a neighborhood U of I p ∈ Z+ such that

T + Z+ =
2m+1⋂

i=1

Ker(dxi),

T − Z+ :=
4m+2⋂

i=2m+2

Ker(dxi).

The para-complex structure J + preserves the fibers of the reflector projection π+ : Z+ → M and the two distributions
Ker(π+)∗ ∩ T + Z+ and Ker(π+)∗ ∩ T − Z+ have rank one. Suppose they are generated on U by two vector fields, say X+ and
X− respectively. From our choice of (x1, . . . , xn+2),

dx1
(

X+) = · · · = dx2m+1
(

X+) = 0,

dx2m+2
(

X−) = · · · = dx4m+2
(

X−) = 0.

Eventually changing the order of (x1, . . . , x2m+1), we suppose that dx1(X−) �= 0 at I p ; similarly, we can take dx2m+2(X+) �= 0
at I p . Let S be a codimension two submanifold of U , which contains I p and is defined by

x1 = f
(
x2, . . . , x2m+1),

x2m+2 = g
(
x2m+3, . . . , x4m+2),

where f , g are smooth functions with all partial derivatives ∂ f
∂x j

(2 � j � 2m + 1) and ∂ g
∂x j

(2m + 3 � j � 4m + 2) zero at I p .

Then S intersects the fibers of π+ transversally in a neighborhood of I p and the tangent bundle T S is preserved by J + .
It follows that S is the image of a compatible almost para-complex structure I of (M, P ), viewed as a (local) section of
π+ : Z+ → M . From Lemma 20 the almost para-complex structure I is integrable. Clearly, I extends I p in a neighborhood
of p. We proved that the first condition implies the fourth. The fourth condition implies the fifth. Our claim follows. �
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