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Efficient Calculation of Accurate Masses
of Isotopic Peaks
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This paper presents a new method for calculating accurate masses of isotopic peaks. It is based
on breaking the calculation into a binary series of calculations. The molecule is built up by a
series of such calculations. At each step the accurate masses are calculated as a probability
weighted sum of the masses of the contributing peaks. The method is computationally efficient
and accurate for both mass and relative abundance. (J Am Soc Mass Spectrom 2006, 17,
415–419) © 2006 American Society for Mass Spectrometry
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This paper addresses the problem of calculating
the accurate masses of isotopic peaks in an isoto-
pic distribution of a compound of known chem-

ical formula. For the purposes of this paper an “isotopic
peak” consists of all molecules having the same number
of nucleons, regardless of the isotopic fine structure of
the peak. For example, the compound CO has an
isotopic peak containing 29 nucleons. Although this
peak has an isotopic fine structure with contributions
from both 12C17O and 13C16O, each of which has a
slightly different mass, for the purposes of the present
paper these will not be considered as two separate
peaks but as a single isotopic peak with an accurate
mass of 28.998297 Da.

There are several methods for calculating masses of
isotopic peaks. The accuracy and speed of an isotopic
calculation both depend strongly on the method used.
Kubinyi [1] and Rockwood and Van Orden [2] have
described fast methods that also produce semi-accurate
masses. The method of reference [2] is extremely fast
and generally produces results within a few millimass
units [2, 3]. Although semi-accurate masses are useful
for many applications, in some cases being more accu-
rate than experimental measurements of masses [3], for
other applications accurate masses would be preferable.

Accurate masses of isotopic peaks can be calculated
by several methods. Polynomial-based methods work
well for low and medium molecular weight com-
pounds, but become computationally inefficient at high
molecular weights. Attempts to accelerate the polyno-
mial-based methods by applying “pruning”, which is
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the omission of small terms from the calculation, in-
volve a tradeoff between speed and accuracy [4, 5].

In a second method, one might start with an algo-
rithm that calculates profile-mode isotopic distributions
centered on the accurate masses [4]. Numerical values
of the accurate masses of the isotopic peaks would then
be extracted by numerical quadrature or by peak fitting
of the nominal isotopic peaks. However, considerable
computational effort would still be involved in such a
method.

A third method is to perform a series of stepwise
convolutions, building the full molecule by the stepwise
addition of atoms to an accumulated “super atom”.
Masses of the individual isotopic peaks are calculated at
each convolution step as a probability weighted sum of
the contributions to each peak [3]. This method is
accurate, but computational efficiency is not optimal.

Recently, a new algorithm was presented for the
calculation of accurate masses of isotopic peaks, and
application examples were discussed [6]. This method
combines very high computational efficiency with very
high accuracy. In it, one first calculates the isotopic
composition of each isotopic peak and then uses this
information, together with the accurate elemental iso-
topic masses, to calculate the accurate masses of the
molecular isotopic peaks. Although the algorithm in
reference [6] is computationally efficient, it generates
“extraneous” information (isotopic compositions), and
although the algorithm is not difficult to apply, the
proof of the algorithm can be difficult to grasp.

Here we present an alternative algorithm. It gener-
ates both accurate masses and accurate isotopic abun-
dances. This method is accurate and computationally
efficient. Unlike the method presented in reference [6],
the algorithm presented here is relatively easy to un-
derstand, and it does not generate isotopic composition

information for the individual isotopic peaks.
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The method presented here is related to both the
Kubinyi method [1] and the Roussis-Prouix method [3].
It is based loosely on Kubinyi’s general approach of
subdividing the calculation into a binary series of steps.
While the present paper departs somewhat from the
exact sequence of steps described by Kubinyi, it shares
with the Kubinyi method the computational advantage
of breaking the calculation into a binary series. It shares
with the Roussis-Prouix method the feature that the
algorithm produces accurate masses because it uses
probability-weighted sums for the mass calculation.

Algorithm Description

Consider two types of clusters, which we will refer to as
“super atoms”, terminology borrowed from Roussis
and Prouix [3]. In the present paper, a “molecular super
atom” refers to a fictitious chemical compound whose
formula is a partial composition of the target com-
pound. An example is C2H, which is a partial compo-
sition of C2H5Br. An “elemental super atom” refers to
an elemental cluster, which in our treatment is always
selected from a binary series, such as H1, H2, H4, H8,. . .

In the present algorithm we iteratively update the
compositions of the molecular super atom and the
elemental super atom, always building the composition
of the molecular super atom toward the final composi-
tion of the target compound. In addition, the probabil-
ities and accurate masses of the isotopic peaks of both
super atoms are updated at each step. At the end of the
calculation, the molecular super atom has the chemical
formula of the target compound, and the probabilities
and accurate masses of the molecular super atom are
those of the target compound.

In this process, we build the chemical composition of
the target compound by systematically joining smaller
pieces of the molecule. For example, at one point in the
process of generating C2H5Br we may join the molecu-
lar super atom C2H with the elemental super atom H4 to
make new molecular super atom C2H5.

The algorithm uses two kinds of vectors, probability
vectors and mass vectors. The indices into the vectors
represent nucleon number. The elements of the proba-
bility vectors represent isotopic probabilities. The ele-
ments of a mass vector represent the corresponding
accurate masses. Each nominal isotopic peak is thus
characterized by two parameters, a probability and an
accurate mass.

Let fp(j) represent the jth element of the probability
vector for one of two fragments that will be joined
together, and let fm(j) represent the jth element of the
mass vector for the same fragment. (Here, “element” is
used in the mathematical sense, i.e., element of a vector,
not in the chemical sense, i.e., chemical element.) Let
gp(i) represent the ith element of the probability vector
for the second fragment. This second fragment will be
joined with the first to make a more complex molecule,
which we have previously referred to as a super atom.

Let gm(i) represent the ith element of the mass vector for
the second fragment. Let hp(k) and hm(k) represent the
kth elements of the probability and mass vectors, re-
spectively, for the resulting combination. The values of
hp(k) are given by the following equation [7].

hp(k) ��
i

gp(i)f p(k � i) (1)

where we have changed the notation slightly from
reference 7 by the addition of the subscript p. The
accurate masses, hm(k), are given by the following
expression

hm(k) �

��i
g p(i)f p(k � i)��1�

i
g p(i)f p(k � i)(gm(i) � fm(k � i))

(2)

Although this equation is presented without proof, it is
based on the idea that the mass of a nominal isotopic
peak is a probability-weighted sum of the masses of the
isotopic peaks of the fragments that are being com-
bined. This is similar to an approach briefly described
elsewhere [3].

As mentioned above, at each step in the calculation,
we generate a new molecular super atom and a new
elemental super atom. This entails updating the com-
positions, probabilities, and masses of both super at-
oms. In the process, we use the binary representation of
the chemical formula of the target compound. For
example, the binary representation of C2H5Br1 is
C10H101Br1, where italicized subscripts represent binary
numbers and non-italicized subscripts represent normal
base ten numbers. Unlike conventional notation we
have explicitly included a subscript for the single bro-
mine atom in the compound.

To update the super atoms, we systematically work
through binary representation of the chemical compo-
sition of the target compound, starting with the least
significant digit of the first element in the chemical
formula. If the current binary digit is 0, then we do
nothing to the molecular super atom, but we do update
the elemental super atom using a procedure described
later. If the value of the current binary digit is 1, then we
convolute the chemical composition of the current ele-
mental super atom with the chemical composition of
the current molecular super atom. We update the
probabilities and masses for the molecular super atom
by applying eqs 1 and 2. We also update the elemental
super atom using a process described later. We repeat
this process until we have examined all digits in the
chemical formula of the current element. Then we start
on the next element in the chemical formula of the
target compound.

To update the elemental super atom we generally
double its composition and update its probabilities and
masses using eqs 1 and 2. However, if we have finished
with the current element, we update the elemental
super atom by replacing it with one atom of the next

element in the chemical formula of the target com-
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pound, including substitution of the relevant probabil-
ities and masses.

Other than loading dummy vectors for an initializa-
tion step and terminating the algorithm, the procedure
given in the previous two paragraphs presents the
complete algorithm. However, the description given
above is somewhat misleading because apparently one
has to take explicit account of the chemical composi-
tions of the super atoms at each step. It can be shown
that this is not necessary because the computational
bookkeeping involved in examining the digits of the
binary form of the target compound composition im-
plicitly tracks the chemical compositions.

The algorithm above can be pictured as a ladder with
some missing rungs. The left rail of the ladder repre-
sents a series of molecular super atoms, and the right
rail represents a series of elemental super atoms. The
rungs indicate the updating of the molecular super
atom. If a rung is present, the updating step consists of
convoluting the elemental super atom with the molec-
ular super atom. If a rung is absent, the molecular super
atom is carried forward without modification. The
presence or absence of rungs is determined by digits in
the binary representation of the composition, 1 repre-
senting the presence of a rung and 0 representing the
absence of a rung. The updating of the elemental super
atom (the right rail) is either a doubling of the elemental
super atom or the replacement of the super atom,
depending on whether we have examined all the binary
digits for a given element or not.

To avoid unwieldy array sizes, we recommend that a
form of pruning be applied at intermediate steps in the
calculation. The basis of this strategy has been de-
scribed elsewhere [1, 3]. Briefly, at each stage in the
calculation, one prunes small peaks from the super

Table 1. Effect of pruning to mass accuracy and intensity accur

Pruning limit
Weighted RMS mass

difference (ppb)

1.00 � 10�6 1.31 � 10�1

1.00 � 10�7 5.77 � 10�2

1.00 � 10�8 2.28 � 10�2

1.00 � 10�9 1.09 � 10�2

1.00 � 10�10 5.93 � 10�3

1.00 � 10�12 3.20 � 10�4

1.00 � 10�14 5.79 � 10�6

1.00 � 10�16 5.71 � 10�8

1.00 � 10�18 6.04 � 10�10

1.00 � 10�20 0
1.00 � 10�25 0
1.00 � 10�30 0
1.00 � 10�40 0
1.00 � 10�50 0
1.00 � 10�100 0
0 N/A

The mass differences are the differences of calculated mass between c
is the root mean square summary statistic of the mass differences, weig
mean square from the intensity differences between corresponding p
compiled with gcc 3.3.5 with command line parameter -O3. The tests w
atoms based on the application of a pruning threshold,
i.e., peaks below or equal to a certain threshold are
removed. We suggest a pruning threshold in the range
of 1 � 10�25 to 1 � 10�30 as a good compromise
between speed and accuracy (see Table 1), though this
threshold might be raised or lowered, depending on the
needs of the calculation. It can be shown that this form
of pruning is relatively benign in its effect on peak
intensities, unlike pruning in polynomial calculations,
which can lead to large errors in calculated probabilities
for nominal isotopic peaks [4]. Interestingly, even a
pruning threshold of zero will result in some pruning in
the case of very high molecular weight compounds as a
result of floating point underflow.

An important programming detail is to always use a
pruning threshold, even if it is set to zero. Otherwise,
peaks that have underflowed will continue to be carried
through the calculation at a considerable cost of com-
putational time and memory usage.

Benchmarks and Discussion

Other than pruning and roundoff error, the algorithm
described above is exact. To benchmark the algorithm,
we have implemented the method in a computer pro-
gram called emass. Masses of isotopic peaks calculated
by emass for C2Br3Cl3 agree with those using a previ-
ously published algorithm [6] to well under ppb levels.
Interestingly, the semi-accurate masses produced by a
double precision version of an algorithm described in
[2] have only a 4.3 ppm weighted RMS average differ-
ence from the present method, quite good considering
the fact that the semi-accurate mass algorithm described
in reference [2] makes no pretense at being a true
accurate mass algorithm.

A larger molecule, oligomer (ACGT)1000 has 0.06 ppb

r DNA oligomer (ACGT)1000

RMS intensity difference
Running
time(s)

1.75 � 10�4 0.02
2.23 � 10�5 0.02
1.52 � 10�6 0.02
6.89 � 10�8 0.02
2.06 � 10�8 0.02
1.76 � 10�10 0.02
1.50 � 10�12 0.02
1.14 � 10�14 0.03
1.06 � 10�16 0.03
8.26 � 10�18 0.03
6.33 � 10�26 0.03

0 0.03
0 0.04
0 0.04
0 0.04

N/A 0.26

onding peaks at subsequent pruning limits. Weighted RMS difference
y the square root of peak intensity. RMS intensity difference is the root
Running times are the average of five measurements. Program was

run on a computer with Intel 3.4 GHz Pentium 4 processor.
acy fo
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weighted average RMS mass difference when com-
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pared to results using the algorithm described in refer-
ence [6] and 0.5 ppb weighted average RMS mass
difference when comparing to the semi-exact algorithm.
In these comparisons, pruning threshold 1 � 10�30 was
used, and peaks smaller than 5 � 10�7 percent of the
largest peak were ignored.

The peak intensities calculated by both methods
agree well, having 2.3 � 10�15 RMS difference for
C2Br3Cl3 and 2.6 � 10�13 RMS difference for
(ACGT)1000.

As mentioned above, in this algorithm the effect of
pruning on mass accuracy is relatively benign. Table 1
illustrates this for (ACGT)1000. The error entries in the
table are incremental values, i.e., they represent the
differences between successive calculations as the prun-
ing threshold is decreased. Even at a relatively aggres-
sive (i.e., high) pruning threshold of 1 � 10�6, the
calculation is already very accurate, with sub ppm
errors in masses and small errors in intensities. By the
time the threshold reaches 1 � 10�30, there is no further
improvement, indicating that for practical purposes the
calculation is error free. The computation time is
weakly dependent on the pruning threshold, as shown
in the last column of Table 1, so there is very little
penalty in setting a very conservative pruning thresh-
old.

Figure 1 illustrates a different aspect of accuracy as a
function of pruning threshold. The salient point is that
mass errors are concentrated in the tails of the isotopic
distribution. Even at a relatively aggressive pruning
threshold of 1 � 10�6 it is only in the extreme tails of the
distribution that the mass error exceeds 0.001 Da, and
these peaks would be difficult to see in an experimental
mass spectrum, so the practical effect of even rather

Figure 1. Effect of pruning on mass accuracy. The isotopic
distribution for (ACGT)1000 was calculated with pruning limit 0
(solid line indicating isotopic envelope). Mass differences between
calculations made with pruning limit 0 (assumed to be essentially
exact) and other pruning limits are plotted with non-continuous
lines.
aggressive pruning is minimal. Also obvious in the
figure is that fact that errors drop even further when the
pruning threshold is decreased to more conservative
values.

Comparison to the algorithm described in reference
[6] confirms the excellent accuracy. The algorithm from
reference [6], including error correction strategy 2 de-
scribed in that reference, was implemented as a com-
puter program named qmass and compared against the
emass program described above. For the (AGCT)1000,
the calculated masses for all peaks with abundance
greater than 0.001% of the base peak agreed to better
than one part per trillion between the two methods, and
for peaks greater than 1 � 10�6 percent of the base peak
the agreement was better than 50 parts per billion.

When pruning is applied, the number of peaks in the
isotope distributions grows approximately as the
square root of the number of atoms in the molecular
formula. This leads to linear time dependency as the
number of atoms in the formula increases, which was
also confirmed by benchmarks (Figure 2). If no pruning
is done, the time dependency becomes quadratic. No-
table in the benchmark is the overall speed of the
method. Even for the largest molecules in the bench-
mark (molecular weight �1.23 � 108 Da) the calcula-
tions ran in well under 1 s.

The time dependency of the algorithm described in
reference [6] is theoretically better: O�nk� � �nlog
�n�k, where n is the number of atoms in the molecular
formula and k is the number of different elements.
However, in our implementation (qmass), the advan-
tage is not seen in molecules of realistic sizes. In both
methods the computational time scaled approximately
linearly with the number of atoms, and emass ran
slightly (�40%) faster than qmass.

Computational efficiency is always desirable, but

Figure 2. Effect of molecular complexity on running time. The
isotopic distribution for DNA oligomers of form (ACGT)n with
various values of n were calculated by emass and algorithm
described in [6] (qmass). Pruning limit 1 � 10�30 was used.

Programs were compiled and run as described in Table 1.
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becomes especially important if one must perform a
series of calculations. An application of this type dis-
cussed elsewhere [6] is to use accurate masses of
isotopic peaks to deduce elemental composition. This
requires that one perform a series of accurate isotopic
calculations on many different chemical compositions.

Here we propose strategies that might be used to
improve the efficiency of such calculations. These could
be used either individually or in combination. They use
the concept of screening, using fast computational
methods before the application of accurate mass algo-
rithms for the full isotopic distribution. One might first
screen the compounds by comparing the measured
average molecular weight against the calculated aver-
age molecular weight for a trial composition and then
comparing the experimental isotopic profile against a
semi-accurate mass isotopic calculation, such as one
using the algorithm described in reference [2]. If these
results are within an acceptable error tolerance (perhaps
20 ppm weighted RMS error), then one would progress
to an accurate mass method, such as the one described
in the present paper or the one described earlier [6]. We
believe that these strategies could be almost as fast as
mono-isotopic calculations, but would have the advan-
tage of using information from the full isotopic distri-
bution to help deduce chemical composition.

Computer Code Availability

Source code for the programs emass and qmass is
released under BSD license and is available as a Sup-
plementary Material section of this paper (which can be
found in the electronic version of this article.). The
Supplementary Material section also contains docu-
mentation for the programs, including instructions for
compiling the program under both Linux and Microsoft
Windows operating systems, as well as compiled ver-

sions of the programs for computers running under
Microsoft Windows operating systems. The programs
may also be found at the website http://www.hel-
sinki.fi/science/lipids/software.html. This website will
generally contain the most current versions of the
programs. Questions and discussions about the pro-
grams are best directed to Perttu Haimi at
perttu.haimi@helsinki.fi, and questions and discussions
about the algorithm itself are best directed to Alan
Rockwood at rockwoal@aruplab.com.

Summary

By basing the calculation on a binary series of compo-
sitions, and by calculating accurate masses at each step
in the method using a weighted sum approach, one can
calculate isotopic probabilities and accurate masses
with high efficiency and accuracy.
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