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Let m : [0, �[ � [0, �[ be an increasing continuous function with m(t)=0 if
and only if t=0, m(t) � � as t � � and 0/RN a bounded domain. In this paper
we show that for every r>0 the problem

{&div \m( |{u| )
|{u|

{u+=*g(u) in 0

u=0 on �0

has an infinite number of eigenfunctions on the level set �0 M( |{u| )=r, where
M(t)=� |t|

0 m(s) ds and g : R � R is odd satisfying some growth condition.
Moreover, we show that the sequence of associated eigenvalues tends to infinity.
We emphasize that no q2-condition is needed for M or for its conjugate, so the
associated functionals are not continuously differentiable, in general. � 2000

Academic Press

1. INTRODUCTION

In this paper we shall study the problem

{&qm(u)=*g(u)
u=0

in 0
on �0,

(1.1)

where 0/RN is an open and bounded subset, qm(u)={ } ((m( |{u| )�
|{u| ) {u) is the generalized Laplacian, m : [0, �[ � [0, �[ is an increasing
and continuous function with m(t)=0 if and only if t=0 and
limt � � m(t)=�. The function g : R � R is odd and satisfies some growth
condition to be specified later.

doi:10.1006�jdeq.2000.3712, available online at http:��www.idealibrary.com on

174
0022-0396�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82461137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


If m(t)=t and g(t)=t, then the problem (1.1) is the Dirichlet eigenvalue
problem for the Laplacian:

{&qu=*u
u=0

in 0
on �0.

(1.2)

The classical Courant minimax principle guarantees the existence of an
infinite sequence of eigenvalues [*n]�

n=1 of (1.2) with limn � � *n=� (see
[19, 21]).

If m(t)=t p&1 and g(t)=|t| p&2 t with 1<p<�, then the problem (1.1)
is reduced to the eigenvalue problem for the p-Laplacian:

{&{ } ( |{u| p&2 {u)=* |u| p&2 u
u=0

in 0
on �0.

Applying the Ljusternik�Schnirelmann theory for the functionals

F(u)=|
0

|{u| p dx

and

G(u)=|
0

|u| p dx

in the Sobolev space W 1, p
0 (0) we get again the existence of eigenvalues

[*n]�
n=1 with limn � � *n=�. It is essential that the space W 1, p

0 (0) is
reflexive and separable and the corresponding functionals F and G are
Fre� chet-differentiable (see [9, 10, 21]). For results concerning the first
eigenvalue of the p-Laplacian we refer to [2, 17].

In the general case the suitable function space for studying the problem
(1.1) is the Orlicz�Sobolev space W 1

0LM (0), where M(t)=�t
0 m(s) ds. If M

and M� (the conjugate of M ) satisfy the q2-condition, then the space
W 1

0LM (0) is separable and reflexive and hence has the usual structure (see
[5]) and the functionals

F(u)=|
0

M( |{u| ) dx

and

G(u)=|
0
|

u

0
g(t) dt dx

are Fre� chet-differentiable. Consequently, we may apply again the Ljusternik�
Schnirelmann theory to get an infinite sequence of eigenvalues tending to
infinity (see [8�10, 21]).
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If we do not impose the 22-condition on M, then the problem (1.1)
becomes more complicated since the space W 1

0LM (0) is not reflexive or
separable, in general, nor are the functionals F and Fre� chet-differentiable.
In [18] it is proved that for any r>0 the minimization problem

inf {|0
M( |{u| ) dx } u # W 1

0 LM (0), |
0

M(u) dx=r=
has a solution ur satifying (1.1) in W &1LM� (0) for some *>0 with
g(u)=m(u) without any extra condition on M.

In this paper we shall prove the existence of an infinite sequence of eigen-
values for (1.1) tending to infinity without any extra condition on M.
Hence the Ljusternik�Schnirelmann theory is not available due to non-
reflexivity of the space W 1

0LM (0) and lack of differentiability of F and G.
Our method is based on Galerkin approximation and pseudomonotonicity
of the operator &qm using a modified usual structure in a general com-
plementary system. Similar approach for smooth functionals in reflexive
Banach spaces can be found in [4, 9, 10].

2. PREREQUISITIES

We begin with some preliminaries on Orlicz�Sobolev spaces. Let 0 be a
bounded open subset in RN and let M : R � R be an N-function, i.e., even,
convex and continuous with M(t)>0 for t>0, M(t)�t � 0 as t � 0 and
M(t)�t � +� as t � +�. M is an N-function if and only if it can be
represented in the form

M(t)=|
|t|

0
m(s) ds (2.1)

where m : [0, �[ � [0, �[ is increasing, right continuous, m(t)=0 if and
only if t=0 and m(t) � +� as t � +�. We extend m to R by
m(t)=&m(&t) for t<0 (odd continuation). The Orlicz class LM (0) is
defined as the set of real-valued measurable functions u on 0 such that

|
0

M(u) dx<�.

The Orlicz space LM (0) is the linear hull of LM (0). Then LM (0) is a
Banach space with respect to the Luxemburg norm

&u&(M )=inf {k>0 } |0
M \u

k+ dx�1= .
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It is easily seen that

&u&(M, r)=inf {k>0 } |0
M \u

k+ dx�r=
defines an equivalent norm for all r>0. One has LM (0)=LM (0) if and
only if M satisfies the q2 -condition: there exist :>0 and t0>0 such that

M(2t)�: M(t)

for all t�t0 . Moreover, LM (0) is separable if and only if M satisfies the
q2 -condition. The closure in LM (0) of all bounded measurable functions
is denoted by EM (0). Then EM (0)/LM (0) and EM (0)=LM (0) if and
only if M satisfies the q2 -condition. The space EM is _(LM , LM� ) dense in
LM (0). The conjugate N-function M� is defined by

M� (t)=sup[ts&M(s) | s # R].

The function M� is also an N-function and M�� =M. The space LM� (0) is the
dual space of EM (0). The space LM (0) is reflexive if and only if M and
M� satisfy the q2 -condition. Note that the norm & }&(M, r) is _(LM , EM� )
lower semicontinuous for all r>0. It is well-known that LM (0) LM� (0)/
L1(0). We recall also Young's inequality:

M(x)+M� ( y)�xy for all x, y # R (2.2)

with equality if and only if x=m� ( y) or y=m(x). Define

dom(m)=[u # LM (0) | m(u) # LM� (0)].

It can be shown that EM (0)/dom(m)/LM (0) and dom(m)=LM (0) if
and only if M satisfies the q2-condition. Moreover, the mapping u � m(u)
is continuous from EM (0) � LM� (0) if and only if M� satisfies the
q2 -condition (see [3, 12, 15]).

Remark 2.1. Typical examples of N-functions satisfying the q2 -condi-
tion are (1+|t| ) log(1+|t| )&|t| and |t| p for p>1. On the other hand,
functions e |t|&|t|&1 and e |t| p

&1 for p>1 are N-functions not satisfying
the q2 -condition.

The first order Orlicz�Sobolev space of functions in LM (0) with first dis-
tributional derivatives in LM (0) is denoted by W 1LM (0). The space
W 1EM (0) is defined analogously. These spaces are identified, as usual, to
subspaces of the product >LM (0). The spaces W 1

0LM (0) and W 1
0 EM (0)

are defined as the _(>LM , >EM� ) closure of D(0) in W 1LM (0) and as the
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norm closure of D(0) in W 1EM (0), respectively. The following spaces of
distributions will also be used:

W &1LM� (0)={ f # D$(0) } f = f0& :
N

i=1

Di fi with fi # LM� (0)=
W &1EM� (0)={ f # D$(0) } f = f0& :

N

i=1

Di fi with fi # EM� (0)= .

They are endowed with their usual quotient norms. It is shown in [11]
that if 0 has the segment property, then

\ Y
Y0

Z
Z0+=\W 1

0LM (0)
W 1

0EM (0)
W &1LM� (0)
W &1EM� (0)+

constitutes a complementary system, i.e., Y and Z are real Banach spaces
in duality with respect to a continuous pairing ( } , } ) and Y0 and Z0 are
closed subspaces of Y and Z respectively such that, by means of ( } , } ) , the
dual of Y0 can be identified to Z and that of Z0 to Y. The pairing between
u # Y and f = f0&�N

i=1 Di fi # Z is given by

(u, f ) =|
0 \u f0+ :

N

i=1

(D iu) f i+ dx.

Standard references on Orlicz and Orlicz�Sobolev spaces include [1, 6,
11�16]. The reader interested in the topological degree theory for
monotone-like mappings in Orlicz�Sobolev spaces is referred to [20].

We end this section by recalling the definition of the topological index
genus. Let X be a real Banach space. Denote the class of all closed sym-
metric subsets K of X with 0 � K by symX . For each non-empty set
K # symX we define gen K to be the smallest natural number n�1 for which
there exists an odd and continuous mapping f : K � Rn"[0]. If no such
number exists, then gen K=�. We also define gen <=0. The basic
properties of genus can be found in [21]. We will list here some of them
which will be utilized in Chapter 4:

(i) gen K� dim X for all K # symX

(ii) gen[u # X | &u&=1]=dim X

(iii) if K # symX is compact and P : K � X is odd and continuous with
0 � P(K ), then P(K ) # symX and gen K�gen P(K ).
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3. A USUAL STRUCTURE IN A COMPLEMENTARY SYSTEM

Let (Y, Y0 ; Z, Z0) be a complementary system with Y0 and Z0 separable.
The space Y with _(Y, Z0) topology, being a Hausdorff topological vector
space, is regular. Since Y0 is separable, the norm topology in Y0 is Lindelo� f
implying _(Y, Z0) topology in Y0 , being coarser, is also Lindelo� f. Hence
the space Y0 with the topology _(Y0 , Z0) is a regular Lindelo� f space implying
it is paracompact and normal (see [7]).

Now we are ready to prove the existence of a usual structure in a com-
plementary system, with Y0 and Z0 separable. We shall utilize the ideas in
[5], in which a similar result is proved for the reflexive case.

Theorem 3.1. Assume (Y, Y0 ; Z, Z0) is a complementary system, Y0

and Z0 are separable, the norm & }&Z is dual to & }&Y0
, the norm & }&Y is dual

to & }&Z0
and V/Y0 is a norm-dense linear subspace. Then there exists a

sequence of mappings Pn : Y0 � Y0 , n=1, 2, ..., satisfying

(i) Pn is odd and norm-continuous for all n=1, 2, ...

(ii) Pn(Y0) is contained in a finite-dimensional subspace of V for all
n=1, 2, ...

(iii) if [un]/Y0 and un � u # Y for _(Y, Z0), then Pn(un) � u for
_(Y, Z0)

(iv) if [un]/Y0 and un � u # Y strongly, then &Pn(un)&Y � &u&Y .

Proof. Let [zi] i=1/Z0 be a norm-dense countable set in Z0 and
denote

Bn=[x # Y | &x&Y�n]

Yn={x # Y } |(x, z1) |+|(x, z2) | } } } + |(x, zn) |<
1
n=

for n=1, 2, ... . Note that the set Bn is _(Y, Z0) closed, being _(Y, Z0) com-
pact due to Alaoglu's theorem, and the set Yn is _(Y, Z0) open. By
regularity of _(Y, Z0), for every x # Y there exists a _(Y, Z0) open subset
Wx /Yn with 0 # Wx and Wx=&Wx satisfying

(x+2Wx) & [y # Y | &y&Y�&x&Y&1�n]=<. (3.1)

Since the norm & }&Y is dual to & }&Z0
, the set [y # Y0 | &y&Y�&x&Y] is

_(Y, Z0) dense in [ y # Y | &y&Y�&x&Y] (see [11, Lemma 1.11]). Hence, on
account of norm-density of V in Y0 , the set [v # V | &v&Y�&x&Y] is also
_(Y, Z0) dense in [ y # Y | &y&Y�&x&Y]. Since the set x+Wx is _(Y, Z0)
open, the intersection

[v # V | &v&Y�&x&Y] & (x+Wx )
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is non-empty. Consequently, for every x # Y we may choose yx from this
intersection, i.e., yx # V satisfies yx # x+Wx and &yx&Y�&x&Y . Clearly

Bn / .
x # Bn

( yx+Wx).

Since the set Bn is _(Y, Z0) compact, there exists a finite subcover

Bn / .
k

i=1

( yxi
+Wxi

).

Denote

Kn=Bn & Y0

Wi =( yxi
+Wxi

) & Kn

Then Kn is _(Y0 , Z0) closed in Y0 , Wi is _(Y0 , Z0) open in Kn and Kn=
�k

i=1 Wi . Due to paracompactness of _(Y0 , Z0), there exists a partition of
unity [gi]k

i=1 such that

gi : Kn � [0, 1] is _(Y0 , Z0) continuous

:
k

i=1

gi (x)=1 for all x # Kn

gi (x)=0 if x # Kn"Wi .

Since Kn is _(Y0 , Z0) closed and _(Y0 , Z0) is normal, we may extend each
gi by Tietze's extension theorem to a _(Y0 , Z0) continuous map
g~ i : Y0 � [0, 1]. Define a mapping Qn : Y0 � Y0 by

Qn(x)= :
k

i=1

g~ i (x) yxi
.

Then Qn is continuous from _(Y0 , Z0) topology to the norm topology and
hence norm-continuous. Moreover,

Qn(x)&x # Yn for all x # Kn .

Indeed, suppose x # Kn and g~ i (x){0. Then x # W i implying x # yxi
+Wxi

and consequently yxi
&x # Wxi

/Yn . Therefore

Qn(x)&x= :
k

i=1

g~ i (x)( yxi
&x)/Yn ,
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since the set Yn is convex. Next we shall prove that

&Qn(x)&Y�&x&Y+1�n for all x # Kn .

Suppose x # Kn and g~ i (x){0. Then x # yxi
+Wxi

implying x # x i+2Wxi
. By

(3.1), &x&Y>&xi&Y&1�n and consequently

&Qn(x)&Y� :
k

i=1

g~ i (x) &yxi
&Y� :

k

i=1

g~ i (x) &xi &Y

� :
k

i=1

g~ i (x)(&x&Y+1�n)=&x&Y+1�n.

Define a mapping Pn : Y0 � Y0 by

Pn(x)= 1
2 (Qn(x)&Qn(&x)).

Then clearly (i) and (ii) hold.
Next we shall deduce part (iii). Suppose [un]/Y0 and un � u # Y for

_(Y, Z0). Then M=supn &un&Y is finite and consequently, \un # Kn for all
n>M implying

&Pn(un)&Y� 1
2(&Qn(un)&Y+&Qn(&un)&Y )�&un&Y+1�n (3.2)

for all n>M. Therefore the sequence [Pn(un)] is bounded in Y. Let i # N
be arbitrary. If n>max[i, M], then \un # Kn and

Pn(un)&un= 1
2 (Qn(un)&un)& 1

2 (Qn(&un)+un) # Yn .

Hence

|(zi , Pn(un)&u) |�|(zi , Pn(un)&un) |+ |(z i , un&u) |

�1�n+|(zi , un&u) | � 0,

when n � �. Since the set [zi] is norm-dense in Z0 and Pn(un) remains
bounded in Y, we get Pn(un) � u for _(Y, Z0).

Finally, to prove (iv), suppose [un]/Y0 , u # Y and &un&u&Y � 0, when
n � �. Due to (3.2), lim sup &Pn(un)&Y�&u&Y . On the other hand, by
_(Y, Z0) lower semicontinuity of & }&Y , we have &u&Y�lim inf &Pn(un)&Y .
Hence the proof is complete.
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4. AN EIGENVALUE PROBLEM FOR THE GENERALIZED
LAPLACIAN

Let m : [0, �[ � [0, �[ be an increasing continuous function with
m(t)=0 if and only if t=0, m(t) � � as t � � and 0/RN an open and
bounded subset with the segment property. Let r>0 be given. Let

\ Y
Y0

Z
Z0+=\W 1

0LM (0)
W 1

0EM (0)
W&1LM� (0)
W&1EM� (0)+

be the complementary system formed by Orlicz�Sobolev spaces with the
norm

&u&Y=&|{u|&(M, r)="\ :
N

i=1

(Diu)2+
1�2

"(M, r)

and the corresponding quotient norm in Z. It is routine to check, based on
[11, Lemmas 1.2, 1.11, and 1.12] and [19, Theorem 3.3, p. 135], that the
norm & }&Y is dual to & }&Z0

and the norm & }&Z is dual to & }&Y0
. Let

[v1 , v2 , ...]/D(0) be a countable norm-dense linearly independent subset
in Y0 and [Pn] be the sequence of mappings given by Theorem 3.1 with
V=sp[v1 , v2 , ...]. Denote

Vn=sp[v1 , v2 , ..., vn].

We shall denote the continuous pairing between Y and Z by ( } , } ) and the
one between Vn and Vn* by ( } , } ) n . For each n=1, 2, ..., there exists
mn # N such that

Pn(Y0)/Vmn
.

Let g : R � R be an odd and continuous function satisfying g(t) t>0 for
all t{0 and

| g(t)|�c1+c2 m(c3 t) for all t�0, (4.1)

where c1 , c2 , and c3 are positive constants. Define even functionals
F : DF � R and G : DG � R by

F(u)=|
0

M( |{u| ) dx

and

G(u)=|
0
|

u

0
g(t) dt dx
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with DF=[u # Y | F(u)<�] and DG=[u # Y | G(u)<�]. Clearly both
functionals vanish only at zero. A straightforward calculation gives
F, G # C1(Vn) and

(v, F $(u)) n=|
0

m( |{u| )
|{u|

{u } {v dx for all u, v # Vn

(v, G$(u)) n=|
0

g(u) v dx for all u, v # Vn

for each n=1, 2, ... . The growth condition (4.1) and the compact em-
bedding W 1

0LM (0) � EM (0) ([6, 8, 11, 20]) imply DG=Y and

G(un) � G(u)

(un , G$(un))n � |
0

g(u) u dx

(v, G$(un)) n � |
0

g(u) v dx

whenever un # Vn , un � u # Y for _(Y, Z0) and v # V. Define a mapping
qm : Dqm

� Z by

Dqm
=[u # Y | m( |{u| ) # LM� (0)]

and

(v, qm(u))=&|
0

m( |{u| )
|{u|

{u } {v dx for all u # Dqm
and v # Y.

It is clear that Y0 /Dqm
/DF /Y. Moreover, the following monotony

properties of the mapping &qm are well-known (see [11, 14]):

�� the mapping &qm is monotone, i.e.

(&qm(u)&(&qm(v)), u&v) >0 for all u, v # Dqm
with u{v

�� the mapping &qm is pseudomonotone, i.e. the conditions

{
[un]/Dqm

un � u # Y for _(Y, Z0)
&qm(un) � / # Z for _(Z, Y0)
lim sup(un , &qm(un)) �(u, /)
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imply

u # Dqm{/=&qm(u)

(un , &qm(un)) � (u, /) .

Define an even and continuous mapping kr : Y0 "[0] � ]0, �[ by

kr(u)=
1

&u&Y
.

It is easily seen that F(kr(u) u)=r for all u # Y0 "[0]. Moreover, F(u)=r
if and only if kr(u)=1.

In the sequel we denote

Mr=[u # Y0 | F(u)=r]

Ki (r)=[K/Mr compact and symmetric | gen K�i]

Ki, n(r)=[K/Mr & Vn compact and symmetric | gen K�i]

ci (r)= sup
K # Ki (r)

inf
u # K

G(u)

ci, n(r)= sup
K # Ki, n(r)

inf
u # K

G(u).

Note that ci, n(r) increases with n. Choosing K to be the unit sphere of
Vi , we have gen K=i, K/Mr and infu # K G(u)>0. Hence ci, n(r)>0, when
n�i. On the other hand, if n<i then Ki, n(r) is empty.

Now we are ready to attack the problem (1.1). We start with a finite-
dimensional result. We shall use the assumptions and notations given
above.

Lemma 4.1. Let i # N be given. Then there exist sequences [un]�
n=i/Y0

and [*n]�
n=i /]0, �[ such that

un # Vn

F(un)=r

G(un)=ci, n(r)

F $(un)=*nG$(un) in Vn*

for all n=i, i+1, ... .
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Proof. By assumptions, F, G # C1(Vn) and F(0)=0. Moreover, for each
u # Vn with u{0 we have (u, F $(u)) n>0 and F(kr(u) u)=r. The claim
follows now from the finite dimensional Ljusternik�Schnirelmann theorem
([21, Theorem 44.B]).

Next we shall study the convergence of the sequences [*n] and [un],
when n tends to infinity with fixed r and i.

Lemma 4.2. Let i # N be given and the sequences [un]�
n=i/Y0 and

[*n]�
n=i/]0, �[ as given by Lemma 4.1. Then there exist u� # Dqm

and
*� # ]0, �[ such that *n$ � *� and un$ � u� for _(Y, Z0) for some common
subsequence. Moreover, F(u� )=r, G(u� )=limn � � c i, n(r) and

&qm(u� )=*g(u� ) in Z.

Proof. Since �0 M( |{un | ) dx=r for all n�i, the sequence [un] is bounded
in Y. Therefore we may assume that un � u� # Y for _(Y, Z0) for a
subsequence implying G(un) � G(u� ). Assume *n � �, when n � �. Since
the sequence [ci, n(r)]�

n=i is increasing, we have G(u� )>0 implying g(u� )�0.
Consequently, there exist n0>i and , # Vn0

such that

|
0

g(u� )(u� &,) dx<0.

By monotony of the mapping &qm we get

0�(un&,, &qm(un)&(&qm(,)))

=(un&,, F $(un)&F $(,)) n

=*n(un&,, G$(un)) n&(un&,, F $(,)) n , (4.2)

when n�n0 . Since

(un&,, G$(un)) n � |
0

g(u� )(u� &,) dx<0

and

(un&,, F $(,)) n � |
0

m( |{,| )
|{,|

{, } {(u� &,) dx,

the right hand side of (4.2) tends to &�, which is a contradiction. Conse-
quently, the sequence [*n] is bounded and thus we may assume that
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*n � *� in R and un � u� # Y for _(Y, Z0) for a common subsequence.
Moreover,

|
0

m( |{un | ) |{un | dx=(un , F $(un)) n

=*n(un , G$(un)) n

� * |
0

g(u� ) u� dx<�

implying m( |{un | ) remains bounded in LM� (0). Hence we may assume

&qm(un) � / # Z for _(Z, Y0)

for some / # Z. Since

(,, /)=lim(,, F $(un))n=lim *n(,, G$(un)) n=* |
0

g(u� ) , dx

for all , # V and V is norm-dense in Y0 , we have

(,, /)=* |
0

g(u� ) , dx (4.3)

for all , # Y0 . By the bipolar theorem, Y0 is _(Y, Z ) dense in Y. Hence
(4.3) holds for all , # Y. Consequently,

lim(un , &qm(un))=lim(un , F $(un)) n

=lim *n(un , G$(un)) n

=* |
0

g(u� ) u� dx=(u� , /)

implying, due to pseudomonotonicity of the mapping &qm , that u� # Dqm
,

&qm(u� )=/ and

|
0

m( |{un | ) |{un | dx � |
0

m( |{u| ) |{u| dx.

Standard argument (see [11, 14]) gives

m( |{un | ) |{un | � m( |{u� | ) |{u� |
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in L1(0). Consequently, we have a majorant h # L1(0) such that

M( |{un | )�m( |{un | ) |{un |�h a.e. in 0.

The dominated convergence theorem implies F(u� )=lim F(un)=r.

Finally, we shall study the convergence of the sequences [ci, n(r)] and
[ci (r)]. The proofs are analogous to ones in [9, 10]. The main difference
is due to the fact that wn � w in Y0 does not imply Pn(wn) � w in Y0 , in
general.

Lemma 4.3. Let i # N be given. Then ci, n(r) � ci (r), when n � �.

Proof. Clearly ci, n(r)�ci, n+1(r)� } } } �ci (r) for all n # N. Suppose
there exists =>0 such that ci, n(r)<ci (r)&= for all n. By the definition of
ci (r), there would exist a set K= # Ki (r) such that

ci (r)&=�2< inf
w # K=

G(w). (4.4)

It is easy to check that 0 � Pn(K=) for every n large enough. Indeed, suppose
Pnk

(wnk
)=0 with wnk

# K= and nk � �. By compactness of the set K= ,
wnk

� w # K= for a subsequence. But part (iii) of Theorem 3.1 implies w=0,
which contradicts 0 � K= . Consequently, the map

9n : w � kr (Pn(w)) Pn(w)

is odd and continuous from K= to Mr & Vmn
for n large enough. Hence

9n(K=)/Ki, mn
(r) implying

inf
w # 9n(K=)

G(w)�ci, mn
(r)

for every n large enough. Thus, for every n large enough there exists
wn # K= such that

G(9n(wn))<ci (r)&=. (4.5)

Due to compactness, wn � w # K= in Y0 for a subsequence implying
&Pnwn&Y � &w&Y and kr(Pnwn) � kr(w)=1. Consequently,

9n(wn) � w for _(Y, Z0)

implying G(9n(wn)) � G(w), which contradicts (4.4) and (4.5).
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Lemma 4.4. ci (r) � 0, when i � �

Proof. Let =>0 be arbitrary. The continuity properties of the mappings
[Pn]�

n=1 and G imply the existence of n0 # N and $>0 such that

|G(Pn0
(w))&G(w)|<=�2 for all w # Mr

and

G(w)<=�2 for all &w&Y�$.

Consequently, if K/Mr is compact and symmetric with infw # K G(w)>=,
then

&Pn0
(w)&Y�$ for all w # K.

Hence gen K�gen Pn0
(K )�mn0

. Thus, if i>mn0
and K # Ki (r), then

inf
w # K

G(w)�=

implying the claim.

Now we are ready to prove our main theorem:

Theorem 4.5. Let 0/RN be open and bounded with the segment
property and r>0. Then there exist sequences [u� i]�

i=1/W 1
0 LM (0) and

[*� i]�
i=1/]0, �[ such that

&{ } \m( |{u� i | )
|{u� i |

{u� i+=*� i g(u� i) in W&1LM� (0) (4.6)

and

|
0

M( |{u� i | ) dx=r (4.7)

|
0

|
u� i

0
g(s) ds dx=ci (r). (4.8)

Moreover, *� i � � and u� i � 0 for _(Y, Z0), when i � �.

Proof. On account of the previous lemmas, for each i # N there exist
u� i # Dqm

and *� i>0 satisfying (4.6), (4.7), and (4.8). By Lemma 4.4,
G(u� i) � 0, when i � �. Since u� i remains bounded in Y, we may deduce
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that u� i � 0 for _(Y, Z0), when i � �. By compact embedding and (4.1),
u� i � 0 in EM (0) and g(u� i) remains bounded in LM� (0). Using (4.6) we get

*� i=
�0 m( |{u� i | ) |{u� i | dx

�0 g(u� i) u� i dx
�

r
�0 g(u� i) u� i dx

� �,

when i � �.

Remark 4.6. If M and M� satisfy the q2 -condition, then an analogous
result for the problem

{&{ } \m( |{u| )
|{u|

{u+=*a(x) m(u) in 0

u=0 on �0

is proved in [8] assuming a # L�(0), a�0 in D and +[x # D | a(x)>0]
>0 for some ball D/0.
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