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—div <’"(|V”” Vu> —Jgu) inQ
[Vul

u=0 on 0Q

has an infinite number of eigenfunctions on the level set [, M(|Vu|)=r, where
M(t)=["m(s)ds and g:R—R is odd satisfying some growth condition.
Moreover, we show that the sequence of associated eigenvalues tends to infinity.
We emphasize that no A,-condition is needed for M or for its conjugate, so the
associated functionals are not continuously differentiable, in general.  © 2000
Academic Press

1. INTRODUCTION

In this paper we shall study the problem
— A, (u)=7g(u) in Q
1.1
{u =0 on 0Q, (1L.1)

where Q< RY is an open and bounded subset, A, (u)=V-((m(|Vu|)/
|Vul) Vu) is the generalized Laplacian, m: [0, co[ — [0, oo[ is an increasing
and continuous function with m(z)=0 if and only if =0 and

lim,_, ,, m(t) = co. The function g: R — R is odd and satisfies some growth
condition to be specified later.
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If m(¢) =1 and g(¢) =1¢, then the problem (1.1) is the Dirichlet eigenvalue
problem for the Laplacian:

{—Au=iu in Q (12)

u=0 on 0Q.

The classical Courant minimax principle guarantees the existence of an
infinite sequence of eigenvalues {4,} >, of (1.2) with lim, _, , 4, = o0 (see
[19,21]).

If m(t)=1¢"~" and g(¢) = |#|?~2 ¢ with 1 <p < oo, then the problem (1.1)
is reduced to the eigenvalue problem for the p-Laplacian:

—V-(|Vu|?72Vu)=A|u|”"2u  inQ
u=0 on 0%.

Applying the Ljusternik—Schnirelmann theory for the functionals

ﬂm=f|vmmu
Q
and

amszvw

in the Sobolev space W 7(2) we get again the existence of eigenvalues
{A.} &, with lim,_,  A,=o0. It is essential that the space Wy ?(Q) is
reflexive and separable and the corresponding functionals F and G are
Fréchet-differentiable (see [9, 10, 21]). For results concerning the first
eigenvalue of the p-Laplacian we refer to [2, 17].

In the general case the suitable function space for studying the problem
(1.1) is the Orlicz-Sobolev space W §L,,(Q), where M(t)= [} m(s) ds. If M
and M (the conjugate of M) satisfy the A ,-condition, then the space
WLy (R) is separable and reflexive and hence has the usual structure (see
[5]) and the functionals

szfmmwnw
and

G@:Lfgnmw

are Fréchet-differentiable. Consequently, we may apply again the Ljusternik—
Schnirelmann theory to get an infinite sequence of eigenvalues tending to
infinity (see [ 8-10, 217]).
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If we do not impose the 4,-condition on M, then the problem (1.1)
becomes more complicated since the space WL, () is not reflexive or
separable, in general, nor are the functionals F and Fréchet-differentiable.
In [18] it is proved that for any r >0 the minimization problem

inf{j M(|Vul) dx

Q

ue W},LM(Q),j Mu) dx=r}

has a solution u, satifying (1.1) in W Liz(Q) for some />0 with
g(u) =m(u) without any extra condition on M.

In this paper we shall prove the existence of an infinite sequence of eigen-
values for (1.1) tending to infinity without any extra condition on M.
Hence the Ljusternik—Schnirelmann theory is not available due to non-
reflexivity of the space WL, (2) and lack of differentiability of F and G.
Our method is based on Galerkin approximation and pseudomonotonicity
of the operator — A ,, using a modified usual structure in a general com-
plementary system. Similar approach for smooth functionals in reflexive
Banach spaces can be found in [4, 9, 10].

2. PREREQUISITIES

We begin with some preliminaries on Orlicz—Sobolev spaces. Let 2 be a
bounded open subset in RY and let M: R — R be an N-function, ie., even,
convex and continuous with M(¢)>0 for >0, M(t)/t—>0 as t—> 0 and
M(t)/t > + o0 as t— +o0. M is an N-function if and only if it can be
represented in the form

M(t) :j't' m(s) ds (2.1)

where m: [0, co[ — [0, co[ is increasing, right continuous, m(z) =0 if and
only if t=0 and m(¢t)—> +o0 as t— +o0. We extend m to R by
m(t)= —m(—t) for t<0 (odd continuation). The Orlicz class %,,(Q) is
defined as the set of real-valued measurable functions u on Q such that

J M(u) dx < 0.

Q

The Orlicz space L,,(Q) is the linear hull of %,,(Q). Then L, (L2) is a
Banach space with respect to the Luxemburg norm

L}M(Z)dx<l}.
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It is easily seen that

lull (az, = inf {k >0

u
LJ M <k> dx < r}
defines an equivalent norm for all »>0. One has L, (2)= %,,(L2) if and
only if M satisfies the A ,-condition: there exist « >0 and 7, > 0 such that

M(2t) <o M(1)

for all ¢ >1t,. Moreover, L,,(Q) is separable if and only if M satisfies the
A ,-condition. The closure in L, () of all bounded measurable functions
is denoted by E,;, (). Then E, (Q) = %,(2) and E,(2) = %, (Q) if and
only if M satisfies the A ,-condition. The space E,, is a(L,,, L;;) dense in
L,,(Q). The conjugate N-function M is defined by

M(1)=sup{ts— M(s) | se R}.

The function M is also an N-function and M = M. The space L () is the
dual space of E,,(Q). The space L,,(£) is reflexive if and only if M and
M satisfy the A,-condition. Note that the norm I oz, ry 18 O(Lag, Egz)
lower semicontinuous for all »> 0. It is well-known that L,,(Q) L ()<
LY(Q). We recall also Young’s inequality:

M(x)+M(y)=xy forall x, yeR (2.2)
with equality if and only if x =m(y) or y =m(x). Define
dom(m)={ue Ly (R2)|mu)eLyz(Q)}.

It can be shown that E,,(Q) = dom(m) = %,,(22) and dom(m) = L,,(Q) if
and only if M satisfies the A ,-condition. Moreover, the mapping u — m(u)
is continuous from E, (Q)— Liz(R2) if and only if M satisfies the
A ,-condition (see [3, 12, 15]).

Remark 2.1. Typical examples of N-functions satisfying the A ,-condi-
tion are (14 |7])log(1+|¢t])—|¢| and [¢|? for p>1. On the other hand,
functions e!! —|f| — 1 and e!"” — 1 for p>1 are N-functions not satisfying
the A ,-condition.

The first order Orlicz-Sobolev space of functions in L ,,(2) with first dis-
tributional derivatives in L, (Q) is denoted by W'L,,(Q). The space
W'E,, () is defined analogously. These spaces are identified, as usual, to
subspaces of the product [ L, (£2). The spaces WL, (2) and W{E,(Q)
are defined as the o([[L,,, [1Es) closure of () in W'L,,(Q) and as the
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norm closure of Z(Q2) in WE,,(Q), respectively. The following spaces of
distributions will also be used:

WLl @)= { e @) | £~ fo- S D with f, & L ()}
W)= { e @) | £~ fo- S Difvith i€ Egl@)].

They are endowed with their usual quotient norms. It is shown in [11]
that if Q has the segment property, then

Y Z\ (WiLy(2) W 'Lg(Q)
<Yo Zo> B < WoEw(Q) W_IEM(Q)>

constitutes a complementary system, i.e., ¥ and Z are real Banach spaces
in duality with respect to a continuous pairing {-,-» and Y, and Z, are
closed subspaces of Y and Z respectively such that, by means of { -, - >, the
dual of Y, can be identified to Z and that of Z, to Y. The pairing between
ueYand f=f,—XY | D,f;eZ is given by

i=1

<mf>=LQu¢+§(amﬁ>w.

i=1

Standard references on Orlicz and Orlicz-Sobolev spaces include [ 1, 6,
11-16]. The reader interested in the topological degree theory for
monotone-like mappings in Orlicz-Sobolev spaces is referred to [20].

We end this section by recalling the definition of the topological index
genus. Let X be a real Banach space. Denote the class of all closed sym-
metric subsets K of X with 0¢ K by symy. For each non-empty set
K e symy we define gen K to be the smallest natural number n > 1 for which
there exists an odd and continuous mapping f: K- R"\{0}. If no such
number exists, then gen K=o0. We also define gen ¢ =0. The basic
properties of genus can be found in [21]. We will list here some of them
which will be utilized in Chapter 4:

(i

) gen K< dim X for all Kesym
i) gen{ueX||ul|=1} =dim X
)

—_

if Kesymy is compact and P: K —» X is odd and continuous with
then P(K)esymy and gen K< gen P(K).

(iii
0¢ P(K
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3. A USUAL STRUCTURE IN A COMPLEMENTARY SYSTEM

Let (Y, Yy; Z, Z,) be a complementary system with Y, and Z, separable.
The space Y with a(Y, Z,) topology, being a Hausdorff topological vector
space, is regular. Since Y, is separable, the norm topology in Y, is Lindelof
implying o(Y, Z,) topology in Y,, being coarser, is also Lindelof. Hence
the space Y, with the topology a( Y,, Z,) is a regular Lindelof space implying
it is paracompact and normal (see [7]).

Now we are ready to prove the existence of a usual structure in a com-
plementary system, with Y, and Z, separable. We shall utilize the ideas in
[5], in which a similar result is proved for the reflexive case.

THEOREM 3.1. Assume (Y, Yy, Z, Z,) is a complementary system, Y,
and Z, are separable, the norm ||z is dual to |||y, the norm |-| y is dual
10 ||-llz, and V =Yy is a norm-dense linear subspace. Then there exists a
sequence of mappings P,: Y, — Yy, n=1, 2, ..., satisfying

(1) P, is odd and norm-continuous for all n=1, 2, ...
(1) P,(Y,) is contained in a finite-dimensional subspace of V for all
n=12,..
(iii) if {u,} =Y, and u, —>ueY for o(Y,Z,), then P,(u,)—u for
O'( Ya ZO)
(iv) if {u,} = Yo and u, > ueY strongly, then ||P,(u,)| y— |ull y.

Proof. Let {z;},_,=Z, be a norm-dense countable set in Z, and

denote

B,={xe Y| ¥l y<n)
1
o= {xe v|IGnadlHin sl K <3

for n=1, 2, .... Note that the set B, is a(Y, Z,) closed, being (Y, Z,) com-
pact due to Alaoglu’s theorem, and the set Y, is o(Y, Z,) open. By
regularity of a(Y, Z,), for every x € Y there exists a a(Y, Z,) open subset
W, <Y, with 0e #, and #,= — W, satisfying

(x+27 )0 {yeY|yly<lxly—1/n} =& (3.1)

Since the norm |-||y is dual to |-z, the set {ye Yo !|lly|y< x|y} is
o(Y,Z,) densein {ye Y| ||y|y<|x|y} (see [11, Lemma 1.11]). Hence, on
account of norm-density of V in Y, the set {ve V| |v|y< x|y} is also
a(Y, Z,) dense in {ye Y ||y y<Ix|y}. Since the set x+ ¥, is a(Y, Z,)
open, the intersection

{ve Vvl y<lxly} 0 (x+%5)
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is non-empty. Consequently, for every x € ¥ we may choose y, from this
intersection, i.e., y, € V satisfies y, e x+ %, and |y, || y< [ x|l y. Clearly

B, = U (yet+75).
xeB,
Since the set B, is a( Y, Z,) compact, there exists a finite subcover

k
B, (ny+75).

i=1
Denote
K,=B,nY,
Wi=(y,+7,) 0K,

Then K, is a( Y, Z,) closed in Y, W;is a(Y,, Z,) open in K, and K, =
k_, W.. Due to paracompactness of (Y, Z,), there exists a partition of

unity {g;}%_, such that

g+ K,—[0,1] is a(Y,, Z,) continuous

k

Y gilx)=1 for all xeKk,

g:.(x)=0 if xeK,\W,.

Since K, is a(Y,, Z,) closed and o(Y,, Z,) is normal, we may extend each
g; by Tietze’s extension theorem to a o(Y,,Z,) continuous map
g Yy —1[0,1]. Define a mapping Q,: Y, — Y, by

Then Q,, is continuous from a(Y,, Z,) topology to the norm topology and
hence norm-continuous. Moreover,

0,.x)—xeY, for all xeKk,.

Indeed, suppose xe€ K, and g,(x)##0. Then xe W, implying xey, + 75
and consequently y, —xe€ ¥, < Y,. Therefore

ne

Qn(x) —X=

i

I~

—

gi(x)(yxi_x) < Yns
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since the set Y, is convex. Next we shall prove that
10Xl y<|x[y+1/n  forall xeKk,.

Suppose x € K,, and g;(x) #0. Then x €y, + ¥, implying x € x;+ 2%, . By
(3.1), |x] y> ;] y— 1/n and consequently

kol

k
1Q(x Z gi(x) Iy lly< Z () [l v

< 2 &)lx]y+ 1/n) = llx] y+ 1/n.

I =

—

1

Define a mapping P,: Y, — Y, by

P(x)=3(0u(x) = Q)( —x)).

Then clearly (i) and (ii) hold.

Next we shall deduce part (iii). Suppose {u,} =Y, and u, >ueY for
o(Y, Z,). Then M =sup,, ||u,| y is finite and consequently, +u, € K,, for all
n> M implying

1P (un) | < 301 Qu(un) |y + 1@ =) ¥) < ety | v+ 1/ (32)

for all n> M. Therefore the sequence {P,(u,)} is bounded in Y. Let ie N
be arbitrary. If n>max{i, M}, then +u, € K, and

Pn(un)_un:%(Qn(un) n) %(Qn(_u ) )E Yn'

Hence

|<Zi5 Pn(un) —T/I>| < |<Zi’ Pn(un)_un>| + |<Zi’ un_u>|

<Un+ |z u,—up| =0,

when n — oo. Since the set {z;} is norm-dense in Z, and P,(u,) remains
bounded in Y, we get P,(u,) — u for o(Y, Z,).

Finally, to prove (iv), suppose {u,} = Y,, u€ Y and |u, —ul| y — 0, when
n— oo. Due to (3.2), limsup |P,(u,)| y<|lully. On the other hand, by
o(Y, Z,) lower semicontinuity of ||-||y, we have |u| y <lim inf || P,(u,)| y.
Hence the proof is complete.
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4. AN EIGENVALUE PROBLEM FOR THE GENERALIZED
LAPLACIAN

Let m: [0, o[ - [0,0[ be an increasing continuous function with
m(t)=0 if and only if =0, m(t) > o as t —» oo and = R" an open and
bounded subset with the segment property. Let r >0 be given. Let

Y Z\_ (WSLy(Q) WT'Lg(Q)
<Yo ZO>_<W(1)EM(Q) WlEA?(‘Q)>

be the complementary system formed by Orlicz—Sobolev spaces with the

norm
N 12
< Z (Di“)2>

i=1

el = 11Vl ll ar, ry =
(M, r)

and the corresponding quotient norm in Z. It is routine to check, based on
[11, Lemmas 1.2, 1.11, and 1.12] and [ 19, Theorem 3.3, p. 135], that the
norm ||y is dual to |||z and the norm |||z is dual to |||y, Let
{vy, 05, ..} ©2(RQ) be a countable norm-dense linearly independent subset
in Y, and {P,} be the sequence of mappings given by Theorem 3.1 with
V =sp{vy, vy, ..}. Denote

V,=5p{vy, Vs ey U, }-

We shall denote the continuous pairing between Y and Z by < -, - > and the
one between V, and V¥ by (.,->,. For each n=1,2, .., there exists
m,, € N such that

P(Y)cV,,.

Let g: R— R be an odd and continuous function satisfying g(¢) ¢t >0 for
all 1#0 and

lg()| <cy+com(est)  forall >0, (4.1

where c¢;,c,, and c¢; are positive constants. Define even functionals
F:Dp—>Rand G: Dg; - R by

F(u)zf M(|Vul) dx

Q

and
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with Dp={ueY|F(u)< o} and Dg={ue Y |G(u)<oo}. Clearly both
functionals vanish only at zero. A straightforward calculation gives
F,GeCYV,) and

<v,F’(u)>,,:J mVU) G Vodx  forall wveV,
Q |Vu|
{v, G’(u)>n=j g(u) vdx forall w,veVl,
Q
for each n=1, 2, ... The growth condition (4.1) and the compact em-

bedding WAL, (Q) - Eu(R) ([6,8,11,20]) imply Dy=Y and

G(u,) = G(u)

Lu,, G'(u,)>, —>J u) udx

v, G'(u,)>, —>J u) vdx

whenever u,eV,, u, >ueY for a(Y, Z,) and ve V. Define a mapping
A,:D, —Z by

D, ={ueY|m(|Vul)e Ly(Q)}
and

m(|Vul)
|Vul

(o, A,,,(u)>=—jg Vu-Vodx  forall ueD, and veV.

It is clear that Yy =D, <D< Y. Moreover, the following monotony

properties of the mapping — A, are well-known (see [ 11, 14]):

— the mapping — A,, is monotone, i.e.
=N u)—(—A,,(v),u—v)y >0 forall w,veD, with u#v
— the mapping — A, is pseudomonotone, i.e. the conditions

{un} CDAm

u, >ueY  for a(Y, Z,)
—A,(u,) > yeZ for o(Z, Y,)
lim sup<u,, — A, (u,)> <<u, )
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imply

ueDy,
X= _Am(u)
<un! _Am(un)> - <I/l, X>

Define an even and continuous mapping k,: Y,\{0} — ]0, oo[ by

1

luall

k(1) =

It is easily seen that F(k,(u)u)=r for all ue Y,\{0}. Moreover, F(u)=r
if and only if k(u)=1.
In the sequel we denote
My={ueY,|Flu)=r}
H;(r) = {K < M, compact and symmetric | gen K >}

H; 1) ={K< M, V, compact and symmetric | gen K>}

¢;(r)y= sup inf G(u)

Ke A (r) uek

cio(r)= sup inf G(u).

Kex; (r) uek

Note that c¢; ,(r) increases with n. Choosing K to be the unit sphere of
V;, we have gen K =i, K< .4, and inf,_ x G(u) > 0. Hence ¢, ,(r) >0, when
n>=i. On the other hand, if n <i then %; ,(r) is empty.

Now we are ready to attack the problem (1.1). We start with a finite-
dimensional result. We shall use the assumptions and notations given

above.

LemMa 4.1.  Let ie N be given. Then there exist sequences {u,}*_,= Y,
and {2,} X, = 10, co[ such that

u,eV,
Flu,)=r
Glu,) = c; (1)
Fl(u,)=1,G'(u,)  in V'

foralln=i,i+1,...
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Proof. By assumptions, F, Ge C(V,) and F(0) =0. Moreover, for each
ueV, with u#0 we have {u, F'(u)),>0 and F(k,(u)u)=r. The claim
follows now from the finite dimensional Ljusternik—Schnirelmann theorem
([21, Theorem 44.B]).

Next we shall study the convergence of the sequences {4,} and {u,},

when n tends to infinity with fixed r and i.

LemMA 4.2. Let ieN be given and the sequences {u,}y_,<Y, and
_;< |0, 00| as given emma 4.1. en there exist ue D, an
Ik, 10 ven by L 4.1. Then th ' D, and

7.€10, o[ such that A, — A and u,, — i for o(Y,Z,) for some common
subsequence. Moreover, F(it)=r, G(it)=lim, _, ., ¢; ,(r) and

— A, (1) = Ag(u) inZ.

Proof.  Since | M(|Vu,|) dx =rfor all n >, the sequence {u,} is bounded
in Y. Therefore we may assume that u, >ueY for o(Y,Z,) for a
subsequence implying G(u,) — G(u). Assume A, — oo, when n — oo. Since

the sequence {c; ,(r)} 2, is increasing, we have G(u) > 0 implying g(u7) # 0.

n=i

Consequently, there exist ny>i and ¢ € V,, such that

L} 2(i0) (it — ¢) dx <0.

By monotony of the mapping — A,, we get

0<Cu,—¢, — A, (u,) = (= A,(4)))
= <un_¢» F’(un)_Fl(¢)>n
:}“n<un_¢9 G,(un)>n_ <un_¢9 F,(¢)>n9 (42)

when n > n,. Since

Sty — ¢, G'(14,) > — L (i) (ii— ) dx <0

and

m(|Ve|)
Vol

Ctty =, () [ V- V(ii—¢) dx,

the right hand side of (4.2) tends to — oo, which is a contradiction. Conse-
quently, the sequence {4,} is bounded and thus we may assume that
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Ay, — A In R and u, »ueY for o(Y,Z,) for a common subsequence.
Moreover,

J, 1V 1) 1V, dx = Gy ),
=4Sty G' (1)
—nljg gla) it dx < oo
implying m(|Vu,,|) remains bounded in L ;(Q). Hence we may assume

— A, (u,) > yeZ for o(Z, Y,)

for some y € Z. Since

¢, x> =liml ¢, F'(u,), =lim 4,{¢, G'(u,) ), =2J g(u) ¢ dx

Q

for all ¢ € V and V is norm-dense in Y,, we have

P> =2] gla)ddx (43)

for all ¢ € Y,. By the bipolar theorem, Y, is a(Y, Z) dense in Y. Hence
(4.3) holds for all ¢ € Y. Consequently,

1im<un9 - Am(un)> :lim<un5 F’(un)>n
=lim 2,{u,, G'(u,)) ,

=/1L2 e(a@) ddx =i, 1>

implying, due to pseudomonotonicity of the mapping — A, that ue D, ,
— A, (1) =y and

j m(|Vu,|) |Vu, | dx—>f m(|Vul) |Vul dx.
Q Q

Standard argument (see [ 11, 14]) gives

m(|Vu,|) [Vu, | - m(|Val) Vil
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in L'(Q). Consequently, we have a majorant s e L'(2) such that
M(|Vu,|) <m(|Vu,|) |Vu,| <h a.e. in Q.

The dominated convergence theorem implies F(iz) =lim F(u,)=r.

Finally, we shall study the convergence of the sequences {c; ,(r)} and
{c:(r)}. The proofs are analogous to ones in [9, 10]. The main difference
is due to the fact that w, - w in Y, does not imply P,(w,) —> w in Y, in
general.

LemMa 4.3. Let ieN be given. Then c; ,(r) — c;(r), when n— 0.

Proof. Clearly ¢, (r)<c;,1(r)< --- <c,(r) for all neN. Suppose
there exists ¢ >0 such that ¢; ,(r) <c,(r) —¢ for all n. By the definition of
¢;(r), there would exist a set K, € #;(r) such that

c;(r)—¢/2< inf G(w). (4.4)

wek,
It is easy to check that 0 ¢ P,(K,) for every n large enough. Indeed, suppose
P, (w,)=0 with w, €K, and n, — oo. By compactness of the set K,,

My
w,, — we K, for a subsequence. But part (iii) of Theorem 3.1 implies w =0,
which contradicts 0 ¢ K,. Consequently, the map

YIn: w— kr(Pn(M})) Pn(m})

is odd and continuous from K, to .4, NV, for n large enough. Hence
¥.(K,) = A, (r) implying

inf  G(w)<c,,(7)
we ¥,(K,) "

for every n large enough. Thus, for every n large enough there exists
w, € K, such that

GV, (w,)) <ci(r)—e. (4.5)

Due to compactness, w, >weK, in Y, for a subsequence implying
|P,w,|y— w|yand k.(P,w,)— k,(w)=1. Consequently,

¥.(w,) —>w for a( Y, Z,)

implying G(¥,(w,)) = G(w), which contradicts (4.4) and (4.5).
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LemMA 4.4. c¢;(r)— 0, when i —» o0

Proof. Let ¢ >0 be arbitrary. The continuity properties of the mappings
{P,}*_, and G imply the existence of n, € N and ¢ >0 such that

|G(P,,(w)) —G(w)| <&/2 forall we ./,
and
G(w)<eg/2 for all |w]y<0.

Consequently, if K< ., is compact and symmetric with inf,, _x G(w) > &,
then

[P (W) y =0 forall wek.
Hence gen K <gen P, (K) <m, . Thus, if i>m, and Ke #;(r), then

inf G(w) <e¢
wek

implying the claim.
Now we are ready to prove our main theorem:
THEOREM 4.5. Let Q< RY be open and bounded with the segment

property and r>0. Then there exist sequences {it;} > = WLy (Q) and
{272, =10, o[ such that

_V.<m(|v_ﬁi|)vgi>zzig(ai) in W'Lz(Q) (4.6)
|Vui|
and
j M(|Vi,|) dx=r (4.7)
Q
[ [ sts) ds ax=c,(r) (48)
QY0

Moreover, 1, — o0 and i, — 0 for a(Y, Z,), when i — 0.

Proof.  On account of the previous lemmas, for each ie N there exist
u;eD,, —and 4;>0 satisfying (4.6), (4.7), and (4.8). By Lemma 44,
G(u;) > 0, when i— oo. Since #; remains bounded in Y, we may deduce
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that i; - 0 for o(Y, Z,), when i— co. By compact embedding and (4.1),
u; > 01in E,,(2) and g(it;) remains bounded in L (). Using (4.6) we get

5 _Lam(Va]) Vi dx ,

i - = N — 00,
fgg(ui)uidx sgg(ui)uidx

when i — 0.

Remark 4.6. 1f M and M satisfy the A ,-condition, then an analogous
result for the problem

_V.<m(|Vu|) Vu>=/1a(x)m(u) in Q2
|Vl

u=0 on 0Q

is proved in [8] assuming ae L*(Q2), a=0 in D and pu{xe D |a(x)>0}
>0 for some ball D < Q.
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