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Abstract

The pion mass difference generates a pronounced cusp in K → 3π decays, the strength of which is related to the ππ S-wave scattering lengths.
We apply an effective field theory framework developed earlier to evaluate the amplitudes for KL → 3π decays in a systematic manner, where
the strictures imposed by analyticity and unitarity are respected automatically. The amplitudes for the decay η → 3π are also given.
© 2007 Elsevier B.V. All rights reserved.
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1. The investigation of the so-called cusp effect in K+ → π+π0π0 decays has become a fully competitive method for the
extraction of the S-wave ππ scattering lengths from experimental data. Following refined versions of the original proposal by
Cabibbo [1–3], the combination a0 − a2 has been determined from very high statistics data [4,5] to an accuracy mainly limited by
remaining shortcomings in the theoretical description of the decay amplitudes. Missing ingredients are in particular (real and virtual)
photon corrections. Here, an important step has recently been performed by Isidori [6], who has evaluated radiative corrections in
multi-body meson decays, in particular, for the fully charged channel K+ → π+π+π−, in the soft photon approximation. Once
these corrections are available in all channels, K → 3π decays, combined with the information gained from Ke4 decays [7,8]
and the pionium lifetime [9], have the potential to test the very precise theoretical prediction of the scattering lengths [10,11]
experimentally. For recent phenomenological determinations of the scattering lengths, we refer the reader to Refs. [12–14].

As the strong impact of the unitarity cusp near the π+π− threshold is a universal feature of the π0π0 scattering amplitude [15],
it is present also in other decays, like KL → 3π0, η → 3π0, etc. The strength of the cusp in KL → 3π0 is reduced by about an order
of magnitude compared to K+ → π+π0π0, hence the experimental situation in order to gain information on ππ scattering lengths
is far less favourable [5]. However, the motivation to study this channel all the same is twofold: firstly, experimental efforts to at
least see the cusp are under way [5]; secondly, the KL → 3π0 system provides an excellent object for exploratory studies of the
most important electromagnetic effects in the cusp region, before immersing oneself into the even more relevant, but simultaneously
more difficult case of K+ decays.

The KL → 3π decays have been studied with regard to the cusp phenomenon before. Ref. [2] uses unitarity, analyticity and
cluster decomposition properties of the S-matrix to investigate the cusp structure. In analogy to the corresponding K+ decays
discussed in the same reference, an expansion in powers of the ππ scattering lengths a is used as the essential ordering principle,
and the calculation is performed up to O(a2). In Ref. [16], in addition to analyticity and unitarity, chiral perturbation theory is
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used for the evaluation of the real parts of the K → 3π decay amplitudes at one loop. For an evaluation of radiative corrections
to such decays in the framework of chiral perturbation theory, see Refs. [17,18]. In the present work, however, we rely on the
non-relativistic effective field theory framework developed in Ref. [3]. It is based on an effective Lagrangian, and as such satisfies
all unitarity and analyticity constraints automatically. The coupling constants involved can be directly matched to ππ scattering
lengths, and the expansion in powers thereof as advocated in Ref. [2] emerges naturally in a generalised power counting scheme.

Our presentation closely follows that of Ref. [3], allowing for a relatively concise description of the procedure. We construct
the most general non-relativistic Lagrangian required for the process in question, and match the couplings to the ππ threshold
parameters. Thenceforth the calculation of the decay amplitude up to two-loop order is straightforward. Our representation of
tree, one-loop, and two-loop contributions correctly reproduces the analytic structure with various branch points and cusps in the
Mandelstam plane throughout the physical region (and slightly beyond). The pertinent calculation of the radiative corrections within
the same framework will follow in due course [19].

2. We consider the neutral and charged decay modes KL(PK) → π0(p1)π
0(p2)π

0(p3) and KL(PK) → π+(p1)π
−(p2)π

0(p3).
The kinematical variables are defined as usual: si = (PK − pi)

2 with p2
i = M2

i , i = 1,2,3, where Mπ+ .= Mπ and Mπ0 denote the
masses of the charged and neutral pions, respectively, and Δπ = M2

π − M2
π0 �= 0. In the centre-of-mass frame PK = (MK,0), with

MK the neutral kaon mass,

(1)p0
i = M2

K + M2
i − si

2MK

, p2
i = λ(M2

K,M2
i , si)

4M2
K

,

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the triangle function. Below we also use the velocities vjk and kinetic
energies Ti ,

(2)v2
jk(si) = λ(si,M

2
j ,M2

k )

s2
i

, Ti = p0
i − Mi.

3. We invoke the non-relativistic framework set up in Ref. [3] for the evaluation of the pertinent decay amplitudes. In that
framework, the perturbative expansion is performed in terms of two formal parameters ε and a. One counts the pion and kaon
masses as O(1), the pion momenta as O(ε) and the pion mass difference Δπ as O(ε2). In addition, each four-pion vertex is
counted as a quantity of order a. As these vertices are proportional to the ππ scattering lengths which are small, one expects the
expansion in a to converge rapidly. We refer for a further discussion of the method to the original article [3]. Here, we simply
note that it is sufficient to provide the Lagrangian used—the amplitudes then follow from a straightforward application of the rules
provided in Ref. [3].

4. The complete Lagrangian of the effective theory is LK + Lππ , where LK contains KL → 3π vertices, and Lππ describes
elastic ππ scattering. In the following, we provide the Lagrangians necessary to calculate the amplitudes for KL → 3π at order ε4,
aε5, a2ε2.

We start with the ππ interaction and consider the following five physical channels in πaπb → πcπd : (ab; cd) = (1) (00;00),
(2) (+0;+0), (3) (+−;00), (4) (+−;+−), (5) (++;++). [We omit the channel π−π0 → π−π0, because this amplitude is
identical to π+π0 → π+π0 by charge invariance.] The Lagrangian takes the form

(3)Lππ = 2
∑
±

Φ
†
±W±(i∂t − W±)Φ± + 2Φ

†
0W0(i∂t − W0)Φ0 +

5∑
i=1

Li ,

where Φi is the non-relativistic pion field operator, W± = √
M2

π − 	, W0 =
√

M2
π0 − 	, with 	 the Laplacian. Introducing further

the notations

(Φn)μ = (Pn)μΦn, (Φn)μν = (Pn)μ(Pn)νΦn, (Pn)μ = (Wn,−i∇),

(4)
(
Φ†

n

)
μ

= (
P†

n

)
μ
Φ†

n,
(
Φ†

n

)
μν

= (
P†

n

)
μ

(
P†

n

)
ν
Φ†

n,
(
P†

n

)
μ

= (Wn, i∇),

for n = a, b, c, d , one may write

Li = xiCi

(
Φ†

c Φ
†
dΦaΦb + h.c.

) + xiDi

{(
Φ†

c

)
μ

(
Φ

†
d

)μ
ΦaΦb + Φ†

c Φ
†
d (Φa)μ(Φb)

μ − hiΦ
†
c Φ

†
dΦaΦb + h.c.

}

+ uiEi

2

{(
Φ†

c

(
Φ

†
d

)μ − (
Φ†

c

)μ
Φ

†
d

)(
(Φa)μΦb − Φa(Φb)μ

) + h.c.
}

+ xiFi

{(
Φ†

c

)
μν

(
Φ

†
d

)μν
ΦaΦb + Φ†

c Φ
†
d (Φa)μν(Φb)

μν + 2
(
Φ†

c

)
μ

(
Φ

†
d

)μ
(Φa)ν(Φb)

ν + h2
i Φ

†
c Φ

†
dΦaΦb

(5)− 2hi

((
Φ†

c

) (
Φ

†)μ
ΦaΦb + Φ†

c Φ
†
(Φa)μ(Φb)

μ
) + h.c.

} + · · · ,

μ d d
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with hi = st
i − 1

2 (M2
a + M2

b + M2
c + M2

d ), where st
i denotes the physical threshold in the ith channel. Explicitly, h1 = 2M2

π0 ,

h2 = 2MπMπ0 , h3 = 3M2
π − M2

π0 , h4 = h5 = 2M2
π . The ellipsis stands for terms of order ε6 in the S-wave and for terms of

order ε4 in the P - and D-waves. The low-energy constants Ci , Di , Ei , Fi are matched to the physical threshold amplitudes below.
To simplify the resulting expressions, we have furthermore introduced the combinatorial factors x1 = x5 = 1/4, x2 = x3 = x4 = 1,
u1 = u3 = u5 = 0, u2 = u4 = 1. Finally, we note that we omit local 6-pion couplings. Their contribution to the KL → 3π amplitude
is purely imaginary in the non-relativistic framework, and of order ε4.

5. The couplings Ci , Di , Ei , Fi can be expressed in terms of the threshold parameters of the underlying relativistic theory. In
the isospin symmetry limit, the expansion of the relativistic ππ scattering amplitude reads

(6)Re T̄i (s, t) = Āi

{
1 + r̄i

4M2
π

(
s − 4M2

π

) + f̄i

16M4
π

(s − 4Mπ)2
}

+ 3

4
ĀP

i (t − u) + · · · .

The ellipsis stands for higher orders in ε, e.g. D-wave contributions. The bar indicates the isospin symmetric limit, at Mπ =
139.57 MeV. In terms of the standard scattering lengths a0, a2 and a1, one has

3Ā1 = N(a0 + 2a2), 2Ā2 = Na2, 3Ā3 = N(a2 − a0), 6Ā4 = N(2a0 + a2), Ā5 = Na2,

(7)2ĀP
2 = Na1, 2ĀP

4 = Na1, ĀP
1 = ĀP

3 = ĀP
5 = 0, N = 32π,

with a0 = 0.220 ± 0.005, a2 = −0.0444 ± 0.0010, a0 − a2 = 0.265 ± 0.004, a1 = (0.379 ± 0.005) × 10−1M−2
π [11]. The products

Āi r̄i and Āi f̄i denote effective ranges and shape parameters, respectively.
Still in the isospin symmetry limit, the couplings Ci are related to these threshold parameters according to

(8)2C̄i = Āi , 8M2
πD̄i = Āi r̄i , 32M4

π F̄i = Āi f̄i , 4Ēi = 3ĀP
i ,

where we have dropped higher-order terms in the threshold parameters. Taking isospin breaking into account, one finds at leading
order in chiral perturbation theory [20]

(9)2C1,2,5 = Ā1,2,5(1 − η), 2C3 = Ā3(1 + η/3), 2C4 = Ā4(1 + η),

where η = Δπ/M2
π = 6.5 × 10−2. Isospin breaking in the remaining couplings Di , Ei , Fi is expected to have a negligible effect on

the analysis, and we propose to use for these couplings the relations (8) also in the real world, where isospin is broken.

6. It remains to display the KL → 3π Lagrangian,

LK = 2K†WK(i∂t − WK)K + L0
(
K†Φ0Φ+Φ− + h.c.

)
+ L1

(
K†(W0 − Mπ0)Φ0Φ+Φ− + h.c.

) + L2
(
K†(W0 − Mπ0)

2Φ0Φ+Φ− + h.c.
)

+ L3
(
K†Φ0

(
W 2±Φ+Φ− + Φ+W 2±Φ− − 2W±Φ+W±Φ−

) + h.c.
)

(10)+ 1

6
K0

(
K†Φ3

0 + h.c.
) + 1

2
K1

(
K†Φ2

0 (W0 − Mπ0)
2Φ0 + h.c.

) + · · · ,

where K denotes the non-relativistic field for the KL meson, WK =
√

M2
K − 	, and the ellipsis stands for the higher-order terms

in ε. The couplings Li , Ki are assumed to be real. Their contribution to the decay matrix elements at tree-level is provided below.
The tree-level expressions for the amplitudes, generated by LK , are modified by final state interactions of the pions, generated

by loops evaluated with Lππ . We use the notation

M000 =Mtree
N +M1-loop

N +M2-loops
N + · · · [

KL → π0π0π0],
(11)M+−0 =Mtree

C +M1-loop
C +M2-loops

C + · · · [
KL → π+π−π0]

for the decay amplitudes and the Condon–Shortley phase convention for the pions. Our amplitudes are normalised such that the
decay rates are given by

(12)dΓ = 1

2MK

(2π)4δ(4)(Pf − Pi)|M|2
3∏

i=1

d3pi

2(2π)3p0
i

.

In the case of KL → 3π0, the right-hand side must be divided by 3! = 6.
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7. The tree amplitudes are

Mtree
0 = K0 + K1

(
X2

1 + X2
2 + X2

3

)
,

(13)Mtree± = L0 + L1X3 + L2X
2
3 + L3(X1 − X2)

2,

where Xi = p0
i − Mπ0 . This representation is equivalent to

Mtree
0 = U0 + U1

(
u2 + v2

3

)
,

(14)Mtree± = V0 + V1(s3 − sc) + V2(s3 − sc)
2 + V3(s2 − s1)

2,

where

u = s3 − sn, v = s2 − s1,

(15)sn = M2
K + 3M2

π0

3
, sc = M2

K + M2
π0 + 2M2

π

3
.

The relations between the coefficients Ui , Vi and Li , Ki are displayed in Appendix A.

8. The one-loop contributions are proportional to the basic integral

(16)Jab(P
2) =

∫
dDl

i(2π)D

1

2wa(l)2wb(P − l)
1

(wa(l) − l0)(wb(P − l) − P0 + l0)
,

with w±(p) = √
M2

π + p2, w0(p) =
√

M2
π0 + p2 and P 2 = P 2

0 − P2. In the limit D → 4,

(17)Jab

(
P 2) = i

16π
vab

(
P 2),

which is a quantity of order ε. In order to make the formulae more transparent, we modify the notation for the couplings Ci , Di ,
Ei , Fi ,

(18)(C1,C2,C3,C4,C5) = (C00,C+0,Cx,C+−,C++),

and analogously for the Di , Ei , Fi . In the following, we use J−0 = J+0 throughout, and denote the couplings for π−π0 → π−π0

with index + as well, C−0 = C+0, etc. We then find

M1-loop
0 = {

B
(1)
0 (s1)J00(s1) + (s1 ↔ s2) + (s1 ↔ s3)

} + {
B

(2)
0 (s1)J+−(s1) + (s1 ↔ s2) + (s1 ↔ s3)

}
,

(19)M1-loop
± = B

(1)
± (s3)J00(s3) + B

(2)
± (s3)J+−(s3) + {

B
(3)
± (s1, s2, s3)J+0(s1) + (s1 ↔ s2)

}
,

with

B
(1)
0 (s1) = (

C00 + D00Y1n + F00Y
2
1n

){
K0 + K1

[
X2

1 + 2Z2
1 + Q2

1

6s1
Y1n

]}
,

B
(2)
0 (s1) = 2

(
Cx + DxY1c + FxY

2
1c

){
L0 + L1X1 + L2X

2
1 + L3

Q2
1

3s1
Y1c

}
,

B
(1)
± (s3) = (

Cx + DxY3c + FxY
2
3c

){
K0 + K1

[
X2

3 + 2Z2
3 + Q2

3

6s3
Y3n

]}
,

B
(2)
± (s3) = 2

(
C+− + D+−Y3c + F+−Y 2

3c

){
L0 + L1X3 + L2X

2
3 + L3

Q2
3

3s3
Y3c

}
,

B
(3)
± (s1, s2, s3)

= 2
(
C+0 + D+0Y1nc + F+0Y

2
1nc

){
L0 + L1Z

−
1 + L2

[(
Z−

1

)2 + Q2
1q

2
23(s1)

3s1

]
+ L3

[(
Z+

1 − X1
)2 + Q2

1q
2
23(s1)

3s1

]}

(20)− 1

3
E+0

q2
23(s1)

s1MK

(
Δπ

(
M2

π − M2
K

) + s1(s3 − s2)
){

L1 + 2L2Z
−
1 + 2L3

[
X1 − Z+

1

]} + O
(
Δ2

π

)
.
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Fig. 1. Two topologically distinct non-relativistic two-loop graphs describing the final-state ππ rescattering in the decay K → 3π , with Qμ = (q1 + q2)μ.

We have used the abbreviations

Q0
1 = p0

2 + p0
3 (cycl.), Q2

i = λ(M2
K,M2

i , si)

4M2
K

,

q2
lm(sk) = λ(sk,M

2
l ,M2

m)

4sk
(k �= l �= m �= k),

Yin = si − 4M2
π0 , Yic = si − 4M2

π , Yinc = si − (Mπ0 + Mπ)2,

(21)Zi = Q0
i

2
− Mπ0 , Z±

i = Q0
i

2

(
1 ± Δπ

si

)
− Mπ0 .

9. There are two topologically distinct two-loop graphs that describe pion–pion rescattering in the final state, see Fig. 1. At the
order of accuracy we are working, it is sufficient to consider the case of non-derivative couplings. In this case, the contributions of
both diagrams depend only on the variable s, where

(22)Qμ = (q1 + q2)
μ, Q2 = s.

The diagram in Fig. 1(B), apart from a factor containing coupling constants, is given by a product of two one-loop diagrams which
were already calculated in Eq. (17). The non-trivial contribution from Fig. 1(A) is proportional to

M(s) =
∫

dDl

i(2π)D

dDk

i(2π)D

1

2wa(l + k)

1

wa(l + k) − MK + l0 + k0

1

2wb(l)
1

wb(l) − l0

(23)× 1

2wc(k)

1

wc(k) − k0

1

2wd(Q − k)

1

wd(Q − k) − Q0 + k0
.

A short discussion of this integral is given in Ref. [3]. There, it is shown that one may write

(24)M(s) = F(Ma,Mb,Mc,Md; s) + · · · ,
where F is ultraviolet finite and contains the full non-analytic behaviour of the two-loop diagram in the low-energy domain, whereas
the ellipsis denotes terms that amount to a redefinition of the tree-level couplings in LK and which are therefore dropped. A one-
dimensional integral representation for F is provided in Ref. [3]. The relevant integrals can be performed analytically—the result
is displayed in Appendix B.

Below, we use the notation Fi(. . . ; s) for the integral F(. . . ; s), evaluated at Q2 = λ(M2
K,M2

πi , s)/4M2
K , with i = ±,0.

Evaluating the diagrams displayed in Figs. 2 and 3, we find for the amplitudes at order a2ε2

M2-loops
0 = {

MA
0 (s1) +MB

0 (s1) + (s1 ↔ s2) + (s1 ↔ s3)
}
,

(25)M2-loops
± =MA±(s1, s2, s3) +MB±(s1, s2, s3),

where

MA
0 (s1) = 2C2

00K0F0(Mπ0 ,Mπ0 ,Mπ0 ,Mπ0; s1) + 8C+0CxL0F0(Mπ0 ,Mπ,Mπ,Mπ ; s1)

+ 4C00CxL0F0(Mπ,Mπ,Mπ0 ,Mπ0; s1),

(26)MB
0 (s1) = C2

00K0J
2
00(s1) + 4CxC+−L0J

2+−(s1) + (
2C2

xK0 + 2C00CxL0
)
J+−(s1)J00(s1),
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Fig. 2. Two-loop graphs contributing to the decay KL → π0π0π0 in the non-relativistic effective theory. The graphs obtained by a permutation of identical particles
in the final state are not shown.

Fig. 3. Two-loop graphs contributing to the decay KL → π+π−π0 in the non-relativistic effective theory.

and

MA±(s1, s2, s3) = 2C00CxK0F0(Mπ0 ,Mπ0 ,Mπ0,Mπ0; s3) + 4C2
xL0F0(Mπ,Mπ,Mπ0,Mπ0; s3)

+ 8C+0C+−L0F0(Mπ0 ,Mπ,Mπ,Mπ ; s3) + {
4C+0C+−L0F+(Mπ,Mπ,Mπ0 ,Mπ ; s1)

+ 2C+0CxK0F+(Mπ0 ,Mπ0 ,Mπ0 ,Mπ ; s1) + 4C2+0L0F+(Mπ,Mπ0 ,Mπ,Mπ0; s1) + (s1 ↔ s2)
}
,

MB±(s1, s2, s3) = 4C2+−L0J
2+−(s3) + C00CxK0J

2
00(s3) + (

2CxC+−K0 + 2C2
xL0

)
J+−(s3)J00(s3)

(27)+ {
4C2+0L0J

2+0(s1) + (s1 ↔ s2)
}
.

10. The decay amplitudes depend on the six real KL → 3π coupling constants Li , Ki and on the threshold parameters for
ππ scattering. Combining the tree- and one-loop result Eqs. (13), (19) with the two-loop contributions (25), we obtain the neutral
and charged decay amplitudes up to and including terms of order ε4, aε5 and a2ε2, expressed in terms of the one- and two-loop
integrals J and F displayed in Eqs. (17) and (B.1)–(B.2), respectively. [We have dropped some of the contributions at order εΔ2

π .
In particular, D-waves generate contributions of this type. We expect them to be completely negligible.] This representation is valid
in the whole decay region, and is the main result of this article.

The decay amplitude KL → π0π0π0 obeys what we refer to as the threshold theorem: the coefficient of the leading non-analytic
piece, which is proportional to v+−(s3), is given by a product of two factors, the decay amplitude KL → π0π+π− and the scattering
amplitude π+π− → π0π0, both evaluated at threshold [1]. Of course, aside from the determination of the leading term in v+−, our
approach also allows a systematic evaluation of higher-order contributions v3+−, v5+−, . . . .

11. We now compare the content of this Letter with the work of Cabibbo and Isidori [2] (CI), who use an alternative method
to construct the K → 3π decay amplitudes. Conceptual aspects of the two methods were already discussed in Ref. [3] for the
case of the charged kaon decays K+ → 3π . In particular, it was pointed out that the amplitudes agree at order a, whereas they
differ at order a2 away from threshold, because the method used by CI does not reproduce the correct analytic properties of the
amplitudes at two-loop order. [On the other hand, the two amplitudes lead to very similar results for the scattering lengths when
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fitted to K+ → 3π data [5].] Analogous comments apply in the case of KL → 3π considered here. Comparing the expressions in
detail, we note that the final result (4.61)–(4.67) in CI does contain some (but not all) of the terms evaluated above. In this sense,
the expansion of the decay amplitudes presented here is more systematic and complete. As to the terms retained in CI, we note that,
aside from obvious typos, we do agree in KL → 3π0 at order a in the physical region, and at order a2 at the thresholds si = 4M2

π .
In the charged channel KL → π+π−π0, a graph is omitted in CI. It contributes at order aε and generates a cusp at the edge of
physical phase space.

12. We add a remark concerning η → 3π0 and η → π+π−π0 decays. These processes can be analysed in a completely anal-
ogous fashion. Indeed, the ππ scattering amplitudes remain the same, whereas the polynomial Lagrangian for η → 3π can be
obtained from the K → 3π one by replacing field operators and particle masses in the Lagrangian (10), (K,MK) → (η,Mη). The
tree amplitudes analogous to Eq. (13) become

Mη tree
0 = K

η
0 + K

η
1

(
X2

1 + X2
2 + X2

3

)
,

(28)Mη tree
± = L

η
0 + L

η
1X3 + L

η
2X

2
3 + L

η
3(X1 − X2)

2,

with Xi = p0
i − Mπ0 , and with obvious notation otherwise. The relation to an alternative expansion in the conventional η → 3π

Dalitz plot variables is provided in Appendix A. Furthermore, the one- and two-loop results in Eqs. (19), (25) can simply be taken
over, with the replacements (Ki,Li,MK) → (K

η
i ,L

η
i ,Mη) everywhere. Because ΓKL→π+π−π0/ΓKL→3π0 ∼ Γη→π+π−π0/Γη→3π0 ,

we expect that the strength of the cusp effect in the neutral channel η → 3π0 is of the same order as the one in KL → 3π0, i.e.,
much less visible than in the charged channel K+ → π+π0π0.

13. In summary, we have investigated KL → 3π decays within a non-relativistic effective Lagrangian framework. The ampli-
tudes are calculated in a systematic double expansion in the pion momenta (counted as quantities of order ε), and in the threshold
parameters of elastic ππ scattering (generically denoted by a). We provide an explicit representation of the amplitudes at order ε4,
aε5, a2ε2. The representation is valid in the physical decay region, and contains the six (real) KL → 3π coupling constants Li ,
Ki and the threshold parameters a. The very same amplitude can be used, with trivial modifications described above, for a cusp
analysis in η → 3π .

Our amplitudes differ from the ones of Cabibbo and Isidori [2] when compared in detail—in particular, we do retain all terms
at the above mentioned order in the low-energy expansion. For this reason, we believe that it is important to check whether our
expressions for the amplitudes lead to scattering lengths that are in agreement with the ones generated with the amplitudes presented
in Ref. [2].

It remains to investigate radiative corrections, which can be evaluated in the field-theoretical framework used here in a standard
manner. The effects generated by the π+π− bound state at the π+π− threshold can also be investigated within the same approach
[21–29], see also Ref. [30]. We plan to include these effects in forthcoming publications [19]. For the evaluation of radiative
corrections in K+ → π+π+π− in the framework of scalar QED, we refer the reader to the recent interesting article by Isidori [6].
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Appendix A

The coefficients Ui,Vi are given by

U0 = K0 + 3K1

4M2
K

(
(MK − Mπ0)

2 − sn
)2

, U1 = 3K1

8M2
K

,

V0 = L0 + L1

2MK

(
(MK − Mπ0)

2 − sc
) + L2

4M2
K

(
(MK − Mπ0)

2 − sc
)2

,

(A.1)V1 = L2

2M2
K

(
sc − (MK − Mπ0)

2) − L1

2MK

, V2 = L2

4M2
K

, V3 = L3

4M2
K

.
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The inverse relations read

K0 = U0 − 2U1
(
(MK − Mπ0)

2 − sn
)2

, K1 = 8

3
M2

KU1,

L0 = V0 + V1
(
(MK − Mπ0)

2 − sc
) + V2

(
(MK − Mπ0)

2 − sc
)2

,

(A.2)L1 = 4MKV2
(
sc − (MK − Mπ0)

2) − 2MKV1, L2 = 4M2
KV2, L3 = 4M2

KV3.

For the decays η → 3π0 and η → π+π−π0, the tree amplitudes (28) may be written in the alternative expansion

(A.3)Mη tree
0 = u0 + u1z, Mη tree

± = v0 + v1y + v2y
2 + v3x

2,

with the conventional η → 3π Dalitz plot variables

(A.4)x =
√

3(p0
1 − p0

2)

Qη

, y = 3(p0
3 − Mπ0)

Qη

− 1, z = 2

3

3∑
i=1

(
3p0

i − Mη

Qη0

)2

,

where Qη = Mη − 2Mπ − Mπ0 , Qη0 = Mη − 3Mπ0 . The coefficients of the two representations are related by

u0 = K
η
0 + Q2

η0

3
K

η
1 , u1 = Q2

η0

6
K

η
1 , v0 = L

η
0 + Qη

3
L

η
1 + Q2

η

9
L

η
2,

(A.5)v1 = Qη

3

(
L

η
1 + 2

3
QηL

η
2

)
, v2 = Q2

η

9
L

η
2, v3 = Q2

η

3
L

η
3,

or reversely by

K
η
0 = u0 − 2u1, K

η
1 = 6

Q2
η0

u1, L
η
0 = v0 − v1 + v2,

(A.6)L
η
1 = 3(v1 − 2v2)

Qη

, L
η
2 = 9v2

Q2
η

, L
η
3 = 3v3

Q2
η

.

Appendix B

The analytic expression for the two-loop function F reads

(B.1)F(Ma,Mb,Mc,Md, s) =N (2Af1 + Bf0) + O
(
ε4),

with

N = 1

256π3
√

s

(
1 − 2(M2

a + M2
b )

s0
+ (M2

a − M2
b )2

s2
0

)1/2 1√
	2 − (1+δ)2

4 Q2
,

f0 = 4(v1 + v2 − v̄2 + h),

f1 = 4

3

(
y1(v1 − 1) + y2(v2 − 1) − ȳ2(v̄2 − 1) + h

)
,

h = 1

2
ln

(
1 + Q2/s

1 + Q̄2/s̄

)
, Q̄2 = Q2(s̄),

vi = √−yi arctan
1√−yi

, i = 1,2; v̄2 = √−ȳ2 arctan
1√−ȳ2

,

y1,2 = −B ∓ √
B2 − 4AC

2A
, ȳ2 = y2(s̄),

A = −Q2

s

(
M2

c + 	2), B = q2
0 − 	2 + Q2

s
M2

c , C = −q2
0 ,

s0 = M2
K + M2

c − 2MK

(
M2

c + Q2(1 + δ)2

4

)1/2

,

q2
0 = λ(s,M2

c ,M2
d )

4s
, s̄ = (Mc + Md)2,

(B.2)	2 = λ(M2
K,M2

c , (Ma + Mb)
2)

4M2
, δ = M2

c − M2
d

s
.

K
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The arctan is understood to be evaluated according to

(B.3)arctanx = 1

2i
ln

1 + ix

1 − ix
,

and s is given a small positive imaginary part in all arguments, s → s + iε.
The analytic formula (B.1) is exact at O(ε2), and thus at the order considered in Ref. [3]. It differs by a few percent from the

integral representation given in Ref. [3].
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