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Abstract

First exit time distributions for multidimensional processes are key quantities in many areas of risk management and option
pricing. The aim of this paper is to provide a flexible, fast and accurate algorithm for computing the probability of the first exit
time from a bounded domain for multidimensional diffusions. First, we show that the probability distribution of this stopping time
is the unique (weak) solution of a parabolic initial and boundary value problem. Then, we describe the algorithm which is based
on a combination of the sparse tensor product finite element spaces and an hp-discontinuous Galerkin method. We illustrate our
approach with several examples. We also compare the numerical results to classical Monte Carlo methods.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

First exit time distributions for multidimensional random processes are key quantities in many fields of sciences,
such as mathematical physics, neurology, and also in mathematical finance. For instance, in the latter case, they
are required for the pricing of some path-dependent options and for estimating the risk of default in the structural
approach. Unfortunately, closed form solutions to this problem are not attainable except in a few specific cases. In this
paper, we suggest a flexible and efficient numerical scheme based on PDE techniques, for computing the distribution
of the first exit time from a bounded domain for multidimensional diffusions. We start by showing that the probability
distribution of this stopping time can be represented as the unique weak solution of the backward Kolmogorov
equation associated with the process subject to appropriate initial and boundaries conditions. It is well known that
the strong solution of an initial-boundary value problem admits a probabilistic representation due to the Feynman-
Kac formula; see [2, Theorem 2.3]. However, because of the incompatibility of the initial and boundary conditions
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in our problem, we cannot get such a solution. To overcome this difficulty, we derive a variational formulation of the
problem which will be also used for the numerical approach. Under some smoothness conditions on the coefficients
of the diffusion and by using well known results on variational problems, we derive the existence and uniqueness of a
weak solution. At a second stage due to smoothness of the free terms, we deduce that the solution is locally strong, and
thus admits a Feynman-Kac type representation. We conclude by a uniqueness and a limiting argument that the first
exit time probability is in fact the weak solution of the variational form of the Kolmogorov equation. For solving this
problem numerically, straightforward application of standard schemes fails due to the so-called ‘curse of dimension’:
The number of degrees of freedom on a tensor product finite element mesh of width h in dimension d grows like
O(h−d) as h → 0. This can be avoided by using sparse tensor product spaces and an hp-discontinuous Galerkin
(DG) time stepping procedure as in [6]. The resulting algorithm requires O(h−1

| log h|
2d+6) operations. Compared to

classical simulation techniques where Monte Carlo simulations are combined with discretization schemes for SDE’s,
our approach turns out to be more accurate and faster even for high-dimensional problems. It is also more flexible in
the sense that we do not need the knowledge of the transition densities of the process unlike for simulation algorithms
developed recently; see e.g. [5]. Moreover, the PDE approach provides the density at no additional cost using the
ansatz functions for the time discretization and computes the distribution of the stopping time for any starting point of
the diffusion in only one run.

The outline of the paper is as follows. We start by describing the set-up of the problem and fix the notation. In
Section 2, we show that, under some regularity conditions on the coefficients of the diffusions and on the domain, the
first exit time probability is the unique weak solution of the backward Kolmogorov equations subject to specific initial
and boundary conditions. Section 3 is devoted to the description of the numerical algorithm which includes sparse
tensor product finite element spaces and an hp-discontinuous Galerkin time integration. Finally, we give numerical
results and compare the PDE approach with classical Monte Carlo methods.

1.1. The first exit time problem

Let
(
Ω , (Ft )t≥0,P

)
be a filtered probability space and X := (X1, . . . , Xd), with x := (x1, . . . , xd), be the solution

to the following system of stochastic differential equations:

dX i
t = bi (Xt )dt +

d∑
j=1

σi j (Xt )dW j
t , X i

0 = xi ∈ R, (1)

where W := (W 1, . . . ,W d)T is a d-dimensional standard Brownian motion with d ≥ 1 and the coefficients bi and
σi j are smooth enough; see e.g. [7]. We denote the infinitesimal generator of X by G, which has the form

G f (x) =
1
2

d∑
i=1

d∑
j=1

ai j (x)
∂2 f (x)
∂xi x j

+

d∑
i=1

bi (x)
∂ f (x)
∂xi

(2)

where a = σσ> and f ∈ C2
K (R

d), the space of functions on Rd with compact support which are twice continuously
differentiable.

Let A be an open bounded Borel subset of Rd with boundary denoted by ∂A and define the stopping time

τA = inf{u ≥ 0; Xu 6∈ A}. (3)

This is the time of first exit of X from the domain A where we assume that ∂A is smooth enough. Let us denote by
Q(t, x) the probability that X starting from x did not exit the domain A before t , i.e.

Q(t, x) = 1 − Px(τA < t). (4)

Formally, Q coincides with the solution of the following backward Kolmogorov equation associated with the
process X:

∂u

∂t
(t, x) = Gu(t, x) on (t, x) ∈ R+

× A (5a)

u(0, x) = 1, x ∈ A (5b)

u(t, x) = 0, x ∈ ∂A, t > 0. (5c)
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1.2. Notation

Throughout the paper, we use the following notation. Let V and H separable Hilbert spaces with dense injection

V
d
↪→ H and norms ‖.‖V and ‖.‖H , respectively. Denoting by (., .)H the scalar product on H and identifying H with

H∗, the antidual of H , we get the Gelfand triple

V
d
↪→ H ∼= H∗ d

↪→ V ∗.

We denote by (., .)V ∗,V the usual duality pairing in V ∗
× V and by ‖.‖V ∗ the norm in V ∗. Next, for any T > 0, we

consider the spaces

V = L2(0, T ; V ) and H = L2(0, T ; H)

where if K is a Hilbert space, L2(0, T ; K ) denotes the class of measurable functions f : (0, T ) → K for the Lebesgue
measure such that

∫ T
0 ‖ f (t)‖2

K dt < ∞. Then, we have

V∗
= L2(0, T ; V ∗).

Furthermore, H1
0 (A) is defined by H1

0 (A) = {v ∈ H1(A); v|∂A = 0} with the norm

‖v‖2
H1

0 (A)
=

d∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥2

L2(A)
+ ‖v‖2

L2(A).

For any T > 0, we denote by QT the cylinder A×(0, T ) and introduce the Hölder spacesHl,l/2(QT ), for a nonintegral
positive number l. Hl,l/2 (QT ) is the Banach space of functions u(x, t) that are continuous in QT , together with all
derivatives of the form ∂r

∂tr
∂s

∂xs for 2r + s < l, and have a finite norm

‖u‖
(l)
QT

= 〈u〉
(l)
QT

+

[l]∑
j=0

〈u〉
( j)
QT

where

〈u〉
(0)
QT

= max
QT

|u| , ‖u‖
(l)
QT

=

∑
2r+s=l

∣∣∣∣∂ur

∂tr

∂su

∂x s

∣∣∣∣(0)
QT

.

2. First exit time probability as the weak solution of the Kolmogorov equation

In what follows, we provide sufficient conditions on the coefficients of the diffusion and on the boundary of the
domain A which ensure that the first exit time probability Q is the (weak) solution of the parabolic problem (5).
Although it seems to be a classical result, to the best of our knowledge, we did not find any rigorous proof of such a
representation.

2.1. The variational formulation of the backward Kolmogorov equation

In this part, we recall briefly the variational formulation of abstract parabolic problems and provide the assumptions
under which existence and uniqueness of the weak solution are ensured. Consider for F ∈ V∗ and u0 ∈ H the abstract
parabolic problem

d
dt
(u(t, .), v)V + g(u(t, .), v) = (F, v)V ∗,V ∀v ∈ V, 0 < t ≤ T, (6a)

(u(0, .), v)H = (u0, v)H ∀v ∈ V . (6b)

The derivative d
dt is understood in the weak sense. We are now ready to state the following general result for the

existence and uniqueness of a weak solution of the parabolic problem; see [4, Theorem 4.4.1 and Remark 4.4.3]
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Proposition 1. Assume that the bilinear form g(., .) in (6a) is

(1) continuous, i.e. there exits a constant c > 0 such that

‖g(u, v)‖H ≤ c‖u‖V ‖v‖V ∀u, v ∈ V, (7)

(2) coercive on V , i.e. there exist positive constants λ and α such that

g(v, v)+ λ‖v‖2
H ≥ α‖v‖2

V ∀v ∈ V . (8)

Then for any F ∈ V∗, there exists a unique u ∈ V , a solution of (6a) and (6b).

Remark 2. Note that (6a) implies that d
dt u ∈ V∗, so that

u ∈ C0 ([0, T ], H) ∩ H1 (0, T ; V ∗
)
. (9)

We make the following assumptions.

Assumption 3. (1) The coefficients σi, j , 1 ≤ i, j ≤ d , in (1) are (k − 1) times continuously differentiable on A.
(2) The coefficients bi , 1 ≤ i ≤ d , in (2) are (k − 1) times continuously differentiable on A.
(3) There exists a constant α > 0 such that

d∑
i=1

d∑
j=1

ai, j (x)ξiξ j ≥ α

d∑
i=1

ξ2
i , ∀ξi ∈ R, x ∈ A. (10)

(4) ∂A is piecewise smooth (as defined in [3]).

We take H = L2(A) and V = H1
0 (A) so that V ∗

= H−1(A) and specify the bilinear form g(., .) defined on
H1

0 (A)× H1
0 (A) by

g(u, v) =
1
2
(a∇u,∇v)L2(A) − ((b − div a)∇u, v)L2(A).

Now the Kolmogorov variational problem reads

d
dt
(u(t, .), v)L2(A) + g(u(t, .), v) = 0 ∀v ∈ H1

0 (A), (11a)

u(0, .) = 1. (11b)

Theorem 4. Under Assumption 3 the bilinear form g(., .) satisfies the continuity and coerciveness conditions. As a
consequence, the problem (11a) and (11b) admits a unique variational solution

u ∈ L2(0, T ; H1
0 (A)) ∩ C0([0, T ]; L2(A)) ∩ H1(0, T ; H−1(A)). (12)

Proof. Let u ∈ H1
0 (A); then we have

g(u, u) =
1
2
(a∇u,∇u)L2(A) − ((b − ∇a)∇u, u)L2(A).

By using the Cauchy inequality, we obtain, for any c2 > 0,

(b j
∂u

∂x j
, u)L2(A) ≤

∥∥b j
∥∥

L∞(A)

(
c2 ‖u‖

2
L2(A) +

1
4c2

∥∥∥∥ ∂u

∂x j

∥∥∥∥2

L2(A)

)
.

Combining this with (10), we get

g(u, u) ≥
α

2
‖∇u‖L2(A) − ‖b − ∇a‖L∞(A)

(
c2 ‖u‖

2
L2(A) +

1
4c2

‖∇u‖
2
L2(A)

)
.

We conclude by choosing c2 ≥
‖b−∇a‖

L∞(A)
2α to get the coerciveness conditions (8) and obtain the Theorem from

Proposition 1.
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Remark 5. By integration by parts, one observes that u satisfies (5) in the sense of distribution in QT , (5b) holds in
the topology of L2(A) and the boundary condition (5c) is contained in the fact that u ∈ L2

(
0, T ; H1

0 (A)
)

and A is
regular.

2.2. Regularity of the weak solution

Thanks to the smoothness of the free terms of the problems and the regularity of A, the weak solution has some
regularity. We have the following classical (local) regularity result; see e.g. [3, Theorem III.12.1].

Proposition 6. Let Assumption 3 holds and fix α such that [α] = 1. Then, the unique solution of the variational
problem (11a) and (11b) belongs to

u ∈ H2+α,1+α/2(QT ) ∩ C0([0, T ] × A). (13)

Moreover, for any t0 > 0,

u ∈ C0([t0, T ]; C2(A) ∩ C0( Ā)). (14)

2.3. The probabilistic representation

We end this section with the following result.

Theorem 7. Let Assumption 3 holds. Then, the unique weak solution u(t, x) of the variational Kolmogorov equation
(11a) and (11b), belongs to

H2+α,1+α/2(QT ) ∩ C0([0, T ] × A) (15)

and coincides with Q(t, x) = 1 − Px(τA < t) for all x ∈ Ā, 0 < t ≤ T .

Proof. Let u be the weak solution of (11a) and (11b). From Proposition 6, we have, for any t0 > 0, u ∈

C0([t0, T ]; C2(A)∩C0( Ā)). We deduce, from [2, Theorem II.2.3] and Remark 5, that u has the following probabilistic
representation, setting τ t

A = τA ∧ t , for any t > 0 and any x ∈ A,

u(t, x) = Ex[I{τ t
A=t}] = Q(t, x). (16)

That is, we have, for any t > 0 and x ∈ Ā, u(t, x) = Q(t, x). From (13), we know that u ∈ C0([0, T ] × A) which
implies that limt↘0 u(t, x) = 1 for any x ∈ A. Moreover, by the uniqueness of both the probabilistic representation
and the solution of (5a) and (5b), we get, for any x ∈ A, that

lim
t↘0

Q(t, x) = lim
t↘0

u(t, x) = 1.

The proof of the Theorem is then completed by observing that u and Q coincide on {t = 0} × A ∪ {t > 0} × Ā.

Remark 8. We point out that we could actually consider more general diffusions and/or weaken the assumption on
the boundary of the domain A. We could for instance consider time-dependent coefficients for the diffusion (1). In
this case, the Assumption 3 should hold uniformly in time.

3. Numerical algorithm

As mentioned in the Introduction, a straightforward application of standard numerical schemes for solving (5) fails
due to the so-called ‘curse of dimension’: The number of degrees of freedom on a tensor product finite element mesh
of width h in dimension d grows like O(h−d) as h → 0. Therefore, Monte Carlo methods are mostly used where the
error decreases like O(M−1/2) if one uses M simulations. This holds for any d ≥ 1, but only in a probabilistic sense.
We use the algorithm described in [6] which provides an error of O(N−p) where p is the degree of the finite elements
which can be any integer ≥ 1. The method is based on the following two observations.
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(i) To reduce the number of degrees of freedom in high dimensions, so-called sparse tensor product finite element
spaces are used. Their numbers of degrees of freedom grow like O(h−1 |log h|

d−1) as h → 0, instead of O(h−d) for
the full tensor product spaces. At the same time, the approximation rate in H1(A) for elements of degree p ≥ 1
and smooth functions is O(h p), the same as for full tensor product spaces. This result requires more regularity
than H p+1(A) for the approximated function, and the amount of extra regularity increases with d. In the problem
mentioned above, the initial data u0 are incompatible with the boundary conditions. However, the solution operator
E(t) of the parabolic problem is an analytic semigroup and increases the smoothness of the solution u(·, t) for t > 0.
This parabolic smoothing effect suffices for optimal convergence of sparse space discretization at T > 0 for any d,
even for initial data that are just in L2(A).

(ii) Even with a sparse space discretization the number N̂L of spatial degrees of freedom is substantial if d is large.
Reducing the number of time steps (and thus, the number of spatial problems to be solved) to pass from t = 0 to the
final time T is therefore essential. Time analyticity of E(t) implies analytic time regularity of the solution u(t) for
t > 0, but not uniformly in (0, T ). This allows us to construct hp-discontinuous Galerkin time stepping schemes with
exponential convergence in the number of spatial problems.

3.1. Sparse tensor product spaces

In the interval I = (0, 1), we define the mesh T ` given by the nodes j2−`, j = 0, . . . , 2`, with the mesh width
h` = 2−`. We define V` as the space of piecewise polynomials of degree p ≥ 1 on the mesh T ` which are in
C p′

−1([0, 1]) with 1 ≤ p′
≤ p and vanish at the endpoints 0, 1. We write N `

= dimV`, M`
:= N `

− N `−1,
N−1

:= 0; Then N `
= O(2`), ` = 0, 1, 2, . . .. We employ a wavelet basis ψ`j , j = 1, . . . ,M`, ` = 0, 1, 2, . . . of V`

with the properties

V` = span{ψ`j | 0 ≤ ` ≤ L; 1 ≤ j ≤ M`
} and diam (suppψ`j ) ≤ C2−`. (17)

Any function v ∈ VL has the representation

v =

L∑
`=0

M`∑
j=1

v`jψ
`
j (18)

with v`j = (v, ψ̃`j ) where ψ̃`j are the so-called dual wavelets. For v ∈ H1
0 (I ) one obtains the series

v =

∞∑
`=0

M`∑
j=1

v`jψ
`
j (19)

which converges in L2(I ) and in H1
0 (I ).

For v ∈ L2(I ) we can define a projection PL : L2(I ) → VL by truncating (19):

PLv :=

L∑
`=0

M`∑
j=1

v`jψ
`
j , P−1 := 0. (20)

The increment or detail spacesW` are defined by{
W`

:= span{ψ`j : 1 ≤ j ≤ M`
}, ` = 1, 2, 3, . . .

W0
:= V0.

(21)

Then

V` = V`−1
⊕W` for ` ≥ 1, and V` = W0

⊕ · · · ⊕W`, ` ≥ 0, (22)

and Q` := P` − P`−1 is a projection from L2(I ) toW`.
In I d

= (0, 1)d , d > 1, we define the subspace V L as the tensor product of the one-dimensional spaces

V L
:= VL

⊗ · · · ⊗ VL (23)
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which can be written using (22) as

V L
=

∑
0≤`i ≤L

W`1 ⊗ · · · ⊗W`d . (24)

The space V L has O(2Ld) degrees of freedom and is too costly if d is large. We shall use the sparse tensor product
space

V̂ L
:= span{ψ

`1
j1
(x1) . . . ψ

`d
jd
(xd)|1 ≤ ji ≤ M`i , `1 + · · · + `d ≤ L}

=
∑

0≤`1+···+`d≤L
W`1 ⊗ · · · ⊗W`d . (25)

As L → ∞, we have NL := dim(V L) = O(2d L), and N̂L := dim(V̂ L) = O(Ld−1 2L), i.e. the spaces V̂ L have
considerably smaller dimension than V L . On the other hand, they do have similar approximation properties to V L ,
provided the function to be approximated is sufficiently smooth.

3.2. Discontinuous Galerkin time stepping

We first analyze the time discretization of the parabolic problem (5)

u′(t)− Gu(t) = 0, t ∈ (0, T ],

u(0) = u0,

with u0 = 1.
Let M be a partition of (0, T ) into M(M) time steps {Im}

M
m=1, Im = (tm−1, tm), 1 ≤ m ≤ M , of size

km = tm − tm−1. Define the one-sided limits of u ∈ H (or V) as

u+
m := lim

s→0+
u(tm + s), 0 ≤ m ≤ M − 1,

u−
m := lim

s→0+
u(tm − s), 1 ≤ m ≤ M

(26)

and [u]m := u+
m − u−

m , 1 ≤ m ≤ M − 1.
The weak solution u ∈ L2(0, T ;V) ∩ H1(0, T ;V∗) of (5) satisfies

BDG(u, v) = (u0, v
+

0 )

for all

v ∈ Cb(M;V) := {u : (0, T ) → V : u|Im ∈ C0(I m;V), Im ∈ M}

where

BDG(u, v) :=

M∑
m=1

∫
Im

{(u′, v)V∗×V + g(u, v)}dt + (u+

0 , v
+

0 )H +

M∑
m=2

([u]m−1, v
+

m−1)H.

With time step km we associate an order rm ≥ 0, and define the semidiscrete space

SEr (M;V) = {u : (0, T ) → V : u|Im ∈ Prm (Im;V), 1 ≤ m ≤ M}

with the order vector Er := (r1, . . . , rM ). The number of unknown coefficient functions in V of u ∈ SEr (M;V) :=

SEr (M)⊗ V is

dim(SEr (M)) =

M∑
m=1

(rm + 1).

For simplicity we will consider uniform orders, i.e. rm = r for all m, and write SEr
= Sr (M;V). It is shown in [6] that

for geometric meshes M the approximation error decreases exponentially in N = dim(Sr (M)). A mesh {Im}
M
m=1 in
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(0, T ) is geometric with M time steps Im = (tm−1, tm), m = 1, . . . ,M , and grading factor η ∈ (0, 1), if

t0 = 0, tm = TηM−m, 1 ≤ m ≤ M.

3.2.1. Fully discrete problem
We now also discretize the space A = (0, 1)d with the sparse grid subspace V̂ L of V of mesh width h = 2−L ,

L > 0. The discontinuous Galerkin time stepping scheme is given by:
Find Û L

∈ Sr (M; V̂ L) such that

BDG(Û
L , Ŵ ) = (u0, Ŵ +

0 ) ∀Ŵ ∈ Sr (M; V̂ L).

In each of the M time steps amounts to the solution of a linear system of size

(r + 1)N̂L = (r + 1)O(h−1
|log h|

d−1) (27)

which depends on the time steps k and h and which we now derive.
Let Q := Pr (Im, V̂ L), equipped with the norm of L2([tm−1, tm])⊗ V . In time step m of the algorithm we have to

determine Û L
m := Û L

|Im ∈ Q which satisfies, for all W ∈ Q,∫ tm

tm−1

[((Û L
m )

′,W )+ g(Û L
m ,W )]dt + (Û L

m (tm−1),W (tm−1)) = (Û L
m−1(tm−1),W (tm−1)) (28)

where the expression Û L
0 (t0) is defined to mean the initial value ûL

0 .
Let {φ}

rm
j=0 be a basis of the polynomial space Prm (−1, 1). Then, the time shape functions on time interval Im are

given by φ j ◦ F−1
m where the mapping Fm : (−1, 1) → Im is given by

t = Fm(τ ) =
1
2
(tm−1 + tm)+

1
2

kmτ, km = tm − tm−1, τ ∈ (−1, 1).

If we write Û L
m (x, t) and Ŵ in (28) as

Û L
m (x, t) =

rm∑
j=0

Û L
m, j (x)(φ j ◦ F−1

m )(t), Ŵ (x, t) =

rm∑
j=0

Ŵ L
m, j (x)(φ j ◦ F−1

m )(t), (29)

the variational problem (28) has the following form:
Find (Û L

m, j )
r
j=0 ∈ (V̂ L)r+1 such that for every (Ŵi )

r
i=0 ∈ (V̂ L)r+1

r∑
i, j=0

(
Ci j · (Û L

m, j , Ŵi )H +
km

2
Gi j · g(Û L

m, j , Ŵi )

)
=

r∑
i=0

fm,i (Ŵi ) (30)

where

fm,i (v) := φi (−1)(Û L
m−1(tm−1), v)H

Ci j :=

∫ 1

−1
φ′

jφi dτ + φ j (−1)φi (−1), Gi j =

∫ 1

−1
φ jφi dτ. (31)

Eq. (30) is a linear system of size (r + 1)N̂L to be solved in each time step m = 1, . . . ,M . We will drop the subscript
m for the sake of readability. Denoting by M and S the mass and stiffness matrices of V̂ L with respect to (·, ·)H and
g(·, ·), respectively, (30) takes the matrix form

REu = Ef , R = C ⊗ M +
k

2
G ⊗ S (32)

where Eu denotes the coefficient vector of Û L
m ∈ Q.
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3.2.2. Derivation of a linear system
From now on we will use temporal shape functions φi (τ ) = (i + 1/2)1/2L i (τ ). The system (32) of size (r + 1)N̂L

can be reduced to solving r + 1 linear systems of size N̂L . We use the Schur decomposition C = QTQH with a
unitary matrix Q and an upper triangular matrix T which has the eigenvalues λ1, . . . , λr+1 of C on the diagonal.
Multiplying (32) by QH

⊗ I from the left gives(
T ⊗ M +

k

2
I ⊗ S

)
Ew = Eg

with

Ew := (QH
⊗ I)Ex, Eg := (QH

⊗ I) Ef .

This system is block upper triangular. With Ew = ( Ew0, . . . , Ewr ) we obtain the solution by solving(
λ j+1M +

k

2
S
)

Ew j = Es j for j = r, r − 1, . . . , 0 (33)

where

Es j := Eg j −

r∑
l= j+1

T j+1,l+1M Ewl .

For each DG time step, we have to solve the r + 1 linear systems in (33). Each of these linear systems is of the same
type as in the backward Euler method where the matrix is M + kS. Therefore, an implementation of the DG method
is very similar to an implementation of the backward Euler method.

Remark 9. We could also apply other time stepping schemes for the time discretization. But the hp-discontinuous
Galerkin scheme uses the analytic time regularity of the solution u(t) for t > 0. Especially for incompatible or non-
smooth initial data, this is an advantage since the number of time points can be reduced using geometric meshes
obtaining exponential convergence rates.

4. Numerical results

We first make a complexity comparison between the Monte Carlo method and the deterministic approach. Then, we
show the outcomes of numerical experiments from both approaches in the one-dimensional case, by considering the
first exit time of an interval for a Brownian motion with a linear drift, where analytic formulas are available. Results
for the analogue multidimensional case are also presented. All computations are performed on a Dual-Core AMD
Opteron(tm) Processor 2218 with 2.61 GHz using MATLAB 7.1.

4.1. Complexity comparison

Let τ > 0 be a given tolerance. It is known that for the Monte Carlo method the statistical error is given by

O
(

M−
1
2

)
where M is the number of simulations. Additionally, we have to discretize the SDE in time. For the Euler-

Maruyama discretization the weak error is O (k) where k is the number of time steps. To keep both errors at tolerance
τ we have

M ≥ τ−2 and k ≥ τ−1.

The corresponding work for one single point is

Wmc = O(M · k) = O(τ−3).

For the finite element method with hp-discontinuous Galerkin time stepping the H1-error is O
(
N−p−δ

)
where N is

the number of points, p the degree of the finite elements and δ =
p

(p+1)d−1 (see [6]). Therefore, we have

N ≥ τ
−

1
p+δ
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and the corresponding work for N points is

Wdet = O(N (log N )2d+6) = O

(
τ

−
1

p+δ

∣∣∣∣ 1
p + δ

log τ

∣∣∣∣2d+6
)
.

4.2. The one-dimensional case

Let −∞ < a1 < a2 < +∞ and set A = (a1, a2), b(x) = b ∈ R and σ(x) = σ > 0. Then, the density of the first
exit time of X , the (scaled) Brownian motion with a linear drift b, from A is well known to be, see e.g. [1],

d
dt

P{τA < t} = e−σ 2t/2(eb(a1−x)sst (a2 − x, a2 − a1)+ eb(a2−x)sst (x − a1, a2 − a1))

where the help function sst has the following series representation:

sst (v, y) =

∞∑
k=−∞

y − v + 2ky
√

2π t
3
2

e
−(y−v+2ky)2

2t .

We compare a Monte Carlo approach with the deterministic algorithm described above. For the simulation we
discretize the stochastic process:

X̃(t + dt) = X̃(t)+ bdt + σ
√

dt Z̃

with X̃(0) = x0 and Z̃ ∼ N (0, 1). The random numbers are generated by the MATLAB function randn. We choose
dt = 5 × 10−4, a random sample of the size 105, and count the number of sample paths which exceed A. For x0 we
choose nine points in the interval A, equally spaced, and use the same random sequences for each point.

In the deterministic approach we discretize the space with L = 6 levels. For the hp-discontinuous Galerkin time
stepping we use log(2L+1) time steps with increasing polynomial degree rm = m. Additionally, we compute the
backward Euler method with dt = 10−2.

The computed probabilities of all approaches and the corresponding absolute errors are shown in Fig. 1. We
let A = (−1, 1) and use the parameter σ = 0.5, b = 0.1 and T = 1. The elapsed time for the PDE approach
with hp-discontinuous Galerkin scheme is 0.11 s, with the backward Euler method 0.30 s, and for the Monte Carlo
approximation 162.07 s. The error of the Monte Carlo approximation is the highest. Additionally, the probability is
only computed at 9 points whereas with the deterministic approach it is computed at 129. There is also a significant
error reduction with the hp-discontinuous Galerkin method.

We can also calculate the first exit time density at x = 0, i.e. the time derivative of the computed probability
solution. Recall that for the DG time stepping procedure we have

Û L
m (x, t) =

rm∑
j=0

Û L
m, j (x)(φ j ◦ F−1

m )(t)

on the time interval Im . Therefore, the time derivative is obtained from

∂Û L
m (x, t)

∂t
=

rm∑
j=0

Û L
m, j (x)(φ

′

j ◦ F−1
m )(t)

2
km
.

For the backward Euler and the Monte Carlo method we approximate the time derivative by the standard difference
quotient. The first exit time density and the absolute error are plotted in Fig. 2. For the deterministic approach we
get a smooth solution whereas the Monte Carlo approximation oscillates. Again, the hp-discontinuous Galerkin time
stepping yields the best results.

4.3. The multidimensional case

In the n-dimensional case, with n > 1, we consider the solution to the following system of stochastic differential
equations:

dX i
t = bdt + σdW i

t , i = 1 . . . n,
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Fig. 1. Left: First exit time probability of a one-dimensional scaled Brownian motion with drift. Right: Absolute error with respect to the exact
solution.

Fig. 2. Left: First exit time density of a one-dimensional scaled Brownian motion with drift. Right: Absolute error with respect to the exact solution.

where the W i ’s are correlated Brownian motions with d〈W i ,W j
〉t = ρdt , i 6= j , with parameters σ = 0.5, ρ = 0.5

and b = 0.1. We consider the domain A = (−1, 1)n . The space is discretized with L = 6 levels. For the hp-
discontinuous Galerkin time stepping we use again log(2L+1) time steps with increasing polynomial degree rm = m.
In the Monte Carlo method we again have dt = 5 × 10−4, a random sample of the size 105 and count the number of
sample paths which exceed A. For x0 we choose nine points equally spaced on a curve where all dimensions but the
first are fixed at xi = 0. As a reference or “exact” solution we compute the probability with the deterministic approach
and L = 9 levels.

In Fig. 3 we plot the difference between the computed probability and the reference solution in three dimensions.
The PDE approach took 30 s to compute, the Monte Carlo method 360 s. Again the deterministic approach is more
accurate and faster, although the probability is computed at about 2 × 106 points.

Similar results are obtained for five dimensions as shown in Fig. 4. Here, the elapsed time for the PDE approach is
674 s and the solution is computed at about 3 × 1010 points. The Monte Carlo method needs 871 s.

5. Conclusion

First, we showed that the first exit time probability for a multidimensional diffusion from a bounded domain is
the unique weak solution of the associated backward Kolmogorov equation subject to specific initial and boundary
conditions. Then, for solving this boundary value problem we used an algorithm based on a combination of the sparse
tensor product finite element spaces and an hp-discontinuous Galerkin method. Numerical experiments confirmed the
advantages of the presented algorithm over classical simulation techniques: It is faster and more accurate. Moreover,
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Fig. 3. Absolute error with respect to the reference solution for the 3D case.

Fig. 4. Absolute error with respect to the reference solution for the 5D case.

the PDE-based approach has the additional advantage of providing the density and of computing the distribution of
the stopping times for any starting point of the diffusion in only one run.
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