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ABSTRACT 

We perform the rounding-error analysis of the conjugate-gradient algorithms for 
the solution of a large system of linear equations Ax = b where A is an hermitian and 
positive definite matrix. We propose a new class of conjugate-gradient algorithms and 
prove that in the spectral norm the relative error of the computed sequence (xk} (in 
floating-point arithmetic) depends at worst on {K~/~, where { is the relative computer 
precision and K is the condition number of A. We show that the residual vectors 
rk =Axk- b are at worst of order {K[~AII [Ixkll. We point out that with iterative 
refinement these algorithms are numerically stable. If {K~ is at most of order unity, 
then they are also well behaved. 

1. INTRODUCTION 

We study conjugate-gradient algorithms (for brevity, cg algorithms) for 
the solution of a large linear system Ax = b where A is an n X n hermitian 
and positive definite matrix. By a cg algorithm we mean an implementation 

of the cg iteration in floating-point arithmetic. We are primarily interested in 

the roundoff-error analysis of these algorithms. 
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It is well known that the cg iteration enjoys optimal complexity in a sense 
to be made precise in Sec. 2. In exact arithmetic it generates a sequence of 
orthogonal residual vectors rk = Ax, - b, and the solution I_X = A-lb is ob- 
tained after at most n steps. (See, among others, [3, 6, 21.) Many of these 
theoretical properties do not hold in the presence of rounding errors. It is no 
longer true that the computed residual vectors are orthogonal (or even nearly 
orthogonal) and that the nth computed vector x, is a reasonable approxima- 
tion to (Y. 

The aim of this paper is to understand the behavior of some cg algo- 
rithms in the presence of rounding errors. We are primarily interested in 
studying how the matrix condition number K = ]]A]] ]]A -l]], where I]A )I 
denotes the spectral norm of A, influences the relative error of the computed 
sequence { xk } . 

We know that direct algorithms of practical interest as well as many 
iterative algorithms with iterative refinement are well behaved, i.e., they 
assure the computation of an approximation y in floating point arithmetic 
(fl) such that y is the exact solution of a slightly perturbed system, i.e., 
(A+SA)y=b, where 116AJ( is of order 5 ]]A ]I and 5 is the relative computer 
precision. Equivalently, the residual vector r = Ay - b has a norm of order 
{ I] A (1 ]I y ]I. When it cannot be established that an algorithm is well behaved, 
it is sometimes possible to prove a weaker property, namely that an algo- 
rithm is numerically stable, i.e., the relative error of a computed y is of order 
SK. See [9, lo] for direct algorithms, and [4, 11, 121 for iterative algorithms. 

To help the reader get an idea of what results can be expected for cg 
algorithms we report numerical tests. We tested Concus, Golub and 
O’Leary’s [l] conjugate-gradient algorithm. We performed i( i>n) iterative 
steps finding the best possible approximation xk, k d j, among all computed 
vectors. Next we computed the relative error of xk and its residual vector. 
Define the number s such that 

0.1) 

We would like s = 1, which would imply the numerical stability of the 
algorithm. However, for most cases s was about % and the residual vector 
had a spectral norm of order 3~1111 )I (Ixk I(. Therefore, the algorithm is neither 
well behaved nor numerically stable. A natural problem is to understand 
why this is so and to seek a cg algorithm which is numerically stable and 
(perhaps) well behaved. 

To understand why s = I, recall that the cg algorithms minimize the error 
in the A-norm, ]]A’/2(~k-~)]] ( no in the spectral norm ](xk - cy]]). Therefore t 
it seems natural to measure the error by JIA’/“(x, -cu)]] instead of by 
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llxk-41. Suppose th ere exists a numerically stable cg algorithm in the 
A-norm, i.e., 

(IA”2(xk --))I = O( hIIA”%ll). (1.2) 

Note that the condition number of A in the A-norm coincides with the 
condition number of A in the spectral norm. Since ]]xk - (Y/I < 
])A-‘/2)) J]A1/2(~k-o)JJ, (1.2) yields 

This explains why s = t might be expected in (1.1). See the Appendix, where 
a detailed discussion of numerical tests is reported. 

We have not succeeded in analyzing classical cg algorithms, including 
that proposed by Concus, Golub and O’Leary [ 11. In this paper we propose a 
new class of cg algorithms and prove that for these algorithms there exists a 
computed vector xk such that 

IIA”2(Xk-Q)II ~CbIIA1’211 IIXkllr P-3) 

where C is a constant of order at most n. We shall denote this class of 
algorithms by Cp. Note that K occurs linearly in (1.3). In general, we cannot 
say that (1.3) means numerical stability of the cg algorithms in its “own” 
norm, since we have l)A”2]] ]]xk]] instead of ]]A”2xk]). However, if 
]]A’/2]] ]]xk]] is of order ]]A’&,]], then these cg algorithms are nummica~~y 
stable in the A-mm. 

For the residual vectors we are only able to prove that 

bkll GC~KIIAII IIxklla (1.4) 
We tested one algorithm ‘p from a. For most cases QI looked like a 
well-behaved algorithm, i.e., ])rk)] was of order {]]A]] ]]xk]]. However, for a 
few cases, ]]rk]] was of order [~llAl/ IIxklj. This proves that (1.4) is sharp and 
some cg algorithms from Q are not well behaved. 

Many iterative algorithms have this property, i.e., they are numerically 
stable but not well behaved. Examples include the Chebyshev, SOR, 
Richardson and Jacobi iterative algorithms (see [ll, 121). However, it was 
shown by Jankowski and Woiniakowski [4] that any algorithm (direct or 
iterative) which computes an approximation y such that ]I y - (Y I( < q ]]a] I with 
q < 1 followed by iterative refinement in single precision becomes numeri- 
cally stable, and if 5~~ is of order unity then it is also well behaved. Hence, 
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any cg algorithm from @ with iterative refinement is numerically stable in 
the spectral norm whenever 5~~” is bounded away from unity, and it is well 
behaved whenever 5~’ is of order unity. 

We summarize the contents of the paper. In Sec. 2 we briefly state the 
basic theoretical properties of the cg iteration and derive a three-term 
recurrence formula for the vectors {xk} which explains the connection 
between the cg iteration and the steepest-descent iteration. 

Section 3 deals with the rounding error analysis of a steepest-descent 
algorithm. We prove that the inequality (1.3) holds for this algorithm. 

Section 4 deals with the roundoff-error analysis of a new class of cg 
algorithms. Based on the results of Sec. 3, we prove (1.3) and (1.4), which are 
the main results of this paper. 

In the final section we pose a conjecture on the speed of convergence of 
sequences computed by cg algorithms. 

2. GRADIENT AND CONJUGATE GRADIENT ITERATIONS 

In this section we briefly derive some basic properties of the gradient and 
conjugate-gradient iterations. We consider the solution of a large linear 
system 

Ax-b, (2-l) 

where A = A* > 0 is an n X n hermitian and positive definite matrix and b is 
a n X 1 given vector. Suppose that the information about the matrix A is 
given by a procedure which computes y = Ax for a given x. For large systems 
A is usually sparse, which permits the evaluation of y in time and storage 
proportional to n. 

We solve (2.1) iteratively by constructing a sequence {xk} converging to 
the solution a = A - ‘b. Let B = B* > 0 be a matrix which commutes with A: 

BA = AB. For instance one can set B = AP for a real p. Let (1~11~ = vm 

= 1) B1/2~JJ, where JJxJJ = m is the spectral norm. 
We recall the definition of the gradient iteration which constructs the 

sequence {xk} as follows. Let xs be a given initial approximation and 

‘k+l = xk - ckrk, r,=Ax,-b, (2.2) 

where c, is chosen in such a way that the error ek + 1 = IIxk+ i - ali B is 
minimized, i.e., IIxk+ i -allB=i@ llxk-crkllBe This yields 

c 
k 

= (rkpB(Xk-a)) 

(‘k,Brk) ’ 
(2.3) 
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Note that (B(xk+i - (~),r& =O. The coefficient c, is computable only for 
certain matrices B. Suppose that B = A P, where p is an integer. Then 
c&A@ rk)/(rkrAPrk) is computable. For B= I, we cannot, in general, 
compute the numerator of (2.3), ( rk, xk - cu). However, if one considers the 
system Mx= g with a nonsingular M which is nonhermitian or nonpositive 
definite, and if one agrees to multiply this system by M*, then A = M*M, 
b = M*g and C~ = (Mx, - g, Mx, - g)/(rk, rk) is computable. 

It is well known that {xk} converges to (Y and 

+,1=&m < (s)q< (s)‘+‘q,, (2.4) 

where ek=xk-o, e,=]]e,]]s and K= l]A]] \]A-‘]] is the condition number of 
the matrix A. (Note that ]]A]]a= ]]A]] and ]]A-‘l]s= ]]A-‘]].) 

Recall that for B=A, the iteration (2.2), (2.3) is called the steepest- 
descent iteration. It has, in general, very slow convergence and therefore is 
not recommended in numerical practice. The conjugate-gradient iteration is 
much more efficient. The following derivation of the cg iteration focuses on 
its complexity optimality. 

Consider a class of iterations for which the error formula satisfies the 
relation 

x,-a= W,(A)(+,-a), P-5) 

where W, is a polynomial of degree at most k and W,(O) = 1. A natural 
complexity question is how to choose the polynomials W,. Since we want to 
minimize the computational complexity (cost), we seek W, such that the 
error e, = ]]xk -all B is minimized. This means that the polynomials W, are 
the solution of the following problem: 

P-3 

where W,(O, 1) is the class of polynomials of degree at most k normalized to 
unity at the origin. The solution of (2.6) is given by the orthogonal polyuomi- 
als defined as follows (see e.g., [S]). Let 

ql-‘y’ 2 c&p 
i=l 

(2.7) 

where 6, is an eigenvector of A associated with the eigenvalue 4: At, =,X& 
]]6,]]=1,O<X,<A,<*** <L, with m<n and c/Z0 for j=l,2 ,..., m. Note 
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that tr is also an eigenvector of B: B4i = /3&, for pi > 0, i = 1,2,. . . ,m. Define 
the inner product 

(2.8) 

where f and g are functions defined on the interval [A,,&,J. The polynomials 
W,, W,(O) = 1, which minimize (2.6) are the orthogonal polynomials with 
respect to the inner product (2.8), i.e., 

for kfi. From the orthogonality of W, it follows that they satisfy a 
three-term recurrence formula. We choose a different form of the three-term 
recurrence formula than usual in order to emphasize the connection between 
the cg iteration and the gradient one. This form is defined as follows: 

W,(A) = 1, 

W,(X) = 1- cd, (2.10) 

W,+,(A) = WV4 - CkhW,(W - Uk{ Wk-,(A) - W,(A) +ckAwc(m k>l, 

where 

(Kw,) 
ck = (XW,, w,) ’ 

(2.11) 

uo=o, 
wk-c,AW,,;(W,_,- w,)+ckwk 

u, = 

W,_,-W,+c,xW,,~(wk-,- wk)+ckwk 

, k>l. 

(2.12) 

From this we get the three-term recurrence formula for the sequence {xk}, 

Zk = Xk - Ck’k, r,=Ax,-b 
(2.13) 

Xk+l=Zk-UkYky yk=Xk-I--Zk. 
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From (2.11), (2.12) and (2.9) we get 

ck= (rkaxk-4) 
h Brk) ’ (2.14) 

u,=o, Uk= 
(YkAZk-4) , k> 1 

(YkJYk) * 

The conjugate-gradient iteration (2.13) consists of computing zk and xk+i. 
The vector zk is obtained by one step of the gradient iteration (2.2) and is the 
best approximation of (Y along the line rk. The vector, xk+ i is the best 
approximation of a along the line ykr IIxk+l-allB=infullzk-cY-uy,I(.. 

From the orthogonality of W, it follows that 

(B(~~-a),r~)=o ,for j#k, 

(B(x~-(Y),x~-zx_~)=~ for j<k. 
(2.15) 

This yields Us = ck(rk, B(x, - a))/(~~, By,), which can be computed for B = I 
whenever A = M* M. 

The conjugate-grandient method (2.13) converges in exactly m steps, i.e., 

xk=a for k>m. (2.16) 

From (2.6) one can estimate the speed of convergence for initial approxima- 
tions xk, k <m. Setting P(A) = T’,(f(h))/ Tk(f(0)) in (2.6), where Tk is the kth 
Chebyshev polynomial of degree k and f(X) = (h, + A, - 2A)/(X, -hi), we get 

Ih- 4lB ( IIWbo-4II. (2 Ik,-4le~ (2.17) 

where a=&&,. [Compare with (2.4).] For the spectral norm we have 

,Ixk-a,, G2,/E ( ~)kkail, (2.18) 

where 

(For instance, if B = A p, then &_/&, = (L/hJp < K~.) 
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It seems to us that the choice B = A P for p = 0, 1 or 2 covers all cases of 
practical interest. 

For B = A0 = Z we minimize (Ixk - (~11. To compute the coefficients c, and 
u, in (2.14) we assume in this case that A = M*M and b= M*g for a 
nonsingular M (M and g being given as data). This variant of the cg iteration 
is called the minimum-error iteration. 

For B = A’ we minimize ]]A 1/2(xk - cy)]]. This corresponds to the classical 

conjugate-gradient iteration. 

For B = A2 we minimize the residual vectors rk, since j]xk -oI]s = 
]]A(xk -_(y]] = IIrk]]. This variant is called the minimal-residual iteration. 

3. ROUNDOFF-ERROR ANALYSIS OF GRADIENT ALGORITHMS 

We shall show that the roundoff-error analysis of cg algorithms belonging 
to Cp can be primarily based on the roundoff-error analysis of the gradient 
algorithms to be studied in this section. Therefore in this section we analyze 
gradient algorithms in the presence of rounding errors. We focus our 
attention on a steepest-descent algorithm (B = A) and mention the corre- 
sponding results for the gradient algorithms with B = Z or B = A2. 

We consider a steepest descent algorithm in floating-point binary 
arithmetic (fl) with the relative computer precision 5 =2-t, where t is the 
number of mantissa bits. To simplify further estimates we shall use the 
relation = , which is defined as follows. Let f and h be two scalar functions 

defined 0: [O,{,]. By 

we mean that there exists a constant c such that f(S) = h({)[l+ e(S)], where 
[e(5)] Cc3 for 0(S<50. By 

we mean 

f(S) <h(S) or f(S) 7 h(l). 

The relation < enables us to ignore the terms of order l2 in the presence of 

the term of aider [. 
Let xk and rk denote the vectors computed in fl by an algorithm. We 

assume that 

rk=fl(Axk-b). (3.1) 
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L,et rz = Axk -b denote the exact value of the residual vector, and let 

ek = A’/‘(x~ - a), ek= iiekb (3.2) 

We analyze (3.1). Assume that the algorithm for evaluation of rk satisfies the 
relation 

r,=(z+D~)[(A+E~)x,-b]=r:+&,, (3.3) 

where I$ is a diagonal matrix such that /lD~jl <l and /lE~ll <~llAJIC, with 
the constant C1 depending only on the size of the problem: C,= C,(n). 
Hence 

6rk = E,‘X, + D/( I’: + E;Xk), 

llsrkll > ~IIAII I~xkllc~4~bi!ll* (3.4) 

To assure that rk is a reasonable approximation to rz we assume that 

I~rk~~>311All llxkllcIe Note that the opposite inequality hkll <TllAll llxkllcI 
means that xk is the exact solution of the system (A - 6A)xk = b, where 

6A = bk - ‘rk)X: 

lIxki12 

and II~AII ‘;; TII4I2C~. 

This means that the algorithm is well behaved and the iteration should be 
terminated. Therefore we shall analyze the following algorithm of the 
steepestdescent iteration. 

ALGORITHM 3.1. Let xc, be given and let k=O. 

(i) Compute rk = fl(Ax, - b). 
(ii) If llrklj <{[IAll (lxkllc, then fOITdJ’ Set x,=xk.vi >k+l. STOP. 

@) If IIrk >TllAll llxkllC, then compute 

ck ’ (3.5) 

We do not define a termination criterion for Algorithm 3.1 unless it is 
well behaved. We want to verify its numerical stability by &~llx~-all, and 

xk+ I= fl(xk - ckrk)* 

k:=k+l. GO TO (i). 

(3.6) 
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xk has to be defined for all k. Therefore we formally set xi = xk Vi > k + 1 in 
(ii). 

Recall that the computed inner product (a, b) in fl satisfies the relation 

fl((a,b))=((Z+D)a,b), (3.7) 

where D is a diagonal matrix such that )I 3 11 Q SC,. The constant C, depends 
on a particular algorithm used for the summation of n numbers. For the 
standard algorithm C, 7 n, whereas when the Moller algorithm is employed 

C, 7 3. See [9] for the first and [S] for the second result. 

We are ready to prove 

LEMMA 3.1. Suppose that l]rk]] >{]]A]] ]]xk]lC1 Vk. Then the sequence 
{xk} computed by Algorithm 3.1 satisfies the following error fbnnda: 

ek+l $ $Z- ciWfl12 + 5 llA”211 llXkll 

+ SC,*{ llA3’211 llxk~~5c1 + tIAbk(C1+2%+8)}, (3.8) 

where rl = Axk -b, cf = (r:, r:)/(rz,Art). 

proof. we adyze the computation of ok. tie to the assumption that 
j]rk]]>c]]AII ]]xkl]C1 Vk, (3.3) and (3.4) imply that r:#O and cc is well 
defined. We have 

(3.9) 

where llD~\l <SC, for i=2 and 3, IlEt <SIlAIIC,, c: is the relative error of 
division, ]ei] < 5, and 

(D&k, %) 

bk, rk) I( 

1+ ([Ek2+Dk3(A+Ek2)]rk9rk) 

h&k) 

-l(l+cl) 

k 9 

C2+l+l]All(C,+C2)(‘k”k) 
bh-) 

. (3.10) 
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From (3.3) we get 

lb4 - =ck*(l+q, 
(%.A%) 

,ct, < 2llWl + 211A”211 IIWI 
1 Ilrk*!l IlA’~2rk*Il 

(3.11) 

5 %(llAll lMlC,+ IKII) 

< 45,1A1,2,, IIAII lMlG+ Ilrk*ll 
1 I(A’/2rzII ’ 

From (3.9) and (3.11) we have 

C,+1+ck*IIAII(C~+Cz)+411A”211 IJAIl llxAlC~+ IKII 

I IIA’/2r:II * 

(3.12) 

We now analyze (3.6). We have 

x,+,=(Z+ZI,5)[xk-(Z+D~)ckrk]=xk-ck*rk*+6xk+l, 

where llZI~l[ <{ for i-4 and 5, and 

(3.13) 

k+1= - ck* Sr, - ck* 6ck rk* - D$$rk* + Dt( x, - ck*rk*) + 0( 5 “). (3.14) 

From (3.4), (3.12) and (3.14) we get 

ek+,=ek-c~A’/2r~+A1/26xk+1, 

IIA”2%+~ll > UlA”211 IMI + W[ llA3’211 lM5G (3.15) 

+ llAllek(C2+8)] +S(C~*)~II~I llA”2r:Il(G+G)a 
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cj!]JA1/2r:]) = 
(A”2rZ,ek) <e 

JJA’/2r~]J k’ 

From this and (2.4) we get (3.8), which completes the proof of Lemma 3.1. w 

Lemma 3.1 shows how the error ek+ 1 depends on the theoretical and 
rounding errors. It is interesting to notice that the bound on the rounding 
error increases with cz, whereas the bound on the theoretical error decreases 
with increasing cc. 

We want to find the limiting properties of the sequence { ek} which 
satifies (3.8). To achieve this we use the following lemma. 

LEMMA 3.2. Let 

for given nonnegative sequences { ak}, (bk} and a mn.stunt d such that 
2d]JA-‘]I <l. Then 

7 bk 

limek<h 

llp m + T ak 

12dK ’ 
(3.16) 

k -- 

IIAII 

Proof. Let z be any p@tive number. Choose kc, such that 
@k-e<c=limk a,, b,-C<b=lim,b, for Then ek+l<f(ct), where 

f(c)=j/ef--cllrlll’+ (a+e)+c(b+e)+cekd 

for cE[]]A]]-‘,]]A-‘]]]. Consider two cases. 

Case (i). Assume that Vk>k,. We 
that f decreasing for > 0. 

f’(C) 
- IG 

2&%iiiF 

+b+e+de, 

<f’(O)- -p +b+<+de,. 
k 
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Since 

< -(b+r), 

we get f’(c) < 0. Thus 

519 

Since de- < n ek, we get 

ek+l< m ek+(u+c)+ E + e,dllAll. (3.17) 

Note that { ek} is a nonincreasing sequence and 

lime,< a+~+(b++llAIl 
k 1-G -d/(lAlj ’ 

Since l- dl- K1 > 1/(2~), we finally get 

k 

(3.18) 

case (ii). Assume there exists k, such that ekl <2)jA-‘ll(b+ E)/ 
(1-2l(A-‘Ild)< &,. We prove inductively that 

ek < 1.5& k>k,. (3.19) 

This holds for k = k,. Suppose first that ek satisfies (3.19) and additionally 
ek > &. From (3.17) we get 

b+r e,d 
ek+,<VFFek+a+e+- - 

IJAIl + IlAll <ek ’ 1’5pw 
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If e, <pa, then 

=” ‘+ IlAll 
d.+0.5(1+$)] 

= 1.5& 

Hence, in all cases we proved that G,ek < 1.5& Letting e tend to zero, 
we get (3.16). This completes the proof. W 

From Lemmas 3.1 and 3.2 we immediately conclude the asymptotic 
behavior of the sequence {x”j computed by Algorithm 3.1. 

THEOREM 3.1. Zf p g 2{~(Ci + 2C,+ 8) < 1, then Algorithm 3.1 com- 
putes the sequence {xk} such that 

3(5CJ,+1) - 
lh llA1/2(~~--)ll T SK 1_p llA”211 h IIxAl~ (3.20) 

k k 

proof. Suppose first that there exists Z$ such that Ilrk,ll <{llAll IIxk,I[Cr. 
Then Algorithm 3.1 yields xi = xkO for i > 16. From (3.3) and (3.4) we get 

lim IJA’/2(~k-a)ll = IIA’/2(~ko -a)II ( IIA -1’2\i( Ibk,ll + IiSrkoli) 
k 

< {K’/~~C,IIA~/~~[ lim lIxkll, 
1 k 

which obviously proves (3.20). 
Hence we can now assume that llrkll >I IlAll llxkllC1 vk. Applying 

Lemma 3.2 ,with a,= 5 IIA’/211 IIxkll, bk = 5 llA3’211 llxkl15Ci and d= 5 IIAII(C1 
+ 2C2 + 8), we get (3.20) from Lemma 3.1. n 

Theorem 3.1 states that if k is large and llxkll= lim[Ixkll, then the 
k 

computed xk approximates (Y with the error 

(3.21) 
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where C=3(5C, + l)+ O(l). Note that (3.21) does not imply the numerical 
stability of Algorithm 3.1, since we have )]A’/2(] ]]xk]] instead of ]]A’/sxk](. 
From (3.21) we get 

(3.22) 

This means that the relative error of x, in the A-norm depends at worst on 
5~~‘~. However if IIA’/2jl IIxk(( = IJA 1/2xkl), then Algorithm 3.1 is numerically 

stable in the A-norm. 
We pass to results for the spectral norm. From (3.21) we have 

II+-4 ( lIA-“211 IIA”2h-~)II <5K3,2c 
ll%cll Ibkll (=w 

However, if 

then we get numerical stability in the spectral norm. Note that (3.24) will 
often hold. For instance, let x, --(Y= Z~_rc& where sj are the eigenvectors 
of A. Suppose that ci= c (or ci =c) for all i. Then J]A’/2(~,-~)](= 

IIA”211 I~l(~~-~(~i/hrnax)~)“~ and ]]A1/2]] ]]xk- LX]] = J(A’/2]( ]c]fi , and these 
two quantities differ at most by a factor of fi . Thus, (3.24) holds. 

For the residual vector rz = Ax, -b we get 

IIrk* <SK 
( 

IP, -WI 
llA”211 IIA1’2(~c-a)ll 

IlAll llxkilC 

G~KIIAll Ilxkllc* (3.25) 

Numerical tests confirm that the residual vectors sometimes depends on SK. 

This means that Algorithm 3.1 is not well behaved. However, if (]kuk - b]] = 
((A”2(~k-(y)l(/JIA-1’21) , then th e residual vector rz depends at worst on 
SK1’2. 

Numerical stability and/or the well-behaved property may be achieved 
by the use of iterative refinement even if the residuals are computed in 
single precision. From Theorems 3.1 and 4.3 in [4] it follows that Algorithm 
3.1 with iterative refinement in single precision is numerically stable 
whenever {K~/% < 1, and it is well behaved whenever 5~~ is at most of order 
Ullitjj. 
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We summarize the properties of Algorithm 3.1. 

COROLLARY 3.1. Algorithm 3.1 constructs an approximation xk such that 

IIA”2(x~--)ll ~SW’~211 IIxIJG 

h-all <SK 3/s IlXkllC~ 

II&c-bll <bIlAli IlxAlG 

where C=3(5C,+ 1)-t O(5). Furthermore, if IIA’/211 llxkll = IJA’/2~kll, then 
the algorithm is numerically stable in the A-rwrm, and if llA’/21111xk -all = 
JJA’/2(xk -a)ll, then the algorithm is numerically stable in the spectral norm. 

Corollary 3.1 summarizes the numerical properties of the steepest- 
descent algorithm. It shows that the algorithm may be neither well behaved 
nor numerically stable. However, the algorithm is guaranteed to compute an 
approximation with a reahive error of order at most {K~/~. If the problem is 
not too ill conditioned, this is a satisfactory result. 

We end this section by a remark concerning the gradient algorithms for 
B = Z or B = A2. They differ from Algorithm 3.1 by different computations of 
C~ in (3.5). Based on proof techniques similar to those used here, it is possible 
to show that there exists an index k such that 

II&-bll <hlIAll IMIC 

for a certain C = C(n). This shows that the best estimates are obtained in the 
“natural” norm of the algorithm (i.e., in the B-norm) and that the residual 
vectors may depend on SK for every choice of B. 

4. ROUNDOFF-ERROR ANALYSIS OF A CLASS OF CONJUGATE- 
GRADIENT ALGORITHMS 

We deal with the conjugate-gradient iteration for B = A which generates 
the sequence {x~} as follows: 

=k = xk - ck’k, r,=AX,-b, 

(4.1) 
Xk+l==k-UkYk’ yk=Xk-l-zk, 
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where 

(4.2) 

t&,=0, 
uk= (Yk*A(Zk--QL)) , k> 1 

(YkyAYk) ’ 

See (2.13) and (2.14). It was pointed out to the author by Wieladek [7] that 
(4.1) has an interesting local property. Namely, no matter how the vectors zk 
and yk are computed, the coefficient uk is chosen in such a way that the 
error ]]xk+ i - (Y]] A is minimized along the line yk. Note that the cost of one 
step of the cg iteration depends on how one computes the residual vectors 
and the coefficients ck and t+ The number of matrix-vector multiplications 
needed to perform one step may vary from one to four. 

We define a new class of cg algorithms @ by the following properties. 
We assume that any algorithm ‘p from the class Q, computes the vector zk by 
Algorithm 3.1. That is, 

rk = fl(AXk -b), 

and if bkil XIPII iIxklicl, then 

(4.3) 

(4.4 

zk = fl(xk - ckrk). (4.5) 

Thus, the computation of zk may require two matrix-vector multiplications. 
There are many different ways of computing the coefficient t+. One may 

use theoretical ortbogonality relations (2.15) as well as the direct substitu- 
tions for yk and zk from (4.1). For instance, it follows from (2.15) and (4.1) 
that in theory t+ > 0. For the sake of generality we do not specify an 
algorithm for the computation of u,. We only assume that an algorithm cp 
computes tik such that 

tik=t&(I+&), ]&( < l, (4.6) 

where u, =(Yk,A(zk--))/(yk,Ayk) for the computed VeCtOrS zk and yk= 
fl(xk__l - zk). Note that (4.6) means that & can be a very crude approxima- 
tion of uk. A particular algorithm cp for which (4.6) holds is given in Example 
4.1. Knowing izk, we finally compute 

(4.7) 
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Thus the class Q contains algorithms which differ by the computation of u,. 
We are ready to prove 

LEMMA 4.1. Let ‘p be a cg algorithm defined by (4.3) to (4.7). Then 

/Ixk+l --ll,<(1+25)llzk-(YIIA+ 
5 IIA”211 IIxk+Jl 

l-3 * (4.8) 

Proof From (4.7) we have 

where Dt and Dz are diagonal matrices and I I D,f 1) < 5 for i = 6 and 7. Thus 

Xk+l=Zk-ZZkYk+8Xk+1, 

SXk+l= -zz,Dfyk+ [ Z-(Z+D;)-l]~k+l. 
(4.9) 

From (4.6) we get 

IISXk+lllA G21tuki IIYkiillYkllA + 
5 llA”211 IIxk+lll 

l-5 

<2911zk-aIIA+ ‘“‘;y+lff . (4.10) 

Let x(c)=z,-cyk. Consider f(c)=Ilx(c)--aIlA. It is easy to verify that 

f(c) < llZk -dIA for ICI ( 2bki and sign(c) = sign(uk). Since the computed 

coefficient Zz, satisfies these conditions, (4.9) and (4.10) yield 

II%+ 1 -~/IA < (1+2~)/izk--(YI(A+ 
UIA1’211 IIxk+d 

1-s * 

This proves (4.8). n 

Lemma 4.1 expresses the error of xk+ 1 in terms of zk. Since zk is obtained 
by one step of the steepest-descent algorithm, the error I(zk -all A satisfies 
(3.8). From Lemma 3.2 we immediately get the basic result of this paper. 
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THEOREM 4.1. Let /? E~SK(C~+~C~+~)<~. Any cg algorithm ‘p from 
the cluss @ computes the sequence {xk} such that 

lim JIA"2(~k-a)l( < SK 
3(5C, +2) - 

1 
lim iIxkil- 

k 1-P k 
(4.11) 

Theorem 4.1 states the numerical properties of the cg algorithms from 
the class Cp. Since (4.11) is essentially equivalent to (3.20), the discussion of 
numerical properties of the steepest-gradient algorithm is also valid for the 
cg algorithms from a. In particular we can estimate the error xk -a and the 
residual vector r, in the spectral norm, as in (3.22) to (3.25). This is 
summarized in the following corollary. 

COROLLARY 4.1. Any cg 
approximation xk such that 

algorithm cp from the clu.ss Q computes an 

Ilxk-alI <SK 312 Ilxkllcp 

bx, -bll < bllAll IIxkll c, 

where C=3(5C,+2)+ O(l). Furtheurwre, if ((A’/2(( ((a(1 = ((A’/2a((, then the 
algorithm QI is numerically stable in the A-norm, and if IIA1’211 llxk-aIIZ 
IJA’/2(~k-a)(I, then the algorithm ‘p is stable in the spectral norm. 

Corollary 4.1 assures that the algorithm cp computes xk with the relative 
error in the spectral norm depending at worst on 5.~~‘~. The residual vector 
has the spectral norm of order at most SK. We repeat that the algorithm ‘p 
with iterative refinement in single precision is numerically stable whenever 
SKY/%‘< 1 and well behaved whenever SK’ is at most of order unity. 

We now give an example of an algorithm ‘p which satisfies (4.6). 

EXAMPLE 4. I. Let xk and xk _ 1 be the computed vectors and rk, rk _ 1 the 
corresponding residual vectors. Let vk = fl(Ar,) be the computed vector 
which is used for the computation of c,. 
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We propose the following algorithm for the computation of u,. Let 

Wl =fl((Y,A- CkVk))~ 

wz=fl((Yk~rk-,-rk+CkVk)). 

Thus the computation of w1 and w2 does not require further matrix-vector 
multiplications. Repeating a part of the analysis of Sec. 3, it is possible to 
show that 

wl= (y/v+, -a)) + 6~1, lhl <S IlAll IIYAI lhll Ca 

wz = (Y&Y,) + SW,, I%1 <SllAII IIYAI llx,cllG 

where C, 2 C, + 1 and C, E 2C, + 1. From this we get 

2 =Uk(l+$Uk), I%J : Wll IIYAI M( & + &). 

This suggests the following algorithm for the computation of lz,, 

i&= 2 if 5llAll IIYAI IMI ~1 + ~2 <1 (ICI lC41 1 
0 otherwise. 

Hence, (4.6) is satisfied. Note that 22, = 0 means that xk+ i = zk = fl(xk - ckr,) is 
obtained by one step of the steepest-descent algorithm. This can be interpre- 
ted as the initialization of the cg algorithm from the vector xk. 

It may also be observed that vectors zk and yk need not be stored. One 
step of the algorithm can be performed having five vectors xk, xk _ r, rk, rk _ 1 
and vk = Ar, in storage and using two matrix-vector multiplications. 

We have performed many numerical tests using this algorithm. In most 
cases the algorithm was well behaved in the spectral norm. However, in a 
few cases (about 5 percent) numerical tests experimentally confirmed the 
sharpness of the error bounds in Corollary 4.1. 

We end this section by a remark on the cg algorithms for Z3 = Z and 
B=A2. Based on the results of Sec. 3 and assuming that the computed 
coefficient 12, = ~~(1 + auk), where I&+[< 1 and u, = (yk, B(z, -(~))/(y~,By~) 
for the computed vectors yk and zkr it is possible to prove that there exists an 
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index k such that the computed x, satisfies 

for a certain constant C = C(n). Note that for B = Z we conclude the 
numerical stability of the minimum-error algorithm. A detailed analysis for 
the minimal-residual method, B = A2, may be found in [8]. 

5, FINAL COMMENTS 

We have shown that the relative error of the computed vector xk by a cg 
algorithm from Q! depends at worst on 5.~~‘~. Since for many praCtiCd cases 

the required accuracy is larger than SK 3/2 this is a quite satisfactory result. , 

As we mentioned before, we have not succeeded in analyzing classical cg 
algorithms. However, we believe that at least some of them have similar 
numerical properties. 

We want to pose another problem of practical interest connected with 
the numerical properties of cg algorithms. We know that in theory the 
sequence {xk} approximates the solution (Y with the best possible speed of 
convergence in the class (2.5). Is this still true in the presence of rounding 
errors? It is important to know the speed of convergence of the computed 
sequence {xk} and to see how much of the theoretical optimality continues 
to hold in fl. We observe experimentally that the computed sequence 
initially approximates (Y at least as fast as the Chebyshev iteration, i.e., 
]]~~-a]]~ <2[(fi -l)/(& +l)]kIJx,,-aIIA. Furthermore, in many cases 
the error (Jx~-(Y]]~ is significantly less than the above bound. Therefore we 
propose the following conjecture. 

CONJECTURE 5.1. There exists a cg algorithm which computes the 
sequence {xk} such that 

for all k where C= C(n). 
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Thus, (5.1) means that as long as ]]~~-a]]~ is greater than {r~]]a]]~C, we 
have at least Chebyshev speed of convergence. For large k, (5.1) means 
numerical stability in the A-norm. 

APPENDIX 

We describe numerical tests of Concus, Golub and O’Leary’s [l] con- 
jugate-gradient algorithm defined as follows: 

xa = a given approximation, 

rk=Axk-b, 

bk’ rk) 
%= m7 

(rkT rk) 1 
wk+l= 

‘- (rk__l,rk_l) c,“l, wk 

Xk+l=Xk-l+wk+l(ckrk+Xk-Xk-I)~ x-1=0, 

for k=O,l;.- 
We tested this algorithm for the matrix A = (I- 2wwr)D(Z - 2wwT), 

where w ( jlwll= 1) was a vector produced by a subroutine which generates 
random numbers and D = diag(X,, X,, . . , ,A,,) was a diagonal matrix with 
X, >O. We chose rr ~[50,200] for different distributions of Xi varying the 
condition number from 102 to I08. We defined Xi as 

(i) &= a+(l-a)(i- l)/(n- 1) for a positive small a, 
(ii) A,=q, &=a+(l-u)(i-2)/(n-2), i=2 ,..., n, where O<q<u<l, 
(iii) hi= 9”-’ for some 9 < 1. 

We computed i iterative steps until the limiting accuracy was achieved. 
For ill-conditioned problems with n =50, Z was several thousand. As we 
mentioned in the Introduction, the best possible computed approximation 
had the relative error of order 5.~~‘~ (where 5 equals lo-l4 for the CDC 3600 
computer used in the experiments) and the residual vector had norm of order 

~K]]‘x]]. 
We also tested the algorithm cp described in Example 4.1 for the above 

examples. In most cases the algorithm ‘p produced residual vectors of order 
1 ]]a](. Thus it behaved better than the Concus-Golub-O’Leary algorithm. 
For a few cases with eigenvalues distributed as in (iii) and with initial error 
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q,-cr=Z~_;,,c,[, such that IcII>>jc2/>>~~- ~1~~1, the algorithm ‘p produced 
residual vectors of order (K 1) a (1. 
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