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1. Introduction

El Karoui et al. [3] introduced the notion of reflected backward stochastic differential equa-
tions (RBSDEs in short) with one lower barrier. An adapted solution of such an equation is
forced to stay above a random barrier which is described by a continuous real-valued process.
They proved an existence and uniqueness result of the solution both by the Snell envelope the-
ory and by a penalization argument. Later, RBSDEs have been extensively studied and some
existence and uniqueness results have been established by many authors. To mention just a
few, Matoussi [17], Ma and Zhang [15], Lepeltier and Xu [13], Xu [21], and Li and Tang
[14] discussed one-dimensional RBSDEs driven by a Brownian motion; Hamadène and Ouk-
nine [6], Hamadène and Hassani [8], Essaky [4] studied one-dimensional RBSDEs with jumps,
that is, RBSDEs are driven by a Brownian motion and an independent Poisson point pro-
cess.

In [2], Cvitanić and Karatzas considered RBSDEs with two barriers and generalized the work
of [3]. The solution of such an RBSDE has to stay between two prescribed continuous processes
called lower and upper barriers. They proved the existence and uniqueness of the solution if,
on one hand, the coefficient of such an RBSDE is Lipschitz continuous and, on the other hand,
either the barriers are regular or the so-called Mokobodski condition is satisfied. The Moko-
bodski condition, roughly speaking, means that there exists a difference of two non-negative
supermartingales between the lower barrier and the upper barrier. The regularity implies that the
barriers can be uniformly approximated by Itô processes. Some of further effort to RBSDEs with
two barriers can be found in [1,5,7,8,12,20] and the references therein. In these references, either
the Mokobodski condition (or general Skorohod condition) or some restrictive regularity condi-
tions are imposed. However, it should be pointed out that neither the Mokobodski condition nor
regularity conditions can be satisfied easily in many practical situations. Hence it is an important
issue to prove the existence and uniqueness result for an RBSDE with two barriers by weakening
these conditions.

The aim of this paper is to study the solvability and applications of reflected backward stochas-
tic differential equations with two barriers, where the two barriers are modeled by stochastic
differential equations. It is found that, under this framework, the restrictive regularity conditions
in [2] can be largely weakened. In order to guarantee the existence and uniqueness of strong
solutions to the two barriers, we impose the local Lipschitz condition and the linear growth con-
dition on the coefficients of equations. Under the Lipschitz condition, we prove an existence and
uniqueness result of the adapted solution for such an RBSDE. The adopted technique is based on
the penalization scheme together with a comparison theorem on RBSDEs with either one lower
barrier or one upper barrier.

This paper is organized as follows. Section 2 contains certain notation needed in this paper and
the definition of adapted solutions for RBSDEs with two barriers. Some necessary assumptions
on the random barriers and RBSDEs are also proposed. In Section 3, four lemmas that associate
with the existence of a unique solution for RBSDEs are given. An existence and uniqueness
result derived by Hamadène and Hassani [8] for a penalized RBSDE with one upper barrier
is also given in this section. Section 4 devotes to proving the existence of a unique solution
to Eq. (2.1). We first deal with the case where the coefficient of Eq. (2.1) does not depend on
(Y,Z). Then a contraction approach is applied to prove the required result. In the last section,
we consider a Dynkin game with Knightian uncertainty. It is proved that the initial value of the
solution for an RBSDE with two barriers coincides with the value function of such a Dynkin
game.
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2. Preliminaries

Let T > 0 be a fixed constant. Throughout this paper, we assume that (Ω,F ,P) is a com-
plete probability space on which a d-dimensional Brownian motion B = (Bt )t�0 is defined. Let
F = {Ft }t�0 be the natural filtration generated by B , augmented by the P-null sets of F , hence
{Ft }0�t�T satisfies the usual conditions. We denote by P the σ -algebra of progressively mea-
surable sets on [0, T ] × Ω . The following spaces will be used in this paper.

• L2: the set of FT -measurable variables ξ : Ω → R with E|ξ |2 < ∞;
• H2

d : the set of P -measurable processes ϕ : [0, T ] × Ω → Rd with E
∫ T

0 |ϕ(t)|2 dt < ∞;
• S2: the set of P -measurable processes ψ : [0, T ]×Ω → R with E(sup0�t�T |ψ(t)|2) < ∞;
• A2: the set of P -measurable increasing processes K : [0, T ] × Ω → R+ := [0,∞) with

K0 = 0, E|KT |2 < ∞.

We will discuss a backward stochastic differential equation with two barriers as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yt = ξ +
T∫

t

f (s, Ys,Zs,ω)ds −
T∫

t

Zs dBs + K+
T − K+

t − (
K−

T − K−
t

)
,

Lt � Yt � Ut,

T∫
0

(Yt − Lt) dK+
t =

T∫
0

(Ut − Yt ) dK−
t = 0, 0 � t � T ,

(2.1)

where f : [0, T ] × R × Rd × Ω → R, generally called the coefficient, is P × B(R1+d)-
measurable. K+· and K−· are integrable increasing processes. The state process Y· is forced to
stay within the region decided by lower and upper barriers L· and U· with a minimal way in the
sense of

∫ T

0 (Yt − Lt) dK+
t = ∫ T

0 (Ut − Yt ) dK−
t = 0. In order to weaken the restrictive regular-

ity condition in [2], we assume that the barriers are described by the solutions of the following
stochastic differential equations:

Lt = L0 +
t∫

0

b1(s,Ls) ds +
t∫

0

σ1(s,Ls) dBs, L0 ∈ R, 0 � t � T , (2.2)

Ut = U0 +
t∫

0

b2(s,Us) ds +
t∫

0

σ2(s,Us) dBs, U0 ∈ R, 0 � t � T . (2.3)

For (2.2) and (2.3), we assume that

(H0) both bi and σi , i = 1,2, satisfy the following conditions:

The local Lipschitz condition. For each k = 1,2, . . . , there is ck > 0 such that∣∣bi(t, x) − bi(t, y)
∣∣ ∨ ∣∣σi(t, x) − σi(t, y)

∣∣ � ck|x − y|
for all t � 0 and those x, y ∈ R with |x| ∨ |y| � k, where x ∨ y = max(x, y).

The linear growth condition. For all t � 0 and x ∈ R, there is c > 0 such that∣∣bi(t, x)
∣∣ ∨ ∣∣σi(t, x)

∣∣ � c
(
1 + |x|).
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It is well known (see Mao [16]) that under above hypotheses, Eq. (2.2) (resp. Eq. (2.3)) has a
unique strong solution. Moreover, for every p > 0,

E

[
sup

0�t�T

|Lt |p
]

< ∞, E

[
sup

0�t�T

|Ut |p
]

< ∞. (2.4)

The following assumption is also necessary throughout this paper, namely

Lt � Ut , ∀t ∈ [0, T ], a.s. (2.5)

Remark 2.1. A sufficient condition on (2.5) (see Ikeda and Watanabe [10]) is

L0 � U0, b1(t, x) � b2(t, x), σ1(t, x) = σ2(t, x), ∀x ∈ R. (2.6)

Remark 2.2. As pointed out in [2], if Lt < Ut , 0 � t � T holds almost surely, then the Mokobod-
ski condition holds. In our framework, the condition that Lt � Ut holds almost surely is weaker
than theirs. On the other hand, since bi and σi are local Lipschitz continuous, our conditions
are different from those regularity conditions on the boundary processes in [2], furthermore, it is
seen that the regularity conditions in [2] will be weakened.

Definition 2.1. A quadruple (Y,Z,K+,K−) = (Yt ,Zt ,K
+
t ,K−

t )0�t�T of processes with values
in R × Rd × R+ × R+ is called a solution of Eq. (2.1), if and only if (Y,Z,K+,K−) belongs to
S2 × H2

d × A2 × A2 and satisfies (2.1).

We need the following assumptions:

(H1) The coefficient f satisfies the Lipschitz condition, that is, for any t � 0, Y1, Y2 ∈ R,
Z1,Z2 ∈ Rd , there is a C > 0 such that∣∣f (t, Y1,Z1,ω) − f (t, Y2,Z2,ω)

∣∣� C
[|Y1 − Y2| + |Z1 − Z2|

]
, P-a.s.

(H2) The terminal value ξ belongs to L2, and f (t,0,0,ω) is P -measurable and satisfies
E

∫ T

0 |f (t,0,0,ω)|2 dt < ∞. For simplicity, L2(0, T ) denotes the set of all P -measurable

processes φ(t,ω) : [0, T ] → R with E
∫ T

0 |φ(t,ω)|2 dt < ∞.

3. Some technical results

In this section, we will consider a sequence of penalized equations for Eq. (2.1) with a special
coefficient, and derive some estimates and representations of the solutions. Let us introduce the
following BSDEs without reflections:

Y
n,k
t = ξ +

T∫
t

g(s,ω)ds −
T∫

t

Zn,k
s dBs + K

n,k,+
T − K

n,k,+
t − (

K
n,k,−
T − K

n,k,−
t

)
, (3.1)

where K
n,k,+
t = ∫ t

0 n(Y
n,k
s − Ls)

− ds and K
n,k,−
t = ∫ t

0 k(Us − Y
n,k
s )− ds, n, k ∈ N; g : [0, T ] ×

Ω → R is P -measurable and belongs to L2(0, T ).
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Lemma 3.1. Assume that bi , σi , i = 1,2, satisfy (H0). If g(·,·) belongs to L2(0, T ) and ξ sat-
isfies (H2), then Eq. (3.1) has a unique solution (Y n,k,Zn,k) ∈ S2 × H2

d for arbitrary n, k ∈ N,
moreover,

E
∣∣Kn,k,+

T

∣∣2 � C0, (3.2)

where C0 is a positive constant which only depends on T , E|ξ |2, E
∫ T

0 |g(t,ω)|2 dt and
E(sup0�t�T |Lt |2 + sup0�t�T |Ut |2).

Proof. The first result directly follows from the standard theory of BSDEs (see Pardoux and
Peng [18] or Yin and Mao [22]). It is only noted that g(t,ω) + n(Lt )

+ − k(Ut )
− belongs to

L2(0, T ) according to (2.4) and the assumption on g. It remains to prove the inequality (3.2).
Obviously,

Lt = LT −
T∫

t

b1(s,Ls) ds −
T∫

t

σ1(s,Ls) dBs

= LT +
T∫

t

g(s,ω)ds −
T∫

t

g(s,ω)ds −
T∫

t

b1(s,Ls) ds −
T∫

t

σ1(s,Ls) dBs

:= LT +
T∫

t

g(s,ω)ds −
T∫

t

Z∗
s dBs + (

K+
T

)∗ − (
K+

t

)∗ − [(
K−

T

)∗ − (
K−

t

)∗]
, (3.3)

where Z∗
t = σ1(t,Lt ) and (K±

t )∗ = ∫ t

0 g∓(s,ω)ds + ∫ t

0 b∓
1 (s,Ls) ds. Here g+ denotes the pos-

itive part of g, while g− denotes the negative part. It is clear that (K+
t )∗ (resp. (K−

t )∗) is a
continuous increasing process. Consider the following BSDEs:

Ỹ n
t = LT +

T∫
t

g(s,ω)ds −
T∫

t

Z̃n
s dBs − [(

K−
T

)∗ − (
K−

t

)∗] +
T∫

t

n
(
Ỹ n

s − Ls

)−
ds. (3.4)

Note that we can add the zero term
∫ T

t
n(Ls − Ls)

− ds to the right side of (3.3). Since
d(K+

t )∗ � 0, it then follows from the comparison theorem of BSDEs (see Peng [19]) that
Lt � Ỹ n

t a.s. and thus Ut � Ỹ n
t a.s. By this, we can add the zero term −k

∫ T

t
(Us − Ỹ n

s )− ds to the

right side of (3.4), and apply the comparison theorem again to get Ỹ n
t � Y

n,k
t since d(K−

t )∗ � 0

and LT � ξ , which implies that K
n,k,+
T � K̃

n,+
T := ∫ T

0 n(Ỹ n
t − Lt)

− dt , thus E(K
n,k,+
T )2 �

E(K̃
n,+
T )2. We will show that E(K̃

n,+
T )2 has an upper bound. If we set Ŷ n

t = Ỹ n
t − (K−

t )∗,
then (3.4) can be rewritten as

Ŷ n
t = LT − (

K−
T

)∗ +
T∫

t

g(s,ω)ds −
T∫

t

Z̃n
s dBs +

T∫
t

n
(
Ŷ n

s + (
K−

s

)∗ − Ls

)−
ds, (3.5)

which is just the sequence of penalized BSDEs for an RBSDE with the terminal value LT −
(K−

T )∗, the coefficient g and the lower barrier L − (K−)∗. So by the standard method (see El
Karoui [3]), we have E(K̃

n,+
)2 � C0. This completes the proof. �
T
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The above proof relies on the representation of stochastic differential equation for the lower
process Lt . If (2.2) does not hold, Lemma 3.1 can also be derived under conditions of (2.3) and
E sup0�t�T |Lt |2 < ∞. Indeed, corresponding BSDEs similar to (3.3)–(3.5) can be constructed
thanks to (2.3), and the required result follows from a similar argument and the fact of Lt � Ut

a.s.

Lemma 3.2. Under the same assumptions of Lemma 3.1, the unique solution (Y n,k,Zn,k) of
Eq. (3.1) has the property of

E

[
sup

t∈[0,T ]
∣∣Yn,k

t

∣∣2 +
T∫

0

∣∣Zn,k
t

∣∣2
dt + (

K
n,k+
T

)2 + (
K

n,k,−
T

)2

]
� C1, (3.6)

where C1 is a positive constant which only depends on T , E|ξ |2, E
∫ T

0 |g(t,ω)|2 dt and
E(sup0�t�T |Lt |2 + sup0�t�T |Ut |2).
Proof. First, we will prove that

sup
t∈[0,T ]

E
∣∣Yn,k

t

∣∣2 +E

[ T∫
0

∣∣Zn,k
t

∣∣2
dt + (

K
n,k,+
T

)2 + (
K

n,k−
T

)2

]
< ∞. (3.7)

For this, we introduce a sequence of BSDEs for arbitrary n, k ∈ N in the form of

y(n,k)
m (t) = ξ +

T∫
t

g(s,ω)ds −
T∫

t

z(n,k)
m (s) dBs +

T∫
t

n
(
y

(n,k)
m−1 (s) − Ls

)−
ds

−
T∫

t

k
(
Us − y

(n,k)
m−1 (s)

)−
ds,

(
y

(n,k)
0 (t), z

(n,k)
0 (t)

) = (0,0), m ∈N. (3.8)

For the case of m = 1, it is easy to derive that

∣∣y(n,k)
1 (t)

∣∣2 � K0(k, n,T )E

([
|ξ |2 +

T∫
0

∣∣g(t,ω)
∣∣2

dt + sup
0�t�T

|Lt |2 + sup
0�t�T

|Ut |2
] ∣∣∣ Ft

)

from the Cr -inequality and Jensen’s inequality. Here and below, we use Ki(k,n,T ), i = 0,1, . . . ,

to denote some positive constants only depending on k, n and T . By Doob’s martingale inequal-
ity, we have

E

[
sup

0�t�T

∣∣y(n,k)
1 (t)

∣∣2
]
� C0(k, n,T ), (3.9)

where Ci(k,n,T ) > 0, i = 0,1, . . . , denote some constants only depending on k, n, T , E|ξ |2,
E

∫ T

0 |g(t,ω)|dt and E(sup0�t�T |Lt |2 + sup0�t�T |Ut |2). Furthermore, by utilizing Jensen’s
inequality again, we can iteratively get

E
∣∣y(n,k)

m (t)
∣∣2 � K1(k, n,T )E

[
|ξ |2 +

T∫
0

(∣∣g(t,ω)
∣∣2 + ∣∣y(n,k)

m−1 (t)
∣∣2)

dt

+ sup
0�t�T

(|Lt |2 + |Ut |2
)]
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� C1(k, n,T )

[
1 +E

T∫
t

∣∣y(n,k)
m−1 (s)

∣∣2
ds

]

�
(
C0(k, n,T ) ∨ C1(k, n,T )

)
e[C0(k,n,T )∨C1(k,n,T )]T := C2(k, n,T ). (3.10)

Note that limm→∞ E sup0�t�T |y(n,k)
m (t) − Y

n,k
t |2 = 0 since {Yn,k

t } is the limit of {y(n,k)
m (t)},

m = 1,2, . . . in S2. So we can take a subsequence of {y(n,k)
m (t)} denoted by {y(n,k)

mj
(t)}, and apply

Fatou’s lemma and (3.10) to obtain

sup
0�t�T

E
∣∣Yn,k

t

∣∣2 � sup
0�t�T

lim
j→∞

E
∣∣y(n,k)

mj
(t)

∣∣2 � C2(k, n,T ), (3.11)

which, together with Hölder’s inequality and the Cr -inequality, yields that

E
[(

K
n,k,+
T

)2 + (
K

n,k,−
T

)2] � C3(k, n,T ). (3.12)

Applying Itô’s formula to |Yn,k
t |2 and using (3.11) and (2.4), it is not hard to get

E

T∫
0

∣∣Zn,k
t

∣∣2
dt � C4(k, n,T ). (3.13)

Note that

Y
n,k
t = E

[
ξ +

T∫
t

g(s,ω)ds + K
n,k,+
T − K

n,k,+
t − (

K
n,k,−
T − K

n,k,−
t

)∣∣∣Ft

]
,

then by Jensen’s inequality, Doob’s inequality and (3.12), it is easy to get

E sup
0�t�T

∣∣Yn,k
t

∣∣2 � C5(k, n,T ). (3.14)

By applying Itô’s formula to |Yn,k
t |2, we have

∣∣Yn,k
t

∣∣2 = |ξ |2 +
T∫

t

2Yn,k
s g(s,ω)ds −

T∫
t

2Yn,k
s Zn,k

s dBs

+
T∫

t

2Yn,k
s

(
dKn,k,+

s − dKn,k,−
s

) −
T∫

t

∣∣Zn,k
s

∣∣2
ds. (3.15)

Note that
∫ t

0 Y
n,k
s Z

n,k
s dBs is a uniformly integrable martingale by the Burkholder–Davis–Gundy

inequality, (3.13) and (3.14), which is based on the fact of

E

( T∫
0

∣∣Yn,k
t

∣∣2∣∣Zn,k
t

∣∣2
dt

) 1
2

� E

(
sup

0�t�T

∣∣Yn,k
t

∣∣( T∫
0

∣∣Zn,k
t

∣∣2
dt

) 1
2
)

� 1

2
E sup

0�t�T

∣∣Yn,k
t

∣∣2 + 1

2
E

T∫ ∣∣Zn,k
t

∣∣2
dt < ∞.
0
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By the definitions of K
n,k,+
t and K

n,k,−
t , it is easy to know that

T∫
t

2Yn,k
s

(
dKn,k,+

s − dKn,k,−
s

)
�

T∫
t

2Ls dKn,k,+
s −

T∫
t

2Us dKn,k,−
s .

Therefore, applying Young’s inequality yields that

E
∣∣Yn,k

t

∣∣2 +E

T∫
t

∣∣Zn,k
s

∣∣2
ds

� E

[
|ξ |2 + 2

T∫
0

∣∣g(s,ω)
∣∣2

ds +
T∫

t

∣∣Yn,k
s

∣∣2
ds

+ ε−1
(

sup
0�t�T

|Lt |2 + sup
0�t�T

|Ut |2
)

+ ε
(∣∣Kn,k,+

T

∣∣2 + ∣∣Kn,k,−
T

∣∣2)]
, (3.16)

where ε is a sufficiently small positive constant determined later and may vary from line to line
for conciseness. By the Gronwall lemma, we have

sup
0�t�T

E
∣∣Yn,k

t

∣∣2 � C0(ε, T ) + ε
(
E

∣∣Kn,k,+
T

∣∣2 +E
∣∣Kn,k,−

T

∣∣2)
, (3.17)

which, together with (3.16), implies that

E

T∫
0

∣∣Zn,k
t

∣∣2
dt � C1(ε, T ) + ε

(
E

∣∣Kn,k,+
T

∣∣2 +E
∣∣Kn,k,−

T

∣∣2)
, (3.18)

where Ci(ε, T ) > 0, i = 0,1, . . . are similar to Ci(k,n,T ) except independence on n and k. We
now use the Burkholder–Davis–Gundy inequality to get

E sup
0�t�T

∣∣∣∣∣
T∫

t

2Yn,k
s Zn,k

s dBs

∣∣∣∣∣� 8E

( T∫
0

∣∣Yn,k
t

∣∣∣∣Zn,k
t

∣∣2
dt

) 1
2

� 1

2
E sup

0�t�T

∣∣Yn,k
t

∣∣2 + 128E

T∫
0

∣∣Zn,k
t

∣∣2
dt. (3.19)

This, together with (3.17) and (3.18) for Eq. (3.15), gives

E sup
0�t�T

∣∣Yn,k
t

∣∣2 � C2(ε, T ) + ε
(
E

∣∣Kn,k,+
T

∣∣2 +E
∣∣Kn,k,−

T

∣∣2)
. (3.20)

On the other hand, by the chain rule, we have

E
(
K

n,k,−
T

)2 = 2E

T∫
Kn,k,−

s

[
dYn,k

s + g(s,ω)ds + dKn,k,+
s

]

0
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� 2E
[
K

n,k,−
T

∣∣Yn,k
T

∣∣] − 2E

T∫
0

Yn,k
s dKn,k,−

s

+ 2E

T∫
0

Kn,k,−
s

∣∣g(s,ω)
∣∣ds + 2E

T∫
0

Kn,k,−
s dKn,k,+

s

� 2E
[
K

n,k,−
T

∣∣Yn,k
T

∣∣] + 2E
[

sup
0�t�T

∣∣Yn,k
t

∣∣Kn,k,−
T

]

+ 2E

[
K

n,k,−
T

T∫
0

∣∣g(s,ω)
∣∣ds

]
+ 2E

[
K

n,k,−
T K

n,k,+
T

]

� 1

2
E

(
K

n,k,−
T

)2 + C1(T )
(

1 +E sup
0�t�T

∣∣Yn,k
t

∣∣2 +E
(
K

n,k,+
T

)2
)
,

which, together with (3.2), gives that

E
(
K

n,k,−
T

)2 � C2(T )
(

1 +E sup
0�t�T

∣∣Yn,k
t

∣∣2
)
. (3.21)

Thus the required conclusion follows from (3.20), (3.21) and (3.2) by taking a sufficiently
small ε. �

Let us point out, for each fixed n ∈ N, that (3.1) is the sequence of penalized BSDEs related
to a reflected BSDE with one upper barrier U , a coefficient g(·,ω) + n(y − L)− and a terminal
value ξ . Note that a triple (Y,Z,K) of processes is a solution to a reflected BSDE with one
upper barrier U , a coefficient f and a terminal value ξ if and only if (−Y,−Z,K) is a solution
for the reflected BSDE with one lower barrier associated with (−f (t, Y,Z,ω),−ξ,−U). Using
this idea, Hamadène and Hassani [8] have established the following theorem in the same way as
El Karoui [3].

Lemma 3.3. (See [3].) Under the assumptions of Lemma 3.1, there exists a unique triple
(Y n,Zn,Kn,−) of processes with values in R × Rd × R+, which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yn ∈ S2, Zn ∈ H2
d , Kn,− ∈ A2,

Y n
t = ξ +

T∫
t

g(s,ω)ds +
T∫

t

n
(
Yn

s − Ls

)−
ds −

T∫
t

Zn
s dBs − (

K
n,−
T − K

n,−
t

)
,

Y n
t � Ut, ∀t ∈ [0, T ], and

T∫
0

(
Ut − Yn

t

)
dK

n,−
t = 0.

(3.22)

Remark 3.1. Actually, the solution (Y n,Zn,Kn,−) in Lemma 3.3 is the limit of (Y n,k,Zn,k,

Kn,k,−) of (3.1) in S2 × H2
d × A2 as k → ∞ for any fixed n ∈ N, which can be proved by means

of discussing a reflected BSDE with one upper barrier. Hence by Lemma 3.2, it is obvious that
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sup
n

[
E sup

0�t�T

∣∣Yn
t

∣∣2 +E

T∫
0

∣∣Zn
t

∣∣2
dt +E

[(
K

n,+
T

)2 + (
K

n,−
T

)2]] � C1, (3.23)

where K
n,+
t := ∫ t

0 n(Y n
s − Ls)

− ds.

The following comparison theorem plays an important role in later analysis.

Lemma 3.4. Assume that (Y n,Zn,Kn,−) is the unique solution of (3.22) for each n ∈ N, then
we have, P-a.s., that

(i) Yn
t � Yn+1

t , ∀t ∈ [0, T ],
(ii) K

n,−
t − K

n,−
s � K

n+1,−
t − K

n+1,−
s , ∀0 � s � t � T .

Proof. By Meyer–Itô’s formula to [(Y n − Yn+1)+]2, we have

E
(
Yn

t − Yn+1
t

)+2 +E

T∫
t

1{Yn
s >Yn+1

s }
∣∣Zn

s − Zn+1
s

∣∣2
ds

= 2E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn

s − Yn+1
s

)+[
n
(
Yn

s − Ls

)− − (n + 1)
(
Yn+1

s − Ls

)−]
ds

− 2E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn

s − Yn+1
s

)+(
dKn,−

s − dKn+1,−
s

)

� 2E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn

s − Yn+1
s

)+[
n
(
Yn

s − Ls

)− − (n + 1)
(
Yn+1

s − Ls

)−]
ds

� 2E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn

s − Yn+1
s

)+[
n
(
Yn

s − Ls

)− − n
(
Yn+1

s − Ls

)−]
ds � 0,

where we have used the fact of E
∫ T

t
1{Yn

s >Yn+1
s }(Y

n
s − Yn+1

s )+(dK
n,−
s − dK

n+1,−
s ) � 0. In fact,

we can compute

E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn

s − Yn+1
s

)+(
dKn,−

s − dKn+1,−
s

)

= E

T∫
t

(
Yn

s − Yn+1
s

)(
dKn,−

s − dKn+1,−
s

)

= E

T∫ (
Yn

s − Us + Us − Yn+1
s

)(
dKn,−

s − dKn+1,−
s

)

t
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= E

T∫
t

(
Us − Yn

s

)
dKn+1,−

s +E

T∫
t

(
Us − Yn+1

s

)
dKn,−

s � 0.

Therefore we immediately deduce that Yn
t � Yn+1

t a.s. for any t ∈ [0, T ].
Let us prove the second inequality. As mentioned in Remark 3.1, (Y n,Zn,Kn,−) is the limit

of (Y n,k,Zn,k,Kn,k,−) in S2 × H2
d × A2 for any fixed n ∈N. Similarly, by Meyer–Itô’s formula,

it is not difficult to deduce that

E
(
Y

n,k
t − Y

n+1,k
t

)+2 +E

T∫
t

1{Yn
s >Yn+1

s }
∣∣Zn,k

s − Zn+1,k
s

∣∣2
ds

� −2E

T∫
t

1{Yn
s >Yn+1

s }
(
Yn,k

s − Yn+1,k
s

)+(
dKn,k,−

s − dKn+1,k,−
s

)
� 0,

which implies that Y
n,k
t � Y

n+1,k,−
t a.s. for any t ∈ [0, T ] and n, k ∈N. Therefore,

K
n,−
t − Kn,−

s = lim
k→∞

t∫
s

k
(
Ur − Yn,k

r

)−
dr � lim

k→∞

t∫
s

k
(
Ur − Yn+1,k

r

)−
dr

= K
n+1,−
t − Kn+1,−

s ,

since K
n,k,−
t converges to K

n,−
t in A2 and we can take a subsequence of K

n,k,−
t if necessary.

The proof is complete. �
Remark 3.2. Lemma 3.4 implies that for any n ∈ N, Yn � Yn+1 � U a.s., since Yn and U are
all continuous, then by the monotone convergence theorem, there exists a P -measurable process
Y = (Yt )0�t�T such that P-a.s., for any t ∈ [0, T ], Yn

t ↗ Yt and Yt � Ut a.s. Obviously, the
sequence (Y n)n∈N converges in H2

1 to Y by the Lebesgue dominated convergence theorem and
Remark 3.1. Y also satisfies

E sup
0�t�T

|Yt |2 � 2E sup
0�t�T

∣∣Y 1
t

∣∣2 + 2E sup
0�t�T

|Ut |2 < ∞.

Furthermore, we have the following result.

Lemma 3.5. E sup0�t�T |Yn
t − Yt |2 → 0 as n → ∞, namely Y is the limit of Yn in S2.

Proof. First we will prove that Y is a left continuous process, which can be proved by adopting
some ideas in Hamadène and Hassani [8]. But we needn’t consider the so-called local solution
to a reflected BSDE with two barriers. Let Ŷ n,k = −Yn,k , Ẑn,k = Zn,k , then BSDE (3.1) can be
rewritten as

Ŷ
n,k
t = −ξ −

T∫
t

g(s,ω)ds −
T∫

t

Ẑn,k
s dBs

+
T∫

k
(
Us + Ŷ n,k

s

)−
ds −

T∫
n
(
Ŷ n,k

s + Ls

)+
ds. (3.24)
t t
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Hence by Lemma 3.3, there exists a unique triple (Ŷ k, Ẑk, K̂k,−) ∈ S2 ×H2
d ×A2, which satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ŷ k
t = −ξ −

T∫
t

g(s,ω)ds +
T∫

t

k
(
Us + Ŷ k

s

)−
ds −

T∫
t

Ẑk
s dBs + K̂

k,−
T − K̂

k,−
t ,

Ŷ k
t � −Lt , ∀t ∈ [0, T ],

T∫
t

(
Ls + Ŷ k

s

)+
dK̂k,−

s = 0.

(3.25)

Furthermore, it follows that Ŷ
n,k
t ↘ Ŷ k

t for any t ∈ [0, T ] as n → ∞ by applying comparison
theorem to (3.24) with fixed k ∈ N. By Lemma 3.4 and the monotone convergence theorem,
there exists a P -measurable process Ŷ such that Ŷt � −Lt and Ŷ k

t ↗ Ŷt for any t ∈ [0, T ],
P-a.s. So we have limk→∞ limn→∞ Ŷ

n,k
t = Ŷt . On the other hand, since we have proved that

limn→∞ limk→∞ Y
n,k
t = Yt , we can take a subsequence Y

n,n
t (resp. Ŷ n,n

t ) of Y
n,k
t (resp. Ŷ n,k

t ) and
note that Y

n,n
t = −Ŷ

n,n
t , thus Yt = −Ŷt a.s. This implies that Y is also the limit of a decreasing

continuous sequence of processes (−Ŷ k
t )k∈N. Since Yn

t = Yn
t− = lim infs↗t Y

n
s � lim infs↗t Ys , it

follows from Remark 3.2 that Yt � lim infs↗t Ys a.s. On the contrary, note that −Ŷ n
t = −Ŷ n

t− =
lim sups↗t (−Ŷ n

s ) � lim sups↗t Ys , then we obtain Yt � lim sups↗t Ys a.s. Therefore Y is left
continuous and sup0�t�T (Y n

t − Yt )
2 ↘ 0 as n → ∞ from the weak version of Dini’s theorem.

Then the required result follows directly from the dominated convergence theorem. �
4. Existence of a solution

This section is devoted to proving the existence of a unique solution to RBSDE (2.1). As a
preparation, we first turn our attention to dealing with Eq. (2.1) with a special coefficient g(t,ω)

which belongs to L2(0, T ). We will show that such a reflected BSDE admits a unique solution.

Theorem 4.1. Assume that bi , σi , i = 1,2, satisfy (H0). If g(·,ω) belongs to L2(0, T ) and (2.5)
holds, then there exists a quadruple of processes (Y,Z,K+,K−) ∈ S2 × H2

d × A2 × A2, where
Y is given in Lemma 3.5, to solve the following reflected BSDE with two barriers L and U :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yt = ξ +
T∫

t

g(s,ω)ds −
T∫

t

Zs dBs + K+
T − K+

t − (
K−

T − K−
t

)
,

Lt � Yt � Ut , ∀t ∈ [0, T ], and

T∫
0

(Yt − Lt) dK+
t =

T∫
0

(Ut − Yt ) dK−
t = 0.

Proof. The proof will be divided into five steps.

Step 1. We will prove that Lt � Yt �Ut , ∀t ∈ [0, T ], a.s.
Indeed, we have proved that Yt � Ut , ∀t ∈ [0, T ], a.s. in Lemma 3.4. It remains to show

that Yt � Lt , ∀t ∈ [0, T ], a.s. Note that Yn � Yn+1 � Y and E[∫ T

0 n(Y n
t − Lt)

− dt]2 � C1 from
Remark 3.1, then for any 0 � t � t + 
t � T , we have
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0 �
t+
t∫
t

E(Ys − Ls)
− ds � E

T∫
0

(Yt − Lt)
− dt � E

T∫
0

(
Yn

t − Lt

)−
dt �

√
C1

n
→ 0,

as n → ∞, which implies that Yt � Lt , ∀t ∈ [0, T ] almost surely since E(Yt − Lt)
− = 0,0 �

t < T and Yt and Lt are continuous.

Step 2. (Zn)n∈N of (3.22) is a Cauchy sequence in H2
d .

By Itô’s formula to (Y n
t − Ym

t )2, we have

E

[(
Yn

t − Ym
t

)2 +
T∫

t

(
Zn

s − Zm
s

)2
ds

]

= E

[
2

T∫
t

(
Yn

s − Ym
s

)(
n
(
Yn

s − Ls

)− − m
(
Ym

s − Ls

)−)
ds

−2

T∫
t

(
Yn

s − Ym
s

)(
dKn,−

s − dKm,−
s

)]

� E

[
2

T∫
t

(
Yn

s − Ls

)−
m

(
Ym

s − Ls

)−
ds + 2

T∫
t

(
Ym

s − Ls

)−
n
(
Yn

s − Ls

)−
ds

]

� 2
(
E sup

0�t�T

[(
Yn

t − Lt

)−]2
) 1

2 (
E

[
K

m,+
T

]2) 1
2

+ 2
(
E sup

0�t�T

[(
Ym

t − Lt

)−]2
) 1

2 (
E

[
K

n,+
T

]2) 1
2 ,

since
∫ T

t
(Y n

s − Ym
s )(dKn

s − dKm
s ) � 0, ∀t ∈ [0, T ] and n,m ∈N a.s. By Step 1 and Dini’s theo-

rem, we have sup0�t�T [(Y n
t − Lt)

−]2 ↘ 0, which implies that E sup0�t�T [(Y n
t − Lt)

−]2 → 0
as n → ∞ by the monotone convergence theorem. Hence we have

E

T∫
0

∣∣Zn
t − Zm

t

∣∣2
dt → 0, as n,m → ∞. (4.1)

This means that (Zn)n∈N converges to a P -measurable process Z in H2
d .

Step 3. limn→∞ K
n,+
t = K+

t and limn→∞ Y
n,−
t = K−

t for any t ∈ [0, T ] a.s., where K+
t and

K−
t are integrable increasing processes.
By Lemma 3.4, we know that K

n,−
t � K

n+1,−
t , ∀t ∈ [0, T ] a.s. Let K−

t = lim infn→∞ K
n,−
t ,

∀t ∈ [0, T ]. It is obvious that K− is an increasing process. Using Fatou’s lemma and Remark 3.1,
we have E(K−

t )2 � lim infn→∞ E(K
n,−
t )2 � supnE(K

n,−
T )2 � C1, which gives that K−

t < ∞
a.s. for any t ∈ [0, T ] and K

n,−
t ↗ K−

t as n → ∞ a.s. We also have E(K
n,−
t − K−

t )2 → 0 as
n → ∞ by applying the dominated convergence theorem. On the other hand, if we set
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K+
t = −Yt + Y0 −

t∫
0

g(s,ω)ds +
t∫

0

Zs dBs + K−
t ,

then it is easy to get that E(K
n,+
t − K+

t )2 → 0 for any t ∈ [0, T ] as n → ∞ from Lemma 3.5,
Step 1 and the fact of E(K

n,−
t − K−

t )2 → 0. So we can take a subsequence of (Kn,+)n∈N still
denoted by (Kn,+)n∈N and have limn→∞ K

n,+
t = K+

t for any t ∈ [0, T ] a.s. Similarly, K+ is an
integrable increasing process. It is easily seen that

Yt = ξ +
T∫

t

g(s,ω)ds −
T∫

t

Zs dBs + K+
T − K+

t − (
K−

T − K−
t

)
. (4.2)

Step 4.
∫ T

t
(Yt − Lt) dK+

t = 0 and
∫ T

0 (Ut − Yt ) dK−
t = 0.

Since K
n,−
t ↗ K−

t and Yn
t ↗ Yt , then 0 �

∫ T

0 (Ut − Yt ) dK
n,−
t �

∫ T

0 (Ut − Yn
t ) dK

n,−
t = 0.

By this, we have

0 �
T∫

0

(Ut − Yt ) dK−
t =

T∫
0

(Ut − Yt )
(
dK−

t − dK
n,−
t

)

� sup
0�t�T

(Ut − Yt )
(
K−

T − K
n,−
T

) → 0, n → ∞,

and the required conclusion follows.
It suffices to prove the reflecting condition for the lower barrier. In the spirit of a similar

treatment in Peng and Xu [20], we consider the following BSDEs:

Ỹ n
t = ξ +

T∫
t

g(s,ω)ds +
T∫

t

n
(
Ỹ n

s − Ls

)−
ds −

T∫
t

Z̃n
s dBs − (

K−
T − K−

t

)
. (4.3)

By Meyer–Itô’s formula to [(Ỹ n
t − Yn

t )+]2, it is easy to get Ỹ n
t � Yn

t for any t ∈ [0, T ] a.s.
Observe that Eq. (4.3) can be written as the following

Ȳ n
t = ξ − K−

T +
T∫

t

g(s,ω)ds +
T∫

t

n
(
Ȳ n

s − (
Ls − K−

s

))−
ds −

T∫
t

Z̄n
s dBs, (4.4)

where Ȳ n
t := Ỹ n

t −K−
t , Z̄n

t := Z̃n
t . It is easily seen that Eq. (4.4) is just the sequence of penalized

equations of an RBSDE with the coefficient g, the lower barrier L − K− and the terminal value
ξ − K−

T . Hence by the standard result of RBSDEs with one lower barrier, there exists a triple of
processes (Ȳ , Z̄, K̄+) ∈ S2 × H2

d × A2, which satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ȳt = ξ − K−
T +

T∫
t

g(s,ω)ds −
T∫

t

Z̄s dBs + K̄+
T − K̄+

t ,

Lt − K−
t � Ȳt , ∀t ∈ [0, T ], and

T∫ (
Ȳt − (

Lt − K−
t

))
dK̄+

t = 0.

(4.5)
0
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Indeed,

K̄+
t = lim

n→∞

t∫
0

n
(
Ȳ n

s − (
Ls − K−

s

))−
ds = lim

n→∞

t∫
0

n
(
Ỹ n

s − Ls

)−
ds

in probability. So there exists a subsequence such that above convergence is almost surely. More-
over, for any s � t , we have, P-a.s.,

t∫
s

n
(
Ỹ n

r − Lr

)−
dr �

t∫
s

n
(
Yn

r − Lr

)−
dr,

thus we have that K̄+
t − K̄+

s � K+
t − K+

s almost surely and then dK̄+
t � dK+

t . Note that
Eq. (4.2) can be written as

Yt − K−
t = ξ − K−

T +
T∫

t

g(s,ω)ds −
T∫

t

Zs dBs + K+
T − K+

t . (4.6)

Applying Meyer–Itô’s formula to [(Yt − K−
t − Ȳt )

+]2, it is easy to obtain that Yt − K−
t � Ȳt ,

since dK̄+
t � dK+

t . Therefore,

0 �
T∫

0

(Yt − Lt) dK+
t �

T∫
0

(
Ȳt + K−

t − Lt

)
dK+

t �
T∫

0

(
Ȳt − (

Lt − K−
t

))
dK̄+

t = 0,

and the proof is complete. �
We now state the existence and uniqueness result for Eq. (2.1).

Theorem 4.2. Under the hypotheses of (H0), (H1), (H2) and (2.5), there exists a quadruple
of processes (Y,Z,K+,K−) to solve Eq. (2.1). The solution is unique in the following sense:
if (Y ′,Z′,K+′

,K−′
) is another solution of Eq. (2.1), then Yt = Y ′

t , Zt = Z′
t and K+

t − K−
t =

K+′
t − K−′

t , ∀t ∈ [0, T ] a.s.

Proof. We will show the existence of the solution to Eq. (2.1) by applying the fixed point theo-
rem. Let D := S2 × H2

d endowed with the following norm:

∥∥(Y,Z)
∥∥

β
=

(
E

T∫
0

eβt
(|Yt |2 + |Zt |2

)
dt

) 1
2

for appropriate β > 0 to be determined later. Let Φ be a map from D to D . By Theorem 4.1,
for any given (Y̌ , Ž) ∈ D , there is a quadruple of processes (Ŷ , Ẑ, K̂+, K̂−) to solve the re-
flected BSDE associated with (f (t, Y̌t , Žt ,ω), ξ,Lt ,Ut ), hence Φ(Y̌ , Ž) = (Ŷ , Ẑ). Let (Y̌ ′, Ž′)
be another element in D and Φ(Y̌ ′, Ž′) = (Ŷ ′, Ẑ′), where (Ŷ ′, Ẑ′, K̂+′

, K̂−′
) is a solution of the

corresponding reflected BSDE. Define

Ȳt = Ŷt − Ŷ ′
t , Z̄t = Ẑt − Ẑ′

t , K̄±
t = K̂±

t − K̂±′
t , Ỹt = Y̌t − Y̌ ′

t ,

Z̃t = Žt − Ž′
t .
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By Itô’s formula, we have

eβt
E|Ȳt |2 +E

T∫
t

eβs
[
β|Ȳs |2 + |Z̄s |2

]
ds

= 2E

T∫
t

eβs Ȳs

[
f (s, Y̌s , Žs) − f

(
s, Y̌ ′

s , Ž
′
s

)]
ds + 2E

T∫
t

eβs Ȳs

(
dK̄+

s − dK̄−
s

)

� 2CE

T∫
t

eβs |Ȳs |
[|Ỹs | + |Z̃s |

]
ds

� 4C2
E

T∫
t

eβs |Ȳs |2 ds + 1

2
E

T∫
t

eβs
[|Ỹs |2 + |Z̃s |2

]
ds,

where we have used the fact of Ȳ (dK̄+ − dK̄−) � 0, whose proof can be found in Cvitanić and
Karatzas [2]. Now choose β = 1 + 4C2, then we immediately obtain

E

T∫
0

eβt
[|Ȳt |2 + |Z̄t |2

]
dt � 1

2
E

T∫
0

eβt
[|Ỹt |2 + |Z̃t |2

]
dt,

and the contraction property gives the required result.
Suppose that (Y ′,Z′,K+′

,K−′
) is another solution to Eq. (2.1). Applying Itô’s formula to

(Yt − Y ′
t )

2, we have

∣∣Yt − Y ′
t

∣∣2 =
T∫

t

2
(
Ys − Y ′

s

)(
d(s,Ys,Zs,ω) − f

(
s, Y ′

s ,Z
′
s ,ω

))
ds

+
T∫

t

2
(
Ys − Y ′

s

)(
dK+

s − dK+′
s

) −
T∫

t

2
(
Ys − Y ′

s

)(
dK−

s − dK−′
s

)

−
T∫

t

2
(
Ys − Y ′

s

)(
Zs − Z′

s

)
dBs −

T∫
t

∣∣Zs − Z′
s

∣∣2
ds. (4.7)

Similarly, the second term and the third term in the right-hand side of (4.7) are all less than or
equal to 0. It then follows that

E
∣∣Yt − Y ′

t

∣∣2 + 1

2
E

T∫
t

∣∣Zs − Z′
s

∣∣2
ds �

(
2C + 2C2)

E

T∫
t

∣∣Ys − Y ′
s

∣∣2
ds,

therefore

E
∣∣Yt − Y ′

t

∣∣2 = 0 and E

T∫ ∣∣Zt − Z′
t

∣∣2
dt = 0.
0
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Based on these, we further use the Burkholder–Davis–Gundy inequality for (4.7) and obtain
E sup0�t�T |Yt − Y ′

t |2 = 0, hence Y = Y ′, Z = Z′ a.s. Note that

Y0 − Yt =
t∫

0

f (s,Ys,Zs,ω)ds −
t∫

0

Zs dBs + K+
t − K−

t ,

Y ′
0 − Y ′

t =
t∫

0

f
(
s, Y ′

s ,Z
′
s ,ω

)
ds −

t∫
0

Z′
s dBs + K+′

t − K−′
t ,

by the Burkholder–Davis–Gundy inequality, it is not hard to obtain

E sup
0�t�T

∣∣K+
t − K−

t − (
K+′

t − K−′
t

)∣∣2 = 0.

The proof of Theorem 4.2 is complete. �
Remark 4.1. It should be mentioned that Theorem 4.2 still holds true if Ut satisfies (2.3) and Lt

is continuous and satisfies E(sup0�t�T |Lt |2) < ∞. Indeed, we have pointed out that Lemma 3.1
can be similarly derived. Lemma 3.2 is independent of the representation of stochastic differential
equation for Lt . Lemma 3.3 and Lemma 3.4 will consider the following sequence of RBSDEs
with one lower barrier Lt ,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y k
t = ξ +

T∫
t

g(s,ω)ds −
T∫

t

Zk
s dBs + (

K
k,+
T − K

k,+
t

) −
T∫

t

k
(
Us − Y k

s

)−
ds,

Lt � Y k
t , ∀t ∈ [0, T ], and

T∫
0

(
Y k

t − Lt

)
dK

k,+
t = 0.

Lemma 3.5 can be similarly proved by discussing the limit of (3.24) as k → ∞. Hence in the
setup of this work the regularity on the boundary processes has been weakened.

5. Dynkin games under Knightian uncertainty

Our purpose in this section is to solve a Dynkin game under Knightian uncertainty by applying
the technique of RBSDEs with two barriers. Dynkin games are special stochastic games and have
been studied by many authors, we here only mention Cvitanić and Karatzas [2], Hamadène and
Lepeltier [5], Hamadène and Hassani [8], Hamadène and Hdhiri [9] among others. Just like these
authors, we shall establish the relation between an RBSDE with two barriers and a Dynkin game
under Knightian uncertainty.

In a financial market, we suppose that there are three assets whose prices are modeled by the
following stochastic differential equations:

Pt = P0 +
t∫

0

b0(r,Pr) dr +
t∫

0

σ0(r,Pr) dBr, S0 > 0, 0 � t � T , (5.1)

Lt = L0 +
t∫
b1(r,Lr) dr +

t∫
σ1(r,Lr) dBr, L0 > 0, 0 � t � T , (5.2)
0 0
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Ut = U0 +
t∫

0

b2(r,Ur) dr +
t∫

0

σ2(r,Ur) dBr, U0 > 0, 0 � t � T . (5.3)

Assume that all the coefficients in above equations satisfy the local Lipschitz condition and the
linear growth condition. We also assume that Pt , Lt and Ut are all positive for any t ∈ [0, T ]
almost surely. A trivial example is the geometric Brownian motion.

We now consider a stochastic game, in which there are two players. Player 1 chooses the stop-
ping time σ while player 2 chooses the stopping time τ . The game stops when one player decides
to stop before the maturity time T > 0. Let R0(τ, σ ) represent the amount paid by player 1 to
player 2 at t = 0. The random payoff R0(τ, σ ) is given by

τ∧σ∫
0

g(u,Pu)du +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uσ , if player 1 stops the game first,

Lτ , if player 2 stops the game first

or both stop the game simultaneously,

ξ, if neither player stops the game before T ,

namely,

R0(τ, σ ) =
τ∧σ∫
0

g(u,Pu)du + Lτ 1{τ�σ<T } + Uσ 1{σ<τ } + ξ1{τ=σ=T }. (5.4)

Player 1 wants to minimize, but player 2 wants to maximize the expectation ER0(τ, σ ).
The uncertainty of this financial market comes from Brownian motion {Bt }0�t�T under

the probability measure P. However, Knightian uncertainty assumes that the financial market
might evolve under the probability measure P or another probability measure P

ϑ . The parameter
ϑ = {ϑt }t�T is a P -measurable process such that |ϑ |� k, where k is called the degree of Knigh-
tian uncertainty. Denote the family of those previous ϑ by Θ . We assume that Pϑ is absolutely
continuous with respect to P and its density function is given by

dPϑ

dP
= exp

(
−

T∫
0

ϑt dBt − 1

2
|ϑt |2 dt

)
. (5.5)

Thus by the Girsanov theorem, Bϑ
t = Bt + ∫ t

0 ϑs ds is a Brownian motion on (Ω,F ,Pϑ). This
means that the uncertainty of the financial market comes from {Bϑ

t }0�t�T under the probability
measure P

ϑ . For more details on Knightian uncertainty, one can refer to Kiohiko and Hiroyuki
[11]. Similar to Hamadène and Hdhiri [9], we are interested in the following value functions:

V := inf
ϑ∈Θ

sup
τ

inf
σ
E

ϑ
[
R0(τ, σ )

]
, (5.6)

V := sup
ϑ∈Θ

sup
τ

inf
σ
E

ϑ
[
R0(τ, σ )

]
, (5.7)

where E
ϑ is the expectation operator with respect to P

ϑ . Assume θ ∈ Rd and |θ | � k. For any
(t,p, θ, z) ∈ [0, T ] × R+ × Rd × Rd with |θ | � k, we define a Hamiltonian function

H(t,p, θ, z) = g(t,p) − (θ, z).

Let
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θ1(z) =
(

k√
d

1{z1>0} − k√
d

1{z1�0}, . . . ,
k√
d

1{zd>0} − k√
d

1{zd�0}
)′

,

θ2(z) = −θ1(z),

where z = (z1, . . . , zd)′, then θ1 and θ2 satisfy

H
(
t, p, θ1(z), z

) = inf
θ : |θ |�k

H(t,p, θ, z), H
(
t, p, θ2(z), z

) = sup
θ : |θ |�k

H(t,p, θ, z).

(5.8)

Obviously, H(t,p, θ, z) satisfy the Lipschitz condition with respect to z for any given (t,p, θ),
while H(t,p, θ1(z), z) and H(t,p, θ2(z), z) satisfy the Lipschitz condition w.r.t. z for any given
(t,p). We have the following result.

Theorem 5.1. Suppose that g(t,Pt ) belongs to L2(0, T ). Then the two barriers reflected BSDE
associated with (H(t,p, θ, z),L,U, ξ) (resp. H(t,p, θ1(z), z), H(t,p, θ2(z), z)) have a unique
solution (Y,Z,K+,K−) (resp. (Y ,Z,K+,K−), (Y ,Z,K+,K−)). If we define τ = inf{t ∈
[0, T ], Y t = Lt } ∧ T , τ = inf{t ∈ [0, T ], Y t = Lt } ∧ T , σ = inf{t ∈ [0, T ], Y t = Ut } ∧ T , σ =
inf{t ∈ [0, T ], Y t = Ut } ∧ T , then Y 0 = V , Y 0 = V and V � Y0 � V .

Proof. The existence of a unique solution follows from Theorem 4.2 since (H1) and (H2) hold
under the assumptions of g as well as b0 and σ0. Let τ̂ = inf{t ∈ [0, T ], Yt = Lt } ∧ T and σ̂ =
inf{t ∈ [0, T ], Yt = Ut } ∧ T . Note that

Yt = ξ +
T∫

t

g(s,Ps) ds −
T∫

t

Zs dBϑ
s + K+

T − K+
t − (

K−
T − K−

t

)
,

hence

Y0 = E
ϑY0 = E

ϑ

[
Yτ̂∧σ̂ +

τ̂∧σ̂∫
0

g(s,Ps) ds −
τ̂∧σ̂∫
0

Zs dBϑ
s + K+

τ̂∧σ̂
− K−

τ̂∧σ̂

]
.

Since Lt � Yt � Ut and
∫ T

0 (Yt − Lt) dK+
t = 0,

∫ T

0 (Ut − Yt ) dK−
t = 0, then K+

τ̂∧σ̂
= K−

τ̂∧σ̂
= 0.

On the other hand, by the Burkholder–Davis–Gundy inequality, we have

E
ϑ

[
sup

0�t�T

∣∣∣∣∣
t∫

0

Zs dBϑ
s

∣∣∣∣∣
]
� 4Eϑ

[ T∫
0

|Zt |2 dt

] 1
2

� 4

√√√√√E

T∫
0

|Zt |2 dt

√
E

(
dPϑ

dP

)2

.

Since |ϑ | � k, by Novikov’s condition and the B-D-G inequality, it is not hard to prove
E[(dPϑ/dP)2] < ∞. Therefore {∫ t

0 Zs dBϑ
s } is a martingale under the probability measure P

ϑ .
By these, we obtain

Y0 = E
ϑ

[ τ̂∧σ̂∫
0

g(s,Ps) ds + Yτ̂∧σ̂

]

= E
ϑ

[ τ̂∧σ̂∫
g(s,Ps) ds + Lτ̂ 1{τ̂�σ̂<T } + Uσ̂ 1{σ̂<τ̂ } + ξ1{τ̂=σ̂=T }

]
= E

ϑR0(τ̂ , σ̂ ).
0
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Similar to Theorem 4.1 in Cvitanić and Karatzas [2], we can prove

Y0 = E
ϑR0(τ̂ , σ̂ ) = inf

σ
sup
τ

E
ϑR0(τ, σ ) = sup

τ
inf
σ
E

ϑR0(τ, σ ).

In the same way, we similarly prove that

Y 0 = E
ϑ1

R0(τ , σ ) = inf
σ

sup
τ

E
ϑ1

R0(τ, σ ) = sup
τ

inf
σ
E

ϑ1
R0(τ, σ ),

Y 0 = E
ϑ2

R0(τ , σ ) = inf
σ

sup
τ

E
ϑ2

R0(τ, σ ) = sup
τ

inf
σ
E

ϑ2
R0(τ, σ ).

By the comparison theorem on RBSDEs with two barriers (see Hamadène and Hassani [8, The-
orem 1.3]), we have Y 0 � Y0 � Y 0, which implies that

Y 0 = V , Y 0 = V .

The proof is complete. �
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