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Abstract 

A sharp upper bound on the average distance of a graph depending on the order and the 
independence number is given. As a corollary we obtain the maximum average distance of 
a graph with given order and matching number. All extremal graphs are determined. 

1. Introduction 

Let G = (V, E) be a finite, simple and undirected graph with vertex set V and edge 

set E. If G is connected, the average distance p(G) is defined to be the average of all 

distances in G: 

p(G) := 

where d(a, b) denotes the length of a shortest path joining the vertices a and 6. The 

average distance can be used as a tool in analyzing networks that represent transport- 

ation systems. It is a measure on the time needed in the average case, contrary to the 

diameter, which indicates the maximum transportation time. 

The computer program GRAFFITI [6] made the attractive conjecture 

~(‘3 G a(G)> 

where a(G) denotes the independence number of G. The weaker inequality 

p(G) - 1 < x(G) was proved by Fajtlowicz and Waller [6]. Chung [3] succeeded in 

proving the conjecture. So we have a lower bound on the independence number which 

is computable in polynomial time. She also established that equality holds only for the 

complete graph, i.e. for CI = 1. We give an upper bound for p depending also on 

n which is sharp for every a. Making use of this bound we are able to answer 

a question of Erdiis (see [6]). He asked for bounds on the independence number of 
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a graph with a given average distance. Furthermore, we will give upper and lower 

bounds on the average distance depending on the matching number. 

We need some further notations. The diameter of a connected graph G, diam(G), is 

the maximum distance between two vertices of G. By K, we denote the complete 

graph and by P, the path of order n, respectively. For disjoint graphs G and H, the sum 

G + H is obtained from G and H by adding all possible edges between vertices of 

G and H. If p > 0 is an integer, pG denotes the disjoint union of p copies of G. The 

neighborhood N(x) of a vertex x E V is the set of all vertices adjacent to x. The closed 

neighborhood N(x) of a vertex x E V contains also the vertex x itself. d(x) := IN(x)1 

denotes the degree of the vertex x. The transmission of a vertex x E V is the sum of all 

distances between x and each other vertex of G. The transmission of the graph G, o(G), 

is the sum of all transmissions of the vertices of G: 

C(X) := g(x, G) := 1 d(x, y), 
YCV 

o(G) := C CJ(X) = c d(x,y). 
XEV (X,Y)E Vx V 

For the sake of brevity,let S’(n, a) denote the class of all connected graphs of order 

n and independence number CC 

2. Results 

We first give a sharp lower bound on the average distance of the members of the 

class Y?(n, CC). This bound is an immediate consequence of the following observation, 

also noted in [S]. 

Lemma 2.1. If G is a connected graph with n 2 2 vertices and m edges, then 

,u(G) 3 2-m i 0 
-1 

. 

Equality holds if and only if diam(G) d 2. 

Proposition 2.2. If G is a connected graph with n vertices and independence number CI, 

then 

c((c! - 1) 
P(G) 3 I + ~ 

n(n - 1)’ 

Equality holds if and only $ G E K, _ oL + aK 1. 

Proof. Obviously, we have 

n c1 
m< 

0 0 2 - 2’ 
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with equality only for K,_, + aK,. Application of Lemma 2.1 yields the proposi- 

tion. 0 

It turns out that the problem of determining the maximum average distance of the 

members of 9(n, U) is much harder. In order to formulate the main result, we need 

a preliminary definition. 

Definition 2.3. (a) For positive integers n, k with 2 < k < &I, let G,, k be the graph 

obtained from a path P,, _ 2 with end vertices vr , v2 and two disjoint complete graphs 

Gi, Gz of order 

n 
y11 := - 

11 
2 

-k+l, n2:= !Y 

11 
2 

-k+l 

by joining Vi with each vertex of Gi for i = 1,2. 

(b) For positive integers 12, k with $r < k < n - 1, let G,, k be the graph obtained 

from a path P,, _ 2k _ 1 with end vertices v 1, v2 and two disjoint empty graphs Gi, G2 of 

order 

nl n2 

by joining vi with each vertex of Gi for i = 1,2. 

Theorem 2.4. Let n, a be two integers satisfying 2 < SI < n - 1 and let G~9(n, QZ). Then 

we have 

P(G) d 14% .I. 

Equality holds if and only if G g G,, d. 

(1) 

We only consider the case 2 < M < in, for the proof in the other case is very similar. 

Preliminarily, we shall state the following two lemmas. 

Lemma 2.5. Let GE 9(n, 2), n > 3. Then we have 

g(G) d o(G,, 2). 

Equality holds if and only if G g G,, 2. 

Proof. Let G E Y,, 2 be a graph with maximum transmission. Obviously, the diameter 

of G equals 2 or 3; otherwise, a(G) # 2. 

Case 1. diam(G) = 2. A Turan-type theorem for connected graphs [4] is of great 

use. It yields 

m(G) 2 m(G,, x), 
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with equality if and only if G Z’ Gn,2. With diam(G) # diam(G,,z) we have G # G,,, 

and thus 

a(G) = 1 d(a, b) + c d(% b) 
d(a, h) = 1 d(a, h) = 2 

= 2n(n - 1) - 2m(G) 

< 2n(n - 1) - 2m(G,,J 

a contradiction to the maximality of a(G). 

Case 2. diam(G) = 3. There are two vertices a, b E V(G) with d(a, b) = 3. It is easily 

seen that G consists of two cliques induced by N(a) and N(b), respectively, and exactly 

one edge between these cliques. A simple calculation shows that Id(a) - d(b) 1 < 1 and 

thus GE G,,2. q 

Lemma 2.6. (a) For integers n, k, 2 < k < in, let H,, k denote the connected graph of 

order n, which consists of a path Pzk _ 1 with an end vertex v, a complete graph K, - 2k + 1, 
and an edge joining v to exactly one vertex of the k-clique. 

(b) For positive integers n, k, &t < k < n - 1, let H,, k denote the connected graph of 

order n, which consists of a path P2n_2k with an end vertex v, an empty graph of order 

2k - n and edges joining v to all vertices of the empty graph. Let HE 9,, k and x E V(H). 

Then we have 

CT&X) d (2k - l)(n - k). 

Equality holds if and only if H z H,, k and x is the unique end vertex of H. 

In order to prove Theorem 2.4 suppose that a is the minimum number for which 

(1) is false. By Lemma 2.5 we have a > 2. Suppose further that, for this CI, n is 

minimum under all values for which (1) does not hold and that GE %,,, L1 has maximum 

transmission. 

The idea of the proof is based on the following simple observation: “Shrinking” the 

extremal graph G,, a by deleting the end vertices of a bridge xy E E(G) and joining their 

neighbors yields G, _ 2, cI 1. A similar construction will be applied to G and then we 

shall obtain the inequality (1) by induction. 

In the sequel, let E” denote the set of all edges of G whose deletion does not increase 

the independence number. 

We first show that E” is nonempty. 

Assume that E” = 0, i.e. G is a-critical. Consequently, G is 2-vertex-connected (see 

e.g. [l, p. 2841). Choose a vertex a E V(G) with minimum transmission ~~(a). Then 
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G - a is connected, cc(G - a) = a, and 

1 
a&a) d __ c 

n - be-(a) 
o&) 

= &c(G - a) + &“Gta). 

Obviously, CI cannot equal &I, because G,, n,2 is isomorphic to the path P,, the graph 

that has maximum transmission under all connected graphs of order n. Hence, by the 

minimality of CI and n, we have 

Thus, we obtain a contradiction by 

0 d o(G) - a(G,,.) 

d a(G - a) + h&a) - a(G,,.) 

d 4%I,,) + &(Go-I,,) - dG,,a) 

= &(Gn- 1, .I - 4G,, a) 

2n(l - a) - $(a - l)(a - 2) if n is even 
= 

- ~cC(c(” -3a+V)+2 if n is odd 

< 0, 

and E” cannot be empty. 

Next we show that for every xy E E” neither x nor y is an end vertex of G. Let xy E I!?. 

Suppose that x is an end vertex of G. Let(G) be the graph obtained from G by joining 

x to all other neighbors of y. Using a(G - x) = a(G) - 1, it is easily checked that 

a(G) = LX(G) - 1. 

By the minimality of c( we have 

c(G) < a(G,, a - I). 

Hence, with a < in and n 2 3, we obtain 

0 d a(G) - o(G,, .) 

= a(G) + 2(n - 2) - a(G,, a) 

d a(G,,.-r ) + W - 2) - 46, .I 
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- n2 + 4n + 4a2 - 12a + 4, n even 
= 

-nn2+4n+4a2-12,+5, n odd 

a contradiction to the maximality of o(G). Thus, x cannot be an end vertex of G. 

Similarly, y is not an end vertex of G. 

Clearly, every edge in E” is a bridge of G, for otherwise the transmission of G could 

be increased by the deletion of an edge without changing the independence number. 

Consequently, the induced subgraph G[E] is a nonempty forest. Choose an end 

vertex x of G [E”] and let y denote its unique neighbor. Since x is an end vertex of G but 

not of G, there is an edge XZEE(G) that fulfils u(G - xz) = M. + 1. A maximum 

independent set A’ of G - xz contains x and z. Thus, in G exists a maximum 

independent set A := A’ - { z with x E A. So far we have shown the existence of } 

a bridge xyeE(G) with the following properties: 

(i) E(G - xy) = a(G), 

(ii) x and y are not end vertices, 

(iii) there is a maximum independent set A c V(G) that contains x. 

Now we are able to complete the proof by constructing a smaller graph G’ and by 

making use of the choice of G as a minimum counterexample to inequality (1) in 

Theorem 2.4. Choose a bridge xy E E(G) that fulfils (i)-(iii), join each neighbor of x to 

each neighbor of y, and delete the vertices x and y. 

Obviously, the resulting graph G’ is connected and is of order n - 2. It is easily 

checked that 

cr(G’) = a(G) - 1. 

Let G, and G, denote the connected component of G - xy that contains x and y, 

respectively. We first note 

~G(x) = 0, G,) + a(~, G,J + I J’(G,)I, 

~G(Y) = 4~9 Gy) + 4x2 GJ + I VGJI. 

Further let Vi := V(G,) - (x} and V2 := V(G,) - {y}. Then we have 

&(a, b) - 4 I VI I I v2 I 

= o(G) - 20G(x) - 20,(y) + 2 - 4 ( V/1 1 I V, I 

= o(G) - 2n - 40(x, G,) - 4g(y, GY) + 2 - 4 1 I/, I 1 V, I. 
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Applying Lemma 2.6 with kI := a(G,) and kz := a(G,) we derive 

o(G) d cr(G’) + 2n - 2 + 4((2kl - l)([ I’, 1 - kl + 1) 

+(2~,-l)(l~~I-~,+1)+I~,II~~I) 

=: o(G) + 2n - 2 + F. 

A simple calculation using 1 VI I + 1 V, I = n - 2 and kI + kz = CI shows 

F< 
i 

n2 + 4n(c( - 2) - 4a2 + 4a + 4, n even 

n2 + 4n(a - 2) - 4a2 + 4cr + 3, n odd. 

By the minimality of LX, we have 

a(G’) d dGn-2,a-1). 

Together with (2) and (3) this yields after a simple calculation, 

c(G) 6 o(G,, .)> 

(2) 

(3) 

which is equivalent to the inequality (1) of Theorem 2.4. 

We prove the uniqueness of the extremal graph by induction on GI. The case CC = 2 is 

settled by Lemma 2.5. Let GE %(n, tl), a > 2 be a graph with maximum transmission. 

As we have seen in the proof of (l), G contains a bridge xy having the properties 

(i))(iii) stated above. We first note that equality in (1) implies equality in (2) and (3). 

Lemma 2.6 yields that G, z H,, + i, k1 and G, g H,, + i, ,_. It is easy to 

F attains its maximum only for ) VI I = 2kI - 1 - tl + In if n is even 

1 VI ) = 2k, - 1 + in + 4 if n is odd, respectively. This yields G 2 G,, O1. 0 

By summing up all distances in G,, a we obtain the following corollary. 

see that 

and for 

Corollary 2.7. (a) Zf G is a connected graph of order n and independence number a with 

2 < a < )n, the following inequality holds: 

I a-+ n-2 -- n-l 1 4” n -1 
n-l 

00 3 2 if n is even, 

P(C\ ’ 

‘1 % 1 n-2 1 a-1 n\-’ .,. 1 1 

a-+ -- 
~- 

n-l n-l n(n - 1) 45 O( , ‘ ) -) 
zj n is oaa. 

(b) If G is a connected graph of order n and independence number u with 

in c a d n - 1, the following inequality holds: 

n + 1 (4n - 7 - 2u)(2u + 2 - n)(2u + 2) ~- 
3 6n(n - 1) 

if n is even, 

P(G) d 
n + 1 (4n - 7 - 2u)(2u + 2 - n)(2u + 2) + 6(n + a) - 9 ___ 

3 6n(n - 1) 

~ n is odd 
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Obviously, for constant n the upper bound on the average distance given in 

Corollary 2.7 is strict monotone increasing in the range 2 < c1< )n and strict 

monotone decreasing for *n < cx d n - 1. So it is easy to see that the inverse function 

of the bound given in Corollary 2.7(b) yields the minimum independence number of 

a graph in terms of its order and average distance which Erdiis asked for in [6]. The 

determination of the inverse is an easy exercise in the handling of formula manipula- 

tion systems. The derivation of a lower bound on c( from Proposition 2.2 is much 

easier, especially with no formula manipulation system. 

The problem of determining sharp upper and lower bounds on the average distance 

of a connected graph whose order and matching number are given is less difficult than 

the problem treated above. In the case of the lower bound this is not surprising, for the 

unique graph with given order and matching number and maximum size is easy to 

determine. 

Proposition 2.8. If G is a connected graph with n vertices and matching number /?, then 
we have 

I 

1 

P(G) k ( 

2_2p ~ 

\ n-l 
+ PM - 1) 

n(n - 1) 
otherwise. 

Equality holds if and only if G is complete or G g K, + (n - P)K 1, respectively. 

Proof. The first inequality is trivial, so we only consider the case /I < L$nJ It is easily 

shown that G has at most 1P(2n - p - 1) edges. Application of Lemma 2.1 yields the 

proposition. 0 

Using an equality due to Buckley [2], we can deduce the maximum aver- 

age distance of a connected graph with given order and matching number from 

Theorem 2.4. 

Lemma 2.9 (Buckley [2]). Let T be a tree of order n > 2 and L(T) denote its line 

graph, then the following inequality holds: 

PL(W)) = &P(T) - 1). 

Definition 2.10. For positive integers n, k with fn > k, let G”,, k be the graph obtained 

from a path P,, _ 1 with end vertices vi, v2 and two disjoint empty graphs Gr, Gz of 

order 

by joining vi with all vertices of Gi for i = 1,2. 
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Theorem 2.11. Let G be a connected graph of order n > 4 and matching number fi > 1. 

Then we have 

P(G) < &, ,J). 

Equality holds if and only if G g 6,,, @. 

Proof. We may assume that G has maximum transmission under all connected graphs 

of order n and matching number /?. We first show that G is a tree. 

Suppose that G contains a cycle C. Let M be a maximum matching of G. At most 

half of the edges of C belong to M. Hence, C contains an edge whose deletion neither 

decreases the matching number nor destroys the connectivity of G. Thus, 

o(G - e) > a(G), a contradiction to the maximality of o(G). 

Let L(G) denote the line graph of G. Then we have a(L(G)) = p(G). Theorem 2.4 

yields 

o@(G)) < o(G,- I, p)> 

with equality if and only if L(G) 2 G,_ 1, 8. Lemma 2.9 implies 

~0,) d a(T,) 0 o(L(T,)) < &VI))> 

if T, and T2 are trees of the same order. Together with L(c?~, B) g G,_ 1, B we obtain 

o(G) d @%n, a). 

Equality holds if and only if L(G) E G,_ 1, 8, i.e. for G z Gn,, p. 0 
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