

Discrete Mathematics 138 (1995) 375-377

DISCRETE MATHEMATICS

A new upper bound for total colourings of graphs

Abdón Sánchez-Arroyo

Facultad de Ciencias, UNAM, Apartado Postal M2023, México 1 D.F. 06000, Delegación Cuauhtemoc. Mexico

Received 7 July 1993; revised 12 January 1994

Abstract

We give a new upper bound on the total chromatic number of a graph. This bound improves the results known for some classes of graphs. The bound is stated as follows: $\chi_T \leq \chi_e + \lfloor \frac{1}{3}\chi \rfloor + 2$, where χ is the chromatic number, χ_e is the edge chromatic number (chromatic index) and χ_T is the total chromatic number.

1. Introduction

Let G = (V, E) be a graph without loops. A *k*-colouring of a finite set *C* is a map $\phi: C \mapsto \{1, 2, ..., k\}$. When we consider a colouring of a subset of $V \cup E$ we shall always assume that it is *proper*; that is no two adjacent or incident elements receive the same colour. A vertex colouring, edge colouring, total colouring of a graph is a proper colouring of $V, E, V \cup E$ respectively. The chromatic number $\chi(G)$, edge chromatic number $\chi_e(G)$, total chromatic number $\chi_T(G)$ is the least number of colours in a vertex, edge, total colouring of *G*, respectively.

Let $\Delta(G)$ be the maximum degree of a vertex in G. It is clear that $\chi_e \ge \Delta$, and that $\chi_T \ge \Delta + 1$. For simple graphs (without multiple edges) it is well known that $\chi \le \Delta + 1$, and $\chi_e \le \Delta + 1$. The total colouring conjecture states that $\chi_T \le \Delta + 2$ [1, 8].

The total colouring conjecture has been verified for several special classes of graphs (see [2, 3] for surveys). It has also been shown that if k is an integer with k! at least the number of vertices then $\chi_T \leq \chi_e + k + 1$; and that 'most' graphs satisfy $\chi_T = \Delta + 1$ [5, 6].

Recently McDiarmid and Sánchez-Arroyo [7] have shown that $\chi_T \leq \chi_e + \frac{2}{5}\chi + \frac{8}{5}$. Our main result is an upper bound that improves the above bound, and it is stated as follows.

Theorem. For any graph G, $\chi_{\rm T} \leq \chi_{\rm e} + \lfloor \frac{1}{3}\chi \rfloor + 2$.

The best upper bound known to the author was obtained by Hind [4] who proved that $\chi_T \leq \chi_e + 2\lceil \sqrt{\chi} \rceil$. Our theorem improves Hind's bound for graphs having small chromatic number.

Elsevier Science B.V. SSDI 0012-365X(94)00219-3

2. The proof

The proof relies upon the following result.

Lemma 1. Let G = (V, E) be a graph with $\Delta(G) \leq 2$ and let $W \subseteq V$ be the union of three stable sets $W = V_1 \cup V_2 \cup V_3$, then there exists a total colouring $\phi : W \cup E \mapsto \{1, 2, 3, \alpha\}$ such that

1. *if* $x \in V_i$, *then* $\phi(x) = i$ *for* i = 1, 2, 3, *and* 2. *if* $a = \{x, y\}$ *and* $\phi(a) = \alpha$, *then* $\{x, y\} \subseteq W$.

This Lemma is essentially Lemma 2.1 of [7], and does not need proof here. Our theorem is an easy consequence of our final Lemma.

Lemma 2. Let G = (V, E) be a multigraph with chromatic number $\chi(G)$, edge chromatic number $\chi_e(G)$, and total chromatic number $\chi_T(G)$. Then

1. if $\chi(G) = 0, 1 \mod 3$, then $\chi_T(G) \leq \chi_e(G) + \lfloor \frac{1}{3}\chi(G) \rfloor + 1$, and

2. if $\chi(G) = 2 \mod 3$, then $\chi_{\mathbf{T}}(G) \leq \chi_{\mathbf{e}}(G) + \lfloor \frac{1}{3}\chi(G) \rfloor + 2$.

Proof. For complete graphs or cycles the result holds. Thus we may assume that $\chi(G) \leq \chi_{e}(G)$. Consider a vertex and an edge colouring of G with $\chi(G)$ and $\chi_{e}(G)$ colours, respectively. Let $V_1, \ldots, V_{\chi(G)}$ and $M_1, \ldots, M_{\chi_{e}(G)}$ be the chromatic classes. We have three cases:

Case 1: $\chi(G) = 3k$, Set $p = \chi(G)$, and for each j = 1, ..., k, define the set of vertices:

$$W_j = \bigcup_{i=3}^{3j} \bigcup_{(j-1)+1}^{N_j} V_i,$$

and the set of edges

$$E_{j} = \bigcup_{i=3(j-1)+1}^{3j-1} M_{i}.$$

Now consider the subgraph $H_j = (V, E_j)$. We now apply Lemma 1 to each H_j with the subset W_j , to obtain a colouring ϕ_j of $E_j \cup W_j$ using colours from $\{3(j-1)+1, 3(j-1)+2, 3j, \alpha\}$, respectively. It is clear from Lemma 1 that the union of these colourings form a total colouring. Now for each j = 1, ..., k use a new colour β_j to recolour the matching M_{3j} . Thus the set of colours used on the vertex set and the first p matchings is $\{1, 2, ..., p\} \cup \{\alpha\} \cup \{\beta_1, ..., \beta_k\}$, so we have used $p + \frac{1}{3}p + 1$ colours already. It remains to add the remaining $\chi_e(G) - p$ colours used on the matchings $M_{p+1}, ..., M_{\chi_e(G)}$ to obtain that $\chi_T(G)$ is bounded by

$$(\chi_{e}(G) - p) + p + \frac{1}{3}p + 1 = \chi_{e}(G) + \lfloor \frac{1}{3}\chi(G) \rfloor + 1$$

as stated.

Case 2: $\chi(G) = 3k + 1$. Set $p = \chi(G) - 1$, and apply case 1 above. Now recolour the vertices in $V_{\chi(G)}$ with colour α . By Lemma 1.2 this is a proper total colouring of G.

376

Thus the number of colours used is

$$(\chi_{e}(G) - p) + p + \frac{1}{3}p + 1 = \chi_{e}(G) + \lfloor \frac{1}{3}\chi(G) \rfloor + 1$$
,

as claimed.

Case 3: $\chi(G) = 3k + 2$. Set $p = \chi(G) - 2$, and apply case 1 above. Now recolour the vertices in $V_{\chi(G)}$, and $V_{\chi(G)-1}$ with colours α and β_{k+1} , respectively. Thus the number of colours used is

$$(\chi_{e}(G)-p)+p+\frac{1}{3}p+2=\chi_{e}(G)+\lfloor\frac{1}{3}\chi(G)\rfloor+2,$$

as required.

This completes the proof of the Lemma. \Box

References

- [1] M. Behzad, Graphs and their chromatic numbers, Ph. D. Thesis, Michigan State University, 1965.
- [2] M. Behzad, The total chromatic number of a graph: a survey, in: D.J.A. Welsh, ed., Combinatorial Mathematics and its Applications (Academic Press, London, 1971) 1–10.
- [3] A.G. Chetwynd, Total colourings, in: R. Nelson & R.J. Wilson, eds., Graphs Colourings, Pitman Research Notes in Mathematics No. 218 (London, 1990) 65-77.
- [4] H. Hind, An improved bound for the total chromatic number of a graph, Graphs Combin. 6 (1990) 153–159.
- [5] C.J.H. McDiarmid, Colourings of random graphs, in: R. Nelson and R.J. Wilson, eds., Graphs Colourings, Pitman Research Notes in Mathematics No. 218 (London, 1990) 79-86.
- [6] C.J.H. McDiarmid and B. Reed, On total colourings of graphs, J. Combin. Theory Ser. B 57 (1993) 122-130.
- [7] C.J.H. McDiarmid and A. Sánchez-Arroyo, An upper bound for total colourings of graphs. Discrete Math. 111 (1993) 389-392.
- [8] V.G. Vizing, Some unsolved problems in graph theory (in Russian), Uspekhi Math. Nauk. 23 (1968) 117-134. Russian Math. Surveys 23 (1968) 125-142.