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Abstract

We give a new upper bound on the total chromatic number of a graph. This bound improves
the results known for some classes of graphs. The bound is stated as follows: <y, +L; x]+2
where y is the chromatic number, y, is the edge chromatic number (chromatic index) and yp is
the total chromatic number.

1. Introduction

Let G=(V,E) be a graph without loops. A k-colouring of a finite set C is a map
¢:Cr—1{1,2,...,k}. When we consider a colouring of a subset of I'u E we shall always
assume that it is proper; that is no two adjacent or incident elements receive the same
colour. A vertex colouring, edge colouring, total colouring of a graph is a proper
colouring of V,E, VUE respectively. The chromatic number y(G), edge chromatic
number y.(G), total chromatic number y+(G) is the least number of colours in a vertex.,
edge, total colouring of G, respectively.

Let 4(G) be the maximum degree of a vertex in G. [t is clear that y.> 4, and that
y1= 4+ 1. For simple graphs (without multiple edges) it is well known that y <A+ 1,
and y. <A+ 1. The total colouring conjecture states that yr<A4+2 [1, 8]

The total colouring conjecture has been verified for several special classes of graphs
(see [2, 3] for surveys). It has also been shown that if k is an integer with k! at least the
number of vertices then yr<y.+k+ 1; and that ‘most’ graphs satisfy yy=4+1 [5. 6].

Recently McDiarmid and Sanchez-Arroyo [ 7] have shown that yt <.+ ﬁ x +§. Our
main result is an upper bound that improves the above bound, and it is stated as follows.

Theorem. For any graph G, yr<y.+| 31 |+2.

The best upper bound known to the author was obtained by Hind [4] who proved
that y1<x.+2[ /% ]. Our theorem improves Hind’s bound for graphs having smal
chromatic number.
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2. The proof
The proof relies upon the following result.

Lemma 1. Let G=(V, E) be a graph with A(G)<2 and let W<V be the union of three
stable sets W=V, UV, Vs, then there exists a total colouring ¢: WU E{1,2,3,a}
such that

1. if xeV,, then ¢p(x)=i for i=1,2,3, and

2. ifa={x,y} and ¢(a)=a, then {x,y} = W.

This Lemma is essentially Lemma 2.1 of [7], and does not need proof here.
Our theorem is an easy consequence of our final Lemma.

Lemma 2. Let G=(V, E) be a multigraph with chromatic number y(G), edge chromatic
number x.(G), and total chromatic number yr(G). Then

1. if x(G)=0,1mod 3, then y1(G)< x.(G)+| :x(G) |+ 1, and

2. if x(G)=2mod 3, then y2(G)<x.(G)+| 52(G) ]+2.

Proof. For complete graphs or cycles the result holds. Thus we may assume that
%(G)<.(G). Consider a vertex and an edge colouring of G with x(G) and y.(G)
colours, respectively. Let V4, ..., Vyyand My, ..., M, «, be the chromatic classes. We
have three cases:
Case 1: 3(G)=3k, Set p=yx(G), and for each j=1, ... k, define the set of vertices:
3j
wi= U ¥
i=3(j—-1)+1

and the set of edges

3j-1

E;= U M;.
i=3(j-1+1

Now consider the subgraph H;=(V, E;). We now apply Lemma 1 to each H; with the
subset W, to obtain a colouring ¢; of E;UW, using colours from
{3G—1+1,3(j—1)+2,3j,a}, respectively. It is clear from Lemma 1 that the union of
these colourings form a total colouring. Now for each j=1, ...,k use a new colour B;to
recolour the matching M;;. Thus the set of colours used on the vertex set and the first
p matchings is {1,2,...,p} U{a} U{By, ..., B}, so we have used p+3p+1 colours
already. It remains to add the remaining y.(G)—p colours used on the matchings
M,i1,....,M, @, to obtain that y(G) is bounded by

((e(G)=p)+Pp+3P+1=1(G)+[ 1 x(G) |+1

as stated.

Case 2: y(G)=3k+1. Set p=x(G)—1, and apply case | above. Now recolour the
vertices in V() with colour . By Lemma 1.2 this is a proper total colouring of G.
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Thus the number of colours used is

(£e(G)—p)+p+ip+1=1(G)+[ 52(G) J+1.

as claimed.
Case 3: 3(G)=3k+2. Set p=yx(G)—2, and apply case 1 above. Now recolour the

vertices in V), and VG- 1 with colours « and f . 1, respectively. Thus the number
of colours used is

(((G)—p)+p+3p+2=x(G)+| 1(G) ]+2.

as required.
This completes the proof of the Lemma. [
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