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Participation of renal cortical prostaglandins in the
regulation of glomerular filtration rate

JURGEN SCHNERMANN and JOSEPHINE P. BRIGGS

Physiologisches Institut der Universitdt Miinchen, München, West Germany

The intimate linkage between glomerular filtra-
tion rate (GFR) and sodium chloride excretion
requires close control of glomerular hemodynamics
in order to maintain body fluid and electrolyte
homeostasis. Other papers in this symposium have
dealt with evidence that prostaglandins (PG's) may
influence sodium excretion by direct transport ef-
fects. This paper will be confined to evidence for
PG's participation in the hemodynamic control of
GFR. Numerous experimental studies over the past
years have identified single factors exerting GFR
control and have elucidated their interplay in vari-
ous conditions. Perturbations that induce changes
in filtration forces result in a complex array of
regulatory mechanisms that tend to minimize devi-
ations from the set value. The final setting of
glomerular vascular tone and therefore of renal
blood flow (RBF) and GFR results from an interac-
tion of general intrinsic and specifically intrarenal
myogenic mechanisms with local hormonal sys-
tems. Initial studies of the role of PG's in this
system were contradictory and at times difficult to
interpret. It is now becoming clear that some of the
apparent contradictions were a consequence of the
complex interaction of the vasoconstrictor and Va-
sodilator systems of the kidney whereas others
reflected methodologic difficulties both in measure-
ments of PG's and in the use of PG synthesis
inhibitors. Although contradictions remain, evi-
dence has accumulated that points to an important
and occasionally central role of PG's in the control
of vascular resistance and thereby of GFR.
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Cortical formation of prostaglandins
Formation of glomerular filtrate is an exclusive

task of the renal cortex. Until about 10 years ago
renal cortical tissue was not believed to generate
PG's, but it is now clear that PG's are formed and
can therefore act in the cortex without being trans-
ported there from synthetic sites in the medulla [1—
3]. Because PG's in general appear to act close to
their site of synthesis, formation within the renal
cortex makes it more likely that modulations in PG
synthesis and degradation exert a local regulatory
function. Microsomal fractions from renal cortical
tissue convert arachidonate and PGG2 predomi-
nantly to 6-keto-PGF1, the relatively stable metab-
olite of prostacyclin PGI2 [4]; this compound is
found in the renal cortex in greater amounts than
other arachidonate metabolites [5]. Endothelial
cells of all arteries and arterioles as well as epitheli-
al cells of Bowman's capsule and mesangial cells of
the glomerular tuft (at least in some species) have
been identified as the cortical sites of localization of
PG cyclooxygenase [61. In agreement with the
anatomical localization of PG synthetase is the
finding that microdissected renal arteries and arter-
ioles convert arachidonate into 6-keto-PGF1a, PGF,
and PGE, with the PGI2 metabolite being the major
product [7]. Isolated glomeruli of the rat generate
primarily PGE2 and PGF2, but small amounts of
PGI2 and thromboxane B2 are also formed [8, 91. In
contrast, proximal and distal tubules do not seem to
possess cyclooxygenase [6] and are not able to
generate PG's [71, which agrees with the apparent
absence of a direct transport effect in these tubular
structures. Although it was initially concluded that
certain arachidonate metabolites were exclusive
products of either the cortex or the medulla, more
sensitive and specific methods have forced revision
of this conclusion. The localization within different
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regions of the kidney of synthesis of specific PG's
appears to be less sharply demarcated than was
originally thought [10, 11].

Influence of prostaglandins on resting vascular tone
Renal cortical PG' s are apparently not involved

to a significant extent in determining the resting
tone of renal resistance vessels. In conscious nor-
movolemic animals, rates of urinary PG excretion
and rates of PG secretion into the vascular bed are
relatively low [12, 13]. This is in a way analogous to
the low tonic stimulation that the kidney vascula-
ture receives normally through sympathetic effer-
ents and to the low basal rates of renin secretion. As
a reflection of the low level of PG release under
control conditions, administration of inhibitors of
PG synthesis, the most studied being the nonsteroi-
dal antiinflammatory drugs (NSAID), is not fol-
lowed by marked changes in renal resistance: in the
normal awake state, both RBF and GFR are gener-
ally unaltered by these drugs [12, 14—22]. For
several reasons, however, it is not possible at
present to exclude totally an influence of PG's on
resting renal vascular tone even in conscious nor-
movolemic animals. PG's are formed by the kid-
neys in this state [12, 13, 21]. Furthermore, a
modest reduction of RBF [15, 23] or GFR [19] by
NSAID has occasionally been observed in con-
scious dogs. Finally, there are doubts about the
adequacy of the inhibition of PG synthesis: basal
levels of PG formation were found not to be blocked
at all [12] or only incompletely [18, 21] by NSAID
administration, and the stimulation of PGE excre-
tion by water immersion could not be prevented by
indomethacin even though base-line PGE excretion
was reduced [24]. The main problem is that rates of
urinary excretion or vascular secretion are only a
rather crude index of the activities of PG's at
cellular sites of synthesis. This is particularly true
for PG's generated in the cortex, because they are
assessed against the background of the much great-
er amounts of PG's originating in the renal medulla.
Similarly, the degree of inhibition of biosynthetic
activity by NSAID may not be homogenous within
different regions of the kidney [25]. As long as PG
synthesis as well as local metabolism and inhibition
cannot be assessed directly, uncertainties will re-
main about the role of these compounds in intracor-
tical physiologic events.

Protective effect of prostaglandins

In marked contrast to the modest contribution of
PG's to the resting tone of renal resistance vessels

is the important role that must be attributed to PG's
whenever maintenance of appropriate renal perfu-
sion and formation of filtrate is threatened. Renal
release of PG's or PG-like material is elevated
following a reduction of renal perfusion pressure
[26—29], and in hypovolemic states induced either
by blood loss [30, 31], low sodium chloride diet [3,
32—34], or anesthesia-laparatomy [12, 13] even with-
out marked changes of arterial pressure. PG synthe-
sis is also increased in glycerol-induced renal failure
[35], in endotoxin-induced shock [30, 36], and dur-
ing elevated ureteral outflow resistance [37, 38].
Administration of NSAID to anesthetized and la-
parotomized animals is followed by an increase of
renal vascular resistance [12, 14, 20, 39—44]. The
deterioration of glomerular function can under
some conditions be quite dramatic. For example,
hemorrhagic hypotension inducing a 30% reduction
of arterial pressure in anesthetized-laparatomized
dogs was associated with only modest reductions of
RBF and GFR with the PG system intact; however,
a large fall of GFR was observed when indometh-
acm was administered [45]. Marked deterioration
was also demonstrated in salt-depleted animals dur-
ing partial renal arterial constriction [46] and in
glycerol-induced renal failure [47]. Hypoxemia in
fetal lambs induced by hypoxic breathing of the ewe
for 5 to 7 mm did not reduce RBF unless PG
synthesis was inhibited [48]. During partial chronic
unilateral constriction of the ureter, GFR of both
single nephrons and whole kidney were well main-
tained; but, after the administration of indometh-
acm or meclofenamate, both glomerular plasma
flow and GFR fell significantly [49]. Protection of
glomerular function by PG's could also be demon-
strated during infusion of angiotensin II (All). Al-
though All alone had only a small effect on GFR, a
marked reduction was observed when NSAID were
given together with All [50]. From these and similar
studies, one may conclude that increased synthesis
of vasodilatory PG's is required to effectively coun-
teract other mechanisms that would cause resist-
ance to rise and RBF and GFR to fall.

Prostaglandins and autoregulation
It has been a logical suggestion to implicate PG's

in the reduction of renal vascular resistance during
reduction of renal perfusion pressure, a phenome-
non generally referred to as autoregulation of RBF
or GFR. Initial studies in isolated dog kidneys
indeed supported such a role for PG's [27]. Results
from more recent experiments in both dog and rat
have led to the prevailing opinion that PG's are not
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involved to a significant extent in autoregulatory
adjustments [43, 51—55]. Because in most of these
studies only RBF was measured [43, 52—55] we
reinvestigated the response of kidney GFR and
nephron GFR (SNGFR) to reduced renal perfusion
pressure. In rats in which the laparatomy-induced
reduction of plasma volume was ameliorated by
plasma replacement, reduction in arterial pressure
to about 75 mm Hg was associated with excellent
autoregulatory responses (Fig. 1). Sensitivity of
SNGFR to changes in arterial pressure
(LSNGFR/LAP) was 0.006 nlmin'mm Hg1 dur-
ing pressure reduction from 115 to 95 mm Hg and
0.126 nlmin'mm Hg' during pressure reduction
from 95 to 77 mm Hg. The SNGFR — AP slope in
the nonautoregulating pressure range 77 to 57 mm
Hg (0.58 nlmiic'mm Hg1) may be taken as an
estimate of the sensitivity of SNGFR to changes in
arterial pressure in the absence of compensatory
resistance changes. From this estimate, we calcu-
late that completeness of autoregulation was 99%
and 78% in the upper (115 to 95 mm Hg) and lower
(95 to 77 mm Hg) pressure ranges, respectively. In
the presence of indomethacin (2 mg/kg plus 5 mg/kg
per hour), SNGFR became more pressure depen-
dent: sensitivity increased significantly to 0.15
nlmin1mm Hg' in the pressure range 115 to 95
mm Hg and to 0.47 nlmin'mm Hg-' in the pres-
sure range 95 to 75 mm Hg (Table I and Fig. 1).
Completeness of autoregulation was reduced to
75% and only 21% in the two pressure ranges,
respectively. We estimate that in the pressure range
from normal to 95 mm Hg, at least 25% of the
observed regulatory adjustment is in some way PG-
dependent, whereas in the pressure range 95 to 77
mm Hg PG-dependency increases to at least 80%. It
appears that inhibition of PG synthesis is associated
with a reduced capability of renal resistance vessels
to dilate following reduction of arterial pressure and

Table 1. Relationship between SNGFR and arterial pressure
(sensitivity), completeness of autoregulation of SNGFR,

and contribution of prostaglandins to autoregulatory
adjustments in rats

Pressure range

115 to 95 95 to 77 77 to 55
mm Hg mm Hg mmHg

Sensitivity (SNGFRJAP),
n1 min1 mm Hg

Control 0.006 0.126 0.61
Indomethacin 0.15 0.47 0.56

Completeness of
autoregulation

Control 99% 78% —
Indomethacin 75 21 —

Contribution of prostaglandins
to autoregulation 25% 80% —

that this dependency of autoregulatory capacity on
PG's is most pronounced in the lowest pressure
range associated with maintained function. Our
results also show that at some pressure glomerular
function decreases with identical slopes whether
PG's are synthetised or not (Fig. 2). The pressure at
which this occurs, however, is significantly lower
with the PG system intact. Similarly, protection of
renal circulation during hemorrhagic hypotension
by PG's has been shown to be limited to a certain
pressure range. If hemorrhage is great enough,
neither a protective effect of PG synthesis stimula-
tion by arachidonate [56] nor a deleterious effect of
NSAID [44] on renal function is observed.

Mechanism of protective action of prostaglandins

Direct intrarenal vascular effects. Although there
are strong arguments for the concept that variations
in the synthesis and release of PG's protect GFR by
maintaining RBF, the mechanisms for this action
are not fully understood. The possibility that the
influence of PG's on renal perfusion is a reflection

Fig. 1. Relationship between nephron filtration rate
(left) and kidney filtration rate (right) and mean
arterial pressure in control rats (circles) and rats
treated with indomethacin (triangles). Values are
the means SEM.
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of cardiac actions of these agents will not be consid-
ered in detail in this paper. One should keep in
mind, however, that administration of NSAID [19,
23, 46] is often associated with bradycardia, and
that reduced cardiac output may contribute to the
deterioration of glomerular function following
NSAID.

In those situations in which enhanced PG synthe-
sis is accompanied by a reduced renal vascular
resistance, such as during reduction of renal perfu-
sion pressure by aortic constriction, the beneficial
influence of PG's could be explained by the vasodi-
latatory properties of these agents. It is well estab-
lished that both PGE2 [57—65] and PGD2 [65] induce
vasodilatation when infused into the kidneys of
dogs or rabbits, whereas PGF2a probably has no
vascular effect [61, 63, 66, 67]. Similarly, infusion of
arachidonate leads to an increase of blood flow that
is most pronounced in the inner cortex [66—68].
Species dependency of the renal vascular effect of
PGE2 and PGD2 has been suggested by several
reports that these PG's as well as arachidonate
increase renal vascular resistance in the rat [69—71].
These results are controversial, however. PGE1
infused into rat kidneys in vivo reduces both affer-
ent and efferent arteriolar resistance, resulting in an
increase in plasma flow through individual glomeru-
li [72]. PG!2 is the only major arachidonate metabo-
lite that induces unequivocal reductions of renal
vascular resistance in both dogs and rats [65, 71, 73,
74]. The simplest explanation for the protective
effect of PG's on renal function would be that a

challenging event stimulates the synthesis of vaso-
active PG's in renal cortical vessel walls and that
their local action results in the reduction of resist-
ance required to maintain organ perfusion and func-
tion.

In circumstances in which enhanced PG synthe-
sis is accompanied by increased renal vascular
resistance, a role for vasoconstrictor metabolites of
arachidonate such as endoperoxides [75] and
thromboxanes can be considered. Thromboxane
formation appears to be elevated in hydronephrotic
kidneys [76], and imidazole, an inhibitor of throm-
boxane synthesis, ameliorates the vasoconstriction
that follows release of ureteral obstruction [77].
Another condition in which thromboxane is formed
is in glycerol-induced acute renal failure [781, and it
has therefore been implicated in the increased vas-
cular resistance in this condition. It is difficult at
present to evaluate the importance of the vasocon-
strictor PG's.

Interaction of prostaglandins with vasoconstric-
tor influences. A number of experimental findings
are not simply explained by the direct vascular
effects of PG's. This evidence indicates that most
challenging events activate vasoconstrictor and va-
sodilator systems simultaneously and that the final
setting of renal resistance represents the net effect
of these excitatory and inhibitory influences.
Whether or not a vasodilatory effect of PG's is
observed depends in part on the activity of the
opposing vasoconstrictor influences. Thus, for ex-
ample, during hemorrhagic hypotension an intact
PG system does not prevent net vasoconstriction;
rather, it attenuates the impact on kidney function
of vasoconstrictor systems activated at the same
time. One would thus predict that blockade of
vasoconstrictor effects might lead to improvement
in the reduced kidney function resulting from inhibi-
tion of PG synthesis. And in fact, NSAID have been
shown to have a deleterious effect on GFR and RBF
during hemorrhagic hypotension, but to be without
effect when the kidneys were denervated and re-
ceived an All antagonist [45]. These results identify
the sympathetic nervous system and the renin-
angiotensin system as main vasoconstrictor ele-
ments acting in the renal vasculature. In agreement
with this are the observations that blockade of PG
synthesis augments the vasoconstrictor response to
administration of All [15, 28, 53, 79], to catechol-
amines [15, 80—821, and to nerve stimulation [69,
82]. Support for simultaneous opposing actions of
endogenous PG vasodilator and All vasoconstrictor
systems is also furnished by the observations that
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Fig. 2. Relationship between filtration rate of single nephrons
and mean arterial pressure in the nonautoregulating pressure
range of 77 to 55 mm Hg. Values are the means SEM.
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by and large when NSAID's induce vasoconstric-
tion vasodilatation is noted with All antagonists
[83—86].

Activation of renin-angiotensin system by prosta-
glandins. Prediction of the resultant net effect on
vascular resistance is complicated further by the
fact that vasodilator and vasoconstrictor systems
are not only activated at the same time, but that
they appear to activate each other. Coactivation of
antagonistic systems by PG's may explain why
indomethacin has been observed in some instances
to be without discernible effects on kidney function
in anesthetized laparotomized animals 1128, 49, 531.
Assuming that PG's not only have a direct relaxing
effect on vascular smooth muscle, but also stimu-
late generation of agents mediating vasoconstric-
tion, then the effect of PG synthesis blockade and
PG administration is not necessarily predictable.
Recent preliminary results illustrate this particular
issue [871. In this study, infusion of PGI2 into rat
kidneys was followed by an increase of efferent
arteriolar resistance rather than by the expected
decrease. This vasoconstriction could be converted
into vasodilatation by simultaneous administration
of the All antagonist saralasin. Thus, application of
the vasodilator PGI2 resulted in net vasoconstric-
tion apparently because of coactivation and action
of endogenous All. The vasodilator property of
PGI2 became predominant only after blocking the
effect of All. This result is in all likelihood a
functional consequence of the increased renin re-
lease that is initiated by exogenous [46, 881 or
endogenous PG's [89—911. Although PG endoperox-
ides [75, 91] and PGD2 [65, 93] have been shown to
elevate renin release, PGI2 is the arachidonate
metabolite that most consistently exerts this effect
[93—96]. Because All in turn increases PG synthesis
[38, 97—1001, the PG-angiotensin interrelationship
should theoretically possess the properties of an
autoregenerative or positive feedback system. The
factors controlling unlimited self-augmentation
within the PG-angiotensin cycle are not fully identi-
fied. Rapid local metabolism of the vasoactive
compounds may be important in limiting active
concentrations [101]. Although it contributes to our
difficulty in untangling the complexities of the con-
trol of RBF, the simultaneous coactivation of vaso-
constrictor and vasodilator systems may have func-
tional advantages for the kidney. In the case of a
challenge to extracellular volume, for example, the
simultaneous intrarenal activation of angiotensin
and PG's permits angiotensin to exert its extrarenal

effects (maintenance of arterial blood pressure,
release of mineralocorticoids, stimulation of thirst,
and so on) without compromising renal function by
its intrarenal vasoconstrictor action.

Interaction of prostaglandins with catechol-
amines. It has been mentioned already that another
vasoconstrictor system that interacts with renal
PG's is the catecholamine-sympathetic nervous
system. Both catecholamines and nerve stimulation
elevate renal PG synthesis and release [38, 102—
1051. As already pointed out, PG's attenuate the
vasoconstrictor effect of nerve stimulation and cate-
cholamines, and conversely, NSAID's augment it
[15, 69, 80—82]. The mechanism of this interaction
may in part be related to the reduction of transmit-
ter release from presynaptic vesicles associated
with PG administration [106, 107]. Experimental
evidence elucidating the functional importance of
the antagonistic effect of PG's on nerve-induced
vasoconstriction is relatively scarce. As mentioned
earlier, the marked deterioration of renal function
induced by NSAID during severe hemorrhagic hy-
potension could be partly prevented by protecting
against endogenous All with saralasin, but full
protection was seen only when in addition the
kidneys were denervated [45].

The interdependency of vasoactive mechanisms
becomes even more complex when one takes into
account the older result that catecholamines and
renal nerves stimulate renin release [108—1111, an
effect that is in all likelihood mediated through 13-
receptors [111—113]. This interrelationship is illus-
trated by studies on the effect of hemorrhage on
renin release and glomerular function [45]. It was
found that during mild hemorrhage, in contrast to
severe hemorrhage, administration of NSAID had
no marked deleterious effect on glomerular function
[1141. The moderate reduction in RBF and GFR
observed could be prevented by giving the adrener-
gic antagonist propranolol in addition to NSAID.
The protective effect of NSAID and propranolol is
probably explained by blockade of the increase in
renal renin secretion normally induced by hemor-
rhage. Propranolol alone or NSAID alone did not
prevent an augmented renin release. One may con-
clude from these results that during less severe
stimulation renin release is to a relatively larger
extent driven by PG's. Removal of PG's by NSAID
under such circumstances, particularly in combina-
tion with removal of other factors promoting renin
release, can then be expected to assist in maintain-
ing glomerular function. In contrast, during severe
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degrees of vasoconstrictor influences, renin release
is driven mainly by factors independent of PG's, for
example by reduced perfusion pressure and in-
creased sympathetic nerve impulses. Removal of
PG's by NSAID would then augment net vasocon-
striction because the vascular effects of sympathet-
ic nerves and All are unopposed by PG's and
because, in view of other strong drives for renin
release, the beneficial effect of PG blockade on
renin release becomes negligible.

Interaction of prostaglandin and kallikrein sys-
tems. Net balance of vasomotor effects at the level
of glomerular arterioles may be tipped toward vaso-
dilatation by another effect of PG's. It has been
shown that PG's activate renal kallikrein [115, 1161
and thereby the level of the potent vasodilators
kallidin and bradykinin. In turn, bradykinin induces
an increase of PG synthesis [29, 38, 117—1201,
probably by activation of phospholipase A [1211;
conversely, aprotinin, a nonspecific inhibitor of
proteases, reduces urinary output of both kallikrein
and PGE [1221. Because bradykinin is a vasodilator,
it may be a factor associated with maintaining RBF
and GFR under conditions in which intrarenal for-
mation of angiotensin and other vasoconstrictors is
elevated. in fact, angiotensin itself may stimulate
the release of kallilrein, thereby limiting its vaso-
constrictor potency within the kidney [1231. This is
also supported by parallel changes of urinary or
plasma kallilrein levels with plasma renin activity
during acute [1241 or chronic [1251 changes in salt
intake. The exact nature of the interrelationship
between bradykinins and PG's is difficult to evalu-
ate at the present time. it appears, however, that

their effects are additive and not mediated through
each other, because bradykinin vasodilatation is
observed after NSAID administration [119, 120].

Role of prostaglandins in feedback control of GFR

Recent evidence indicates that the PG system
participates in the glomerular vascular response to
changes in flow past the macula densa [126, 1271.
An inverse relationship between tubular flow rate
and SNGFR has been demonstrated by several
laboratories [128—130]: when flow past the macula
densa is elevated, SNGFR falls, and when flow
decreases, SNGFR rises. The response to increased
tubular flow has been shown to be mediated by
vasoconstriction of the afferent arteriole [131, 1321.
It is probable that the response to decreased flow
involves vasodilatation at the same vascular site,
although this has not been established.

We have recently found that formation of PG's is
required for feedback responses to be elicited [126,
1271. Although normally an elevation of tubular
urine flow from 0 to 40 nI/mm induces a 40%
reduction of SNGFR, feedback responses were
significantly reduced during inhibition of PG syn-
thesis. As shown in Fig. 3, this effect was demon-
strated with four different agents. In sodium-chlo-
ride-depleted rats in which endogenous synthesis is
probably elevated, higher doses of inhibitors were
required to induce feedback inhibition. In animals
treated with indomethacin, intraaortic infusion of
PGI2 (Fig. 4) or PGE2, but not PGF2, was noted to
restore the capability of glomerular vessels to
change their resistance in response to increases in
loop of Henle flow rate [1271. This finding, like the
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Fig. 3. Changes in early proximal flow rate (EPFR)
induced by elevating perfusion rate in the ioop of
Henle from 0 to 40 nI/mm in rats before (control)
and after the Lv. administration of four different
inhibitors of PG synthesis. Values are the means
SEM, and asterisks indicate changes significantly
different from control [126].
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Fig. 4. Changes in early proximal flow rate (EPFR)
induced by elevating perfusion rate in the loop of
Henle from 0 to 40 nllmin in rats before (control),
during the i.v. administration of indomethacin, and
during superimposed intraaortic infusion of PGJ2
in two different doses. Values are the means
SEM, and asterisks indicate changes significantly
different from control.

studies described earlier [87], represents an in-
stance of a paradoxical effect of the vasodilator
PGI2. Its infusion into an animal in which PG
synthesis is inhibited leads to the restoration of a
vasoconstrictor response.

It is unclear at present how PG's are integrated
into the mechanism of tubuloglomerular coupling. It
is possible that PG's are necessary for vessels to be
responsive to the tubular signal, but that PG's are
not directly involved in the change of vascular tone.
The demonstration that alterations of vascular
resistance may be produced through the feedback
mechanism when PG's are infused into animals in
which endogenous synthesis is inhibited suggests
that variations in endogenous synthesis are not
responsible for the response. It seems likely that
instead PG's are necessary for the interaction with
some other vascular mediator. It has been shown
that the vasodilator response to furosemide, which
may be feedback mediated, can be prevented by
prior administration of indomethacin [133, 1341,
whereas the vasoconstrictor response to hypertonic
sodium chloride, which is feedback mediated [135],
could not be blocked by this drug [136]. This would
suggest a dual mechanism for feedback mediation:
the vasodilator response (to reduced loop of Henle
flow rates) being dependent on PG's but the vaso-
constrictor response (to elevated loop of Henle flow
rates) being independent of them. This, however, is
only speculative at this point.

It has been known for some time that the tubulo-
glomerular feedback mechanism does not produce
symmetrical responses to changes in tubular flow.
In animals in a control hydropenic state, increases

in tubular flow produce rather marked decreases in
filtration rate, but decreases in flow result in more
modest increases in filtration rate [137, 138]. The
mechanism is thus positioned to stabilize filtration
rate in response to such challenges as a sudden
increase in arterial pressure which, if unopposed,
would lead to marked loss of salt and water. The
mechanism is probably less potent in face of a
challenging event that tends to reduce GFR. Thus,
it seems likely that the protective effect of PG's in
some of the conditions discussed above, such as
hemorrhagic hypotension, is not primarily a conse-
quence of their role in the feedback mechanism.
This conclusion can only be tentative, however.
Feedback sensitivity in the low-flow range is in-
creased by a number of manipulations, such as a
low sodium chloride diet [139], and it is possible
that in some of the conditions discussed, such
changes in sensitivity could lead to a much larger
contribution of the feedback mechanism than would
be predicted from measurements in animals in a
control state.

Localization of prostaglandins effects

Some information is available that permits local-
ization of the vascular sites of the interaction of
PG's with other intrarenal hormones. The major
resistance vessels in the renal vasculature are the
afferent and efferent arterioles and possibly the
interlobular arteries [140]. RBF is controlled by
changes of the sum of these resistances, but the rate
of glomerular filtration is a more complex function
of total intrarenal resistance. Computer modelling
of glomerular function leads to the prediction that
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changes in afferent arteriolar resistance induce par-
allel and inverse changes of both RBF and GFR
[141—144] largely independent of the initial condi-
tions of filtration dynamics. Changes in efferent
arteriolar resistance will also be accompanied by
inverse changes of plasma flow. GFR, however, is
predicted to have a biphasic response to changing
efferent resistance: in a low resistance range it will
increase with increasing resistance, but in a high
resistance range the relationship will become in-
verse with increasing resistance, causing decreasing
filtration. Furthermore, the effect of efferent resist-
ance changes depends on the initial filtration condi-
tions. If equilibrium of filtration forces is achieved
by the end of the glomerular capillary tuft, then the
increase of GFR with increased efferent resistance
will be relatively small.

Afferent arteriole. During certain severe inter-
ventions, such as hemorrhage in the presence of
NSAID, RBF and GFR change in parallel, suggest-
ing that the resistance increase is localized to a
predominant extent in preglomerular resistance
vessels [31, 45]. Micropuncture studies have con-
firmed this expectation. Administration of exoge-
nous All and indomethacin [50], or administration
of indomethacin to salt-depleted animals [145] are
situations in which afferent resistance rises and
glomerular plasma flow and SNGFR fall markedly
and in parallel. PGE1 infusion is associated with a
decrease of both pre- and post-glomerular resis-
tances, indicating that the afferent arteriole is one of
the target tissues of angiotensin-PG interaction,
particularly during strong stimulation of both sys-
tems.

Recent evidence has shown that feedback control
of glomerular hemodynamics, which as discussed
above requires PG's, is predominantly exerted at
the level of the afferent arteriole [131, 132]. Some
effect on the efferent arteriole or the glomerular
capillary tuft, particularly in response to reduced
flow rates through the loop of Henle, cannot be
excluded, however.

Efferent arteriole. In several studies in anesthe-
tized laparatomized animals in which N SAID re-
duced RBF [42, 44] and exogenous PG's increased
it [57—61, 63, 65], a change of GFR was not ob-
served. A similar finding was reported for single
nephrons where indomethacin induced a fall in
nephron plasma flow, but left SNGFR unaltered
[50]. One explanation for these results is that the
vasoconstrictor influence uncovered by PG synthe-
sis inhibition is acting under these circumstances
predominantly at the level of the efferent arteriole.

A number of lines of evidence indicate that All has
such a predominant action on efferent resistance. In
isolated kidneys, both the administration of All and
the administration of renin substrate were associat-
ed with reduced renal plasma flow and increased
GFR [146]. Infusion of angiotensin in a dose that
increased arterial blood pressure by 10% induced a
much greater increase of efferent than afferent
resistance [147, 148]; the difference was even more
pronounced when the rise of arterial blood pressure
was prevented [147]. Although afferent arteriolar
resistances were not significantly different between
salt-depleted and salt-loaded rats, efferent resist-
ance was significantly higher during salt depletion
[145], a state associated with elevated renin release.
This higher efferent resistance and the concomitant
increase of glomerular capillary pressure had the
consequence that SNGFR was the same as it was in
salt-loaded rats even though plasma flow was re-
duced. It appears that at a relatively low level of
renin and PG activity the efferent arterioles are the
main sites of their interaction. When PG's are
removed, efferent arterioles constrict somewhat
[145]. The result of this constriction may be mainte-
nance of GFR despite reduction of RBF. Because
the dependency of GFR on efferent resistance is
biphasic, however, efferent arteriolar vasoconstric-
tion protects GFR only in a limited range of resis-
tances. Administration of NSAID to salt-depleted
rats in one study, for example, increased efferent
resistance more than it did afferent resistance, and
the degree of efferent vasoconstriction was unable
to preserve SNGFR because the fall of glomerular
plasma flow outweighed the increase of glomerular
capillary pressure [145]. Thus, it appears to be a
role of PG's to counteract vasoconstrictor actions
also at the efferent arteriolar level. The effect of
such an action of PG's on maintenance of glomeru-
lar function is limited. Increases of efferent arterio-
lar resistance are beneficial for GFR maintenance
only in a narrow resistance range and when afferent
resistance is not augmented at the same time.
NSAID administration in states of stimulated vaso-
constrictor and PG systems will therefore create a
degree of efferent vasoconstriction that is associat-
ed with reduced GFR, in particular because afferent
resistance also increases. Thus, RBF and GFR will
be dissociated only within certain limits of isolated
or predominant efferent resistance changes.

Glomerular capillary tuft. The filtration coeffi-
cient Kf, the product of filtration area and hydraulic
permeability of the glomerular capillaries, is anoth-
er determinant of the rate of filtration that appears
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to be modulated by the rate of formation of intrare-
nal hormones. Therefore, it has to be considered as
a possible site of interaction of PG's with other
hormonal factors. Infusion of PGE1 induced a re-
duction of Kf to half normal [72],an effect shared by
other vasodilator substances, for example by brady-
kinin [72]. Although 's and All have antagonistic
actions at the glomerular resistance vessels, they
seem to have the same effect on Kf because exoge-
nous All also reduces Kf [147, 148]. The reduction
of Kf was noted even with angiotensin doses that
did not change afferent or efferent arteriolar resis-
tances [148]. This result may have a structural
correlate in the changes observed by electron mi-
croscopy in both in vivo glomeruli [149] and in
cultured glomerular cells [150]. Recent results sug-
gest that the PG effect on K is in fact angiotensin
mediated. Infusion of PGI2, which induced an in-
crease of efferent arteriolar resistance as mentioned
earlier, was associated with a reduction of Kf [87].
This PGI2-induced decrease of Kf could be reverted
to control by simultaneous administration of sarala-
sin [87]. Furthermore, the decrease of Kf observed
in salt depletion and unilateral ureteral constriction,
where both All and PG production are elevated,
was not affected by NSAID, suggesting that the
alteration of Kf in these cases was not PG depen-
dent [49, 145]. Further support for the conclusion
that PG's do not appear to modify Kf directly comes
from the observation that PGE2 does not produce
structural changes of cultured glomerular cells
[150]. In view of these findings and in view of the
fact that GFR is relatively independent of Kf under
conditions at or close to filtration pressure equilibri-
um, it is unlikely that any of the influences of PG's
on filtrate formation are a reflection of Kf modifica-
tions.

Summary

Figure 5 summarizes the effects of the various
control systems on renal resistance vessels and on
the glomerular tuft. The interrelationships between
these systems discussed in this paper are indicated.
Although the scheme as presented is already diffi-
cult to untangle, it is probably still a simplification.
Factors waiting to be studied in more detail and
possibly to be integrated as controlling variables
include other arachidonate intermediates and
metabolites such as free radicals, endoperoxides,
leukotrienes, and vasoconstrictor PG's, histamine,
adenine nucleotides, and adenosine, cyclic AMP
and ionized calcium, mineralocorticoids and vaso-
pressin, endogenous inhibitors of kallikrein, renin,

and PG synthesis, and the enzymes responsible for
their metabolism.

The following conclusions seem justified at this
time: (1) Prostaglandins are synthetized in the renal
cortex, with sites of localization including the arte-
rial tree. The main, but not exclusive, product is
PG!2. Local cortical PG's can therefore influence
glomerular arteriolar resistance and affect RBF and
GFR. (2) Prostaglandins are not major determinants
of the resting tone of renal resistance vessels in
normovolemic animals. (3) Prostaglandins protect
glomerular function in potentially hazardous situa-
tions such as salt depletion, hemorrhage, endotoxin
shock, and hydronephrosis. PG's participate in
adjustments of renal vascular resistance that are
responsible for autoregulation of GFR during re-
duced renal perfusion pressure. (4) Prostaglandins
exert this effect in part by their own vasodilatory
properties; in some instances, a direct vascular
effect of vasoconstrictor PG's is possible. (5) Pros-
taglandins exert their protective effect largely by
interaction with other intrarenal hormonal systems:
(a) Prostaglandins antagonize the constrictor effects
of the renin-angiotensin system within the kidney.
They are partly responsible for renin release and
their synthesis is in turn augmented by angiotensin.
(b) Prostaglandins antagonize the intrarenal con-
strictor effects of the catecholamine-sympathetic
nervous system. (c) Prostaglandins may potentiate
the effects of the dilator bradykinin and mediate
some of its actions. (6) Prostaglandins are required

Myogenic
control

Fig. 5. Excitatory (+) and inhibitory (—) effects of intrarenal
hormonal and other regulatory systems on afferent and efferent
arterioles and on the glomerular tuft (broken lines) and their
relationships of mutual activation (solid lines). The scheme
disregards the anatomical localization of the systems as well as
the compartments of formation of the vasoactive compounds.
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for tubuloglomerular feedback control of GFR and
thus participate in protection of extracellular vol-
ume against excessive salt loss. (7) Prostaglandins
interact with other intrarenal hormone systems at
the level of both afferent and efferent arterioles.

Reprint requests to Dr. J. Schnermann, Physio!ogisches Insti-
rut der Universität München, PettenkoferstraJ3e 12, D-8000
München 2, West Germany
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