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Abstract

We establish a boundary Harnack principle for a large class of subordinate Brownian motions, including
mixtures of symmetric stable processes, in κ-fat open sets (disconnected analogue of John domains). As an
application of the boundary Harnack principle, we identify the Martin boundary and the minimal Martin
boundary of bounded κ-fat open sets with respect to these processes with their Euclidean boundaries.
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1. Introduction

The boundary Harnack principle for nonnegative classical harmonic functions is a very deep
result in potential theory and has very important applications in probability and potential theory.

In [4] Bogdan showed that the boundary Harnack principle is valid in bounded Lipschitz
domains for nonnegative harmonic functions of rotationally invariant stable processes and then
in [27] Song and Wu extended the boundary Harnack principle for rotationally invariant stable
processes to bounded κ-fat open sets. Subsequently Bogdan–Stos–Sztonyk [7] and Sztonyk [29]
extended the boundary Harnack principle to symmetric (not necessarily rotationally invariant)
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stable processes. In a recent paper [6], Bogdan, Kulczycki and Kwasnicki proved a version of
the boundary Harnack inequality for nonnegative harmonic functions of rotationally invariant
stable processes in arbitrary open sets.

By using some perturbation methods, the boundary Harnack principle has been generalized
to some classes of rotationally invariant Lévy processes including relativistic stable processes
and truncated stable processes. These processes can be regarded as perturbations of rotationally
invariant stable processes and their Green functions on bounded smooth domains are comparable
to their counterparts for rotationally invariant stable processes (see [9,12,15–17,22]). This
comparison of Green functions played a crucial role in the arguments of [12,16,17].

In this paper, we will show that, under minimal conditions, the boundary Harnack principle
is valid for subordinate Brownian motions with characteristic exponents of the form Φ(ξ) =
|ξ |α`(|ξ |2) for some α ∈ (0, 2) and some positive function ` which is slowly varying at ∞.
Examples of this class of subordinate Brownian motions include, among others, relativistic
stable processes and mixtures of rotationally invariant stable processes. The Green functions
of subordinate Brownian motions considered here behave like c|x |−d+α(`(|x |−2))−1 near
the origin. So these subordinate Brownian motions cannot be regarded as perturbations of
rotationally invariant stable processes in general and their Green functions in bounded smooth
domains are not comparable to their counterparts for rotationally invariant stable processes.

Our proof of the boundary Harnack principle will be similar to the arguments in [4,27] for
rotationally invariant stable processes. One of the key ingredients is a sharp upper bound for the
expected exit time from a ball which, in the case of stable processes, follows easily from the
explicit formula for the Green function of a ball. However, the known methods seem to fail to
get the desired upper bound here and a substantially new idea needs to be introduced. We rely
on the fluctuation theory for real-valued Lévy processes and borrow some results from [26] to
accomplish the desired upper bound.

The organization of this paper is as follows. In Section 2 we use the fluctuation theory for
real-valued Lévy processes to establish a nice upper bound on the expected exit time from an
interval for a one-dimensional subordinate Brownian motion. In Section 3, we use the results
of Section 2 to establish the desired upper bound on the expected exit time from a ball for a
multi-dimensional subordinate Brownian motion and an upper bound on the Poisson kernel of a
ball. The proof of the boundary Harnack principle is given in Section 4 and in the last section we
apply our boundary Harnack principle to study the Martin boundary with respect to subordinate
Brownian motions.

In this paper we will use the following convention: the values of the constants r1, r2, . . .

will remain the same throughout this paper, while the values of the constants c1, c2, . . . or
C,C1,C2, . . . might change from one appearance to another. The dependence of the constants
on the dimension, the index α and the slowly varying function will not be mentioned explicitly,
while the dependence of the constants on other quantities will be expressed using c(·) with the
arguments representing the quantities the constant depends on. In this paper, we use “:=” to
denote a definition, which is read as “is defined to be”. f (t) ∼ g(t), t → 0 ( f (t) ∼ g(t),
t →∞, respectively) means limt→0 f (t)/g(t) = 1 (limt→∞ f (t)/g(t) = 1, respectively).

2. Some results on one-dimensional subordinate Brownian motion

Suppose that W = (Wt : t ≥ 0) is a one-dimensional Brownian motion with

E
[
eiξ(Wt−W0)

]
= e−tξ2

, ∀ξ ∈ R, t > 0,
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and S = (St : t ≥ 0) is a subordinator (a nonnegative increasing Lévy process) independent of
W and with Laplace exponent φ, that is

E
[
e−λSt

]
= e−tφ(λ), ∀t, λ > 0.

A C∞ function g : (0,∞)→ [0,∞) is called a Bernstein function if (−1)n Dng ≤ 0 for every
positive integer n. Any Bernstein function g can be written in the following form

g(λ) = a + bλ+
∫
∞

0
(1− e−λt )µ(dt)

where a, b ≥ 0 and µ is a measure on (0,∞) with
∫
∞

0 (1 ∧ t)µ(dt) < ∞. µ is called the Lévy
measure of g. It is well known that a function g is the Laplace exponent of a subordinator if
and only if g is a Bernstein function with limλ→0 g(λ) = 0. A Bernstein function g is called
a complete Bernstein function if its Lévy measure µ has a completely monotone density with
respect to the Lebesgue measure. For details on examples and properties of complete Bernstein
functions, one can see [13,23] or [26]. One of the important properties of complete Bernstein
functions is that f is complete Bernstein if and only if λ 7→ λ/ f (λ) is complete Bernstein. We
will use this property in the paper.

Throughout this paper we will assume that φ is a complete Bernstein function such that

φ(λ) = λα/2`(λ) (2.1)

for some α ∈ (0, 2) and some positive function ` which is slowly varying at ∞, that is,
`(λt)/`(t) → 1 as t → ∞ for every λ > 0. For concepts and results related to the slowly
varying functions, we refer our readers to [3].

Using Corollary 2.3 of [25] or Theorem 2.3 of [21] we know that the potential measure U of
S defined by

U (A) := E
∫
∞

0
1(St∈A)dt =

∫
∞

0
P(St ∈ A)dt

has a decreasing density u.
By using the Tauberian theorem (Theorem 1.7.1 in [3]) and the monotone density theorem

(Theorem 1.7.2 in [3]), one can easily check that

u(t) ∼
tα/2−1

0(α/2)
1

`(t−1)
, t → 0. (2.2)

Let µ(t) be the density of the Lévy measure of φ. It follows from Proposition 2.23 of [26] that

µ(t) ∼
α

20(1− α/2)
`(t−1)

t1+α/2 , t → 0. (2.3)

The subordinate Brownian motion X = (X t : t ≥ 0) defined by X t = WSt is a symmetric
Lévy process with the characteristic exponent

Φ(θ) = φ(θ2) = |θ |α`(θ2), ∀θ ∈ R.

Let X t := sup{0 ∨ Xs : 0 ≤ s ≤ t} and let L t be a local time of X − X at 0. L is also called
a local time of the process X reflected at the supremum. Then the right continuous inverse L−1

t
of L is a possibly killed subordinator and is called the ladder time process of X . The process
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X L−1
t

is also a possibly killed subordinator and is called the ladder height process of X . (For the
basic properties of the ladder time and ladder height processes, we refer the readers to Chapter 6
of [1].)

It follows from Corollary 9.7 of [10] that the Laplace exponent χ of the ladder height process
of X is given by

χ(λ) = exp
(

1
π

∫
∞

0

log(Φ(λθ))
1+ θ2 dθ

)
= exp

(
1
π

∫
∞

0

log(|θ |αλα`(θ2λ2))

1+ θ2 dθ
)
, ∀λ > 0. (2.4)

Under our assumptions, we have the following result.

Proposition 2.1. The Laplace exponent χ of the ladder height process of X is a special
Bernstein function. i.e., λ/χ(λ) is also a Bernstein function.

Proof. Define ψ(λ) = λ/φ(λ). Let T be a subordinator independent of W and with Laplace
exponent ψ and let Y = (Yt : t ≥ 0) be the subordinate Brownian motion defined by Yt = WTt .
Let Ψ be the characteristic exponent of Y . Then

Φ(θ)Ψ(θ) = φ(θ2)ψ(θ2) = θ2, ∀θ ∈ R.

Let ρ be the Laplace exponent of the ladder height process of Y . Then by (2.4) we have

χ(λ)ρ(λ) = exp
(

1
π

∫
∞

0

log(Φ(θλ))+ log(Ψ(θλ))
1+ θ2 dθ

)
= exp

(
1
π

∫
∞

0

log(Φ(θλ)Ψ(θλ))
1+ θ2 dθ

)
= exp

(
1
π

∫
∞

0

log(θ2λ2)

1+ θ2 dθ
)
= λ.

Thus χ is a special Bernstein function. �

Proposition 2.2. If there are M > 1, δ ∈ (0, 1) and a nonnegative integrable function f on
(0, δ) such that∣∣∣∣log

(
`(λ2θ2)

`(λ2)

)∣∣∣∣ ≤ f (θ), ∀(θ, λ) ∈ (0, δ)× (M,∞), (2.5)

then

lim
λ→∞

χ(λ)

λα/2(`(λ2))1/2
= 1. (2.6)

Proof. Using the identity

λβ/2 = exp
(

1
π

∫
∞

0

log(θβλβ)

1+ θ2 dθ
)
, ∀λ, β > 0,

we get easily from (2.4) that
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χ(λ) = λα/2 exp
(

1
π

∫
∞

0

log(`(λ2θ2))

1+ θ2 dθ
)

= λα/2(`(λ2))1/2 exp
(

1
π

∫
∞

0
log

(
`(λ2θ2)

`(λ2)

)
1

1+ θ2 dθ
)
.

By Potter’s Theorem (Theorem 1.5.6 (1) in [3]), there exists λ0 > 1 such that∣∣∣∣log
(
`(λ2θ2)

`(λ2)

)∣∣∣∣ 1

1+ θ2 ≤ 2
log θ

1+ θ2 , ∀(θ, λ) ∈ [1,∞)× [λ0,∞).

Thus by using the dominated convergence theorem in the first integral below, the uniform
convergence theorem (Theorem 1.2.1 in [3]) in the second integral, and the assumption (2.5)
in the third integral, we have

lim
λ→∞

∫
∞

0
log

(
`(λ2θ2)

`(λ2)

)
1

1+ θ2 dθ

= lim
λ→∞

(∫
∞

1
+

∫ 1

δ

+

∫ δ

0

)
log

(
`(λ2θ2)

`(λ2)

)
1

1+ θ2 dθ = 0. �

In the case φ(λ) = λα/2 for some α ∈ (0, 2), the assumption of the proposition above is
trivially satisfied. Now we give some other examples.

Example 2.3. Suppose that α ∈ (0, 2) and define

φ(λ) = (λ+ 1)α/2 − 1.

Then φ is a complete Bernstein function which can be written as φ(λ) = λα/2`(λ) with

`(λ) =
(λ+ 1)α/2 − 1

λα/2
.

Using elementary analysis one can easily check that there is a nonnegative integrable function f
on (0, 1) such that (2.5) is satisfied.

Example 2.4. Suppose 0 < β < α < 2 and define

φ(λ) = λα/2 + λβ/2.

Then φ is a complete Bernstein function which can be written as φ(λ) = λα/2`(λ) with

`(λ) = 1+ λ(β−α)/2.

Using elementary analysis one can easily check that there is a nonnegative integrable function f
on (0, 1) such that (2.5) is satisfied.

Example 2.5. Suppose that α ∈ (0, 2) and β ∈ (0, 2− α). Define

φ(λ) = λα/2(log(1+ λ))β/2.

By using the facts that λ and log(1 + λ) are complete Bernstein functions and properties of
complete Bernstein functions (see [26]), one can easily check that φ is a complete Bernstein
function. φ can be written as φ(λ) = λα/2`(λ) with

`(λ) = (log(1+ λ))β/2.
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To check that there is a nonnegative integrable function f on (0, 1) such that (2.5) is satisfied,
we only need to bound the function∣∣∣∣log

(
log(1+ λ2θ2)

log(1+ λ2)

)∣∣∣∣
for large λ and small θ . We will consider two cases separately. Fix an M > 1 and a θ < 1.

(1) λ ≥ M , θ < 1 and λ > 1/θ . In this case, by using the fact that for any a > 0 the function
x 7→ x

x−a is decreasing on (a,∞), we get that∣∣∣∣log
(

log(1+ λ2θ2)

log(1+ λ2)

)∣∣∣∣ = log
(

log(1+ λ2)

log(1+ λ2θ2)

)
≤ log

(
log(1+ λ2)

log(θ2)+ log(1+ λ2)

)
≤ log

(
log(1+ θ−2)

log(θ2)+ log(1+ θ−2)

)
= log

(
log(1+ θ2)− log(θ2)

log(1+ θ2)

)
.

(2) λ ≥ M , θ < 1 and λ ≤ 1/θ . In this case we have∣∣∣∣log
(

log(1+ λ2θ2)

log(1+ λ2)

)∣∣∣∣ = log
(

log(1+ λ2)

log(1+ λ2θ2)

)
≤

(
log(1+ λ2)

log(1+ M2θ2)

)
≤

(
log(1+ θ−2)

log(1+ M2θ2)

)
.

Combining the results above one can easily check that there is a nonnegative integrable function
f on (0, 1) such that (2.5) is satisfied.

Example 2.6. Suppose that α ∈ (0, 2) and β ∈ (0, α). Define

φ(λ) = λα/2(log(1+ λ))−β/2.

By using the facts that λ and log(1 + λ) are complete Bernstein functions and properties of
complete Bernstein functions (see [26]), one can easily check that φ is a complete Bernstein
function. φ can be written as φ(λ) = λα/2`(λ) with

`(λ) = (log(1+ λ))−β/2.

Similarly to the example above, one can use elementary analysis to check that there is a
nonnegative integrable function f on (0, 1) such that (2.5) is satisfied.

The method of Example 2.5 can be used to construct a whole class of complete Bernstein
functions satisfying the assumptions of this paper. For instance, by using arguments similar to
the one used in Example 2.5, one can check for α ∈ (0, 2), β ∈ (0, 2 − α), functions like
λα/2(log(1+ log(1+ λ)))β/2, λα/2(log(1+ log(1+ log(1+ λ))))β/2, . . . are complete Bernstein
functions satisfying the assumptions of this paper. Similar to Example 2.6, for any α ∈ (0, 2), β ∈
(0, α), functions like λα/2(log(1+ log(1+λ)))−β/2, λα/2(log(1+ log(1+ log(1+λ))))−β/2, . . .
are complete Bernstein functions satisfying the assumptions of this paper.
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In the remainder of this section we will always assume that the assumption of Proposition 2.2
is satisfied. It follows from Propositions 2.1 and 2.2 and Corollary 2.3 of [25] that the potential
measure V of the ladder height process of X has a decreasing density v. Since X is symmetric,
we know that the potential measure V̂ of the dual ladder height process is equal to V .

In light of Proposition 2.2, one can easily apply the Tauberian theorem (Theorem 1.7.1 in [3])
and the monotone density theorem (Theorem 1.7.2 in [3]) to get the following result.

Proposition 2.7. As x → 0, we have

V ((0, x)) ∼
xα/2

0(1+ α/2)(`(x−2))1/2
,

v(x) ∼
xα/2−1

0(α/2)(`(x−2))1/2
.

It follows from Proposition 2.2 and Lemma 7.10 of [19] that the process X does not creep
upwards. Since X is symmetric, we know that X also does not creep downwards. Thus if, for any
a ∈ R, we define

τa = inf{t > 0 : X t < a}, σa = inf{t > 0 : X t ≤ a},

then we have

Px (τa = σa) = 1, x > a. (2.7)

Let G(0,∞)(x, y) be the Green function of X (0,∞), the process obtained by killing X upon
exiting from (0,∞). Then we have the following result.

Proposition 2.8. For any x, y > 0 we have

G(0,∞)(x, y) =


∫ x

0
v(z)v(y + z − x)dz, x ≤ y,∫ x

x−y
v(z)v(y + z − x)dz, x > y.

Proof. By using (2.7) and Theorem 20 on page 176 of [1] we get that for any nonnegative
function f on (0,∞),

Ex

[∫
∞

0
f (X (0,∞)t )dt

]
= k

∫
∞

0

∫ x

0
v(z) f (x + z − y)v(y)dzdy, (2.8)

where k is a constant depending on the normalization of the local time of the process X reflected
at its supremum. We choose k = 1. Then

Ex

[∫
∞

0
f (X (0,∞)t )dt

]
=

∫
∞

0
v(y)

∫ x

0
v(z) f (x + y − z)dzdy

=

∫ x

0
v(z)

∫
∞

0
v(y) f (x + y − z)dydz =

∫ x

0
v(z)

∫
∞

x−z
v(w + z − x) f (w)dwdz

=

∫ x

0
f (w)

∫ x

x−w
v(z)v(w + z − x)dzdw

+

∫
∞

x
f (w)

∫ x

0
v(z)v(w + z − x)dzdw. (2.9)
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On the other hand,

Ex

[∫
∞

0
f (X (0,∞)t )dt

]
=

∫
∞

0
G(0,∞)(x, w) f (w)dw

=

∫ x

0
G(0,∞)(x, w) f (w)dw +

∫
∞

x
G(0,∞)(x, w) f (w)dw. (2.10)

By comparing (2.9) and (2.10) we arrive at our desired conclusion. �

For any r > 0, let G(0,r) be the Green function of X (0,r), the process obtained by killing X
upon exiting from (0, r). Then we have the following result.

Proposition 2.9. For any R > 0, there exists C = C(R) > 0 such that∫ r

0
G(0,r)(x, y)dy ≤ C

rα/2

(`(r−2))1/2

xα/2

(`(x−2))1/2
, x ∈ (0, r), r ∈ (0, R).

Proof. For any x ∈ (0, r), we have∫ r

0
G(0,r)(x, y)dy ≤

∫ r

0
G(0,∞)(x, y)dy

=

∫ x

0

∫ x

x−y
v(z)v(y + z − x)dzdy +

∫ r

x

∫ x

0
v(z)v(y + z − x)dzdy

=

∫ x

0
v(z)

∫ x

x−z
v(y + z − x)dydz

+

∫ x

0
v(z)

∫ r

x
v(y + z − x)dydz ≤ 2V ((0, r))V ((0, x)).

Now the desired conclusion follows easily from Proposition 2.7 and the continuity of V ((0, x))
and xα/2/(`(x−2))1/2. �

As a consequence of the result above, we immediately get the following.

Proposition 2.10. For any R > 0, there exists C = C(R) > 0 such that∫ r

0
G(0,r)(x, y)dy ≤ C

rα/2

(`(r−2))1/2

(
xα/2

(`(x−2))1/2
∧

(r − x)α/2

(`((r − x)−2))1/2

)
,

x ∈ (0, r), r ∈ (0, R).

3. Key estimates on multi-dimensional subordinate Brownian motions

In the remainder of this paper we will always assume that d ≥ 2 and that α ∈ (0, 2). From
now on we will assume that B = (Bt : t ≥ 0) is a Brownian motion on Rd with

E
[
eiξ ·(Bt−B0)

]
= e−t |ξ |2 , ∀ξ ∈ Rd , t > 0.

Suppose that S = (St : t ≥ 0) is a subordinator independent of B and that its Laplace exponent
φ is a complete Bernstein function satisfying all the assumptions of the previous section. More
precisely we assume that there is a positive function ` on (0,∞) which is slowly varying at∞
such that φ(λ) = λα/2`(λ) for all λ > 0 and that there is a nonnegative integrable function f on
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(0, δ) for some δ > 0 such that (2.5) holds. As in the previous section, we will use u(t) and µ(t)
to denote the potential density and the Lévy density of S respectively.

In what follows, we will use X = (X t : t ≥ 0) to denote the subordinate Brownian motion
defined by X t = BSt . Then it is easy to check that when d ≥ 3 the process X is transient. In the
case of d = 2, we will always assume the following:

A1. The potential density u of S satisfies the following assumption:

u(t) ∼ ctγ−1, t →∞ (3.1)

for some constants c > 0 and γ < 1.
Under this assumption, one can easily see that the integral∫

∞

0
(4π t)−1 exp

(
−

r2

4t

)
u(t)dt

is finite for all r > 0 and thus the process X is also transient for d = 2.
We will use G(x, y) = G(x − y) to denote the Green function of X . The Green function G

of X is given by the following formula

G(x) =
∫
∞

0
(4π t)−d/2e−|x |

2/(4t)u(t)dt, x ∈ Rd .

Using this formula, we can easily see that G is radially decreasing and continuous in Rd
\ {0}.

In order to get the asymptotic behavior of G near the origin, we need some additional
assumption on the slowly varying function `. For any y, t, ξ > 0, define

Λ`,ξ (y, t) :=


`(1/y)

`(4t/y)
, y <

t

ξ
,

0, y ≥
t

ξ
.

We will always assume that
A2. There is a ξ > 0 such that

Λ`,ξ (y, t) ≤ g(t), ∀y, t > 0,

for some positive function g on (0,∞) with∫
∞

0
t (d−α)/2−1e−t g(t)dt <∞.

It is easy to check (see the proofs of Theorem 3.6 and Theorem 3.11 in [26]) that for the
subordinators corresponding to Examples 2.3–2.6, A1 and A2 are satisfied.

Under these assumptions we have the following.

Theorem 3.1. The Green function G of X satisfies the following

G(x) ∼
α0((d − α)/2)

2α+1πd/20(1+ α/2)

1

|x |d−α`(|x |−2)
, |x | → 0.

Proof. This follows easily from A1, A2, (2.2) and Lemma 3.3 of [26]. We omit the details. �
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Let J be the jumping function of X , then

J (x) =
∫
∞

0
(4π t)−d/2e−|x |

2/(4t)µ(t)dt, x ∈ Rd .

Thus J (x) = j (|x |) with

j (r) =
∫
∞

0
(4π t)−d/2e−r2/(4t)µ(t)dt, r > 0.

It is easy to see that j is continuous and decreasing on (0,∞). In order to get the asymptotic
behavior of j near the origin, we need some additional assumption on the slowly varying function
`. For any y, t, ξ > 0, define

Υ`,ξ (y, t) :=


`(4t/y)

`(1/y)
, y <

t

ξ
,

0, y ≥
t

ξ
.

We will always assume that
A3. There is a ξ > 0 such that

Υ`,ξ (y, t) ≤ h(t), ∀y, t > 0

for some positive function h on (0,∞) with∫
∞

0
t (d+α)/2−1e−t h(t)dt <∞.

It is easy to check (see the proofs of Theorem 3.6 and Theorem 3.11 in [26]) that for the
subordinators corresponding to Examples 2.3–2.6, A3 is satisfied.

Theorem 3.2. The function j satisfies the following

j (r) ∼
α0((d + α)/2)

21−απd/20(1− α/2)

`(r−2)

rd+α , r → 0.

Proof. This follows easily from A1, A3, (2.3) and Lemma 3.3 of [26]. We omit the details. �

For any open set D, we use τD to denote the first exit time from D, i.e., τD = inf{t > 0 :
X t 6∈ D}. Given an open set D ⊂ Rd , we define X D

t (ω) = X t (ω) if t < τD(ω) and X D
t (ω) = ∂

if t ≥ τD(ω), where ∂ is a cemetery state. We now recall the definition of harmonic functions
with respect to X .

Definition 3.3. Let D be an open subset of Rd . A function u defined on Rd is said to be

(1) harmonic in D with respect to X if

Ex
[
|u(XτB )|

]
<∞ and u(x) = Ex

[
u(XτB )

]
, x ∈ B,

for every open set B whose closure is a compact subset of D;
(2) regular harmonic in D with respect to X if it is harmonic in D with respect to X and for each

x ∈ D,

u(x) = Ex
[
u(XτD )

]
;

(3) harmonic for X D if it is harmonic for X in D and vanishes outside D.



P. Kim et al. / Stochastic Processes and their Applications 119 (2009) 1601–1631 1611

In order for a scale invariant Harnack inequality to hold, we need to assume some additional
conditions on the Lévy density µ of S. We will always assume that

A4. The Lévy density µ of S satisfies the following conditions: there exists C1 > 0 such that

µ(t) ≤ C1µ(t + 1), ∀t > 1.

It follows from (2.3) that for any M > 0 there exists C2 > 0 such that

µ(t) ≤ C2µ(2t), ∀t ∈ (0,M).

Using A4 and repeating the proof of Lemma 4.2 of [21] we get that

(1) For any M > 0, there exists C3 > 0 such that

j (r) ≤ C3 j (2r), ∀r ∈ (0,M). (3.2)

(2) There exists C4 > 0 such that

j (r) ≤ C4 j (r + 1), ∀r > 1. (3.3)

It is easy to check (see [26]) that for the subordinators corresponding to Examples 2.3–2.6,
A4 is satisfied. Therefore by Theorem 4.14 of [26] (see also [21]) we have the following Harnack
inequality.

Theorem 3.4 (Harnack Inequality). There exist r1 ∈ (0, 1) and C > 0 such that for every
r ∈ (0, r1), every x0 ∈ Rd , and every nonnegative function u on Rd which is harmonic in
B(x0, r) with respect to X, we have

sup
y∈B(x0,r/2)

u(y) ≤ C inf
y∈B(x0,r/2)

u(y).

For any bounded open set D in Rd , we will use G D(x, y) to denote the Green function of
X D . Using the continuity and the radial decreasing property of G, we can easily check that G D
is continuous in (D × D) \ {(x, x) : x ∈ D}.

Proposition 3.5. For any R > 0, there exists C = C(R) > 0 such that for every open subset D
with diam (D) ≤ R,

G D(x, y) ≤ G(x, y) ≤ C
1

`(|x − y|−2)|x − y|d−α
, ∀(x, y) ∈ D × D. (3.4)

Proof. The results of this proposition are immediate consequences of Theorem 3.1 and the
continuity and positivity of `(r−2)rd−α on (0,∞). �

The idea of the proof of the next lemma comes from [29].

Lemma 3.6. For any R > 0, there exists C = C(R) > 0 such that for every r ∈ (0, R) and
x0 ∈ Rd ,

Ex [τB(x0,r)] ≤ C
rα/2

(`(r−2))1/2

(r − |x − x0|)
α/2

(`((r − |x − x0|)−2))1/2
, x ∈ B(x0, r).

Proof. Without loss of generality, we may assume that x0 = 0. For x 6= 0, put Z t =
X t ·x
|x | . Then

Z t is a Lévy process on R with

E(eiθ Zt ) = E(eiθ x
|x | ·X t ) = e−t |θ |α`(θ2), θ ∈ R.
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Thus Z t is of the type of one-dimensional subordinate Brownian motion we studied in the
previous section. It is easy to see that, if X t ∈ B(0, r), then |Z t | < r , hence

Ex [τB(0,r)] ≤ E|x |[τ̃ ],

where τ̃ = inf{t > 0 : |Z t | ≥ r}. Now the desired conclusion follows easily from
Proposition 2.10. �

Lemma 3.7. There exist r2 ∈ (0, r1] and C > 0 such that for every positive r ≤ r2 and x0 ∈ Rd ,

Ex0 [τB(x0,r)] ≥ C
rα

`(r−2)
.

Proof. The conclusion of this lemma follows easily from Theorem 3.2 and Lemma 3.2 of [24].
�

Using the Lévy system for X , we know that for every bounded open subset D and every f ≥ 0
and x ∈ D,

Ex
[

f (XτD ); XτD− 6= XτD

]
=

∫
D

c

∫
D

G D(x, z)J (z − y)dz f (y)dy. (3.5)

(See, for example, Appendix A.3 of [11].) For notational convenience, we define

K D(x, y) :=
∫

D
G D(x, z)J (z − y)dz, (x, y) ∈ D × D

c
. (3.6)

Thus (3.5) can be simply written as

Ex
[

f (XτD ); XτD− 6= XτD

]
=

∫
D

c
K D(x, y) f (y)dy.

Using the continuity of G D and J , one can easily check that K D is continuous on D × D
c
.

As a consequence of Lemmas 3.6, 3.7 and (3.6), we get the following proposition.

Proposition 3.8. There exist C5,C6 > 0 such that for every r ∈ (0, r2) and x0 ∈ Rd ,

K B(x0,r)(x, y) ≤ C5 j (|y − x0| − r)
rα/2

(`(r−2))1/2

(r − |x − x0|)
α/2

(`((r − |x − x0|)−2))1/2
(3.7)

for all (x, y) ∈ B(x0, r)× B(x0, r)
c

and

K B(x0,r)(x0, y) ≥ C6 J (y − x0)
rα

`(r−2)
, ∀y ∈ B(x0, r)

c
. (3.8)

Proof. Without loss of generality, we assume x0 = 0. For z ∈ B(0, r) and r < |y| < 2,

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z| + |y| ≤ r + |y| ≤ 2|y|,

and for z ∈ B(0, r) and y ∈ B(0, 2)c,

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z| + |y| ≤ r + |y| ≤ |y| + 1.

Thus by the monotonicity of J , (3.2) and (3.3), there exists a constant c > 0 such that

cJ (y) ≤ J (z − y) ≤ j (|y| − r), (z, y) ∈ B(0, r)× B(0, r)
c
.
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Applying the above inequality and Lemmas 3.6 and 3.7 to (3.6), we have proved the proposition.
�

Proposition 3.9. For every a ∈ (0, 1), there exists C = C(a) > 0 such that for every r ∈ (0, r2),
x0 ∈ Rd and x1, x2 ∈ B(x0, ar),

K B(x0,r)(x1, y) ≤ C K B(x0,r)(x2, y), y ∈ B(x0, r)
c
.

Proof. This follows easily from the Harnack inequality (Theorem 3.4) and the continuity of
K B(x0,r). For details, see the proof of Lemma 4.2 in [29]. �

As an immediate consequence of Theorem 3.2, we have

Lemma 3.10. There exists r3 ∈ (0, r2] such that for every y ∈ Rd with |y| ≤ r3,

α0((d + α)/2)

22−απd/20(1− α/2)

`(|y|−2)

|y|d+α
≤ J (y) ≤

2αα0((d + α)/2)

πd/20(1− α/2)

`(|y|−2)

|y|d+α
.

The inequalities below will be used several times in the remainder of this paper.

Lemma 3.11. There exist r4 ∈ (0, r3] and C > 0 such that

sα/2(
`(s−2)

)1/2 ≤ C
rα/2(

`(r−2)
)1/2 , ∀0 < s < r ≤ 4r4, (3.9)

s1−α/2(
`(s−2)

)1/2 ≤ C
r1−α/2(
`(r−2)

)1/2 , ∀0 < s < r ≤ 4r4, (3.10)

s1−α/2
(
`(s−2)

)1/2
≤ Cr1−α/2

(
`(r−2)

)1/2
, ∀0 < s < r ≤ 4r4, (3.11)∫

∞

r

(
`(s−2)

)1/2
s1+α/2 ds ≤ C

(
`(r−2)

)1/2
rα/2

, ∀0 < r ≤ 4r4, (3.12)

∫ r

0

(
`(s−2)

)1/2
sα/2

ds ≤ C

(
`(r−2)

)1/2
rα/2−1 , ∀0 < r ≤ 4r4, (3.13)∫

∞

r

`(s−2)

s1+α ds ≤ C
`(r−2)

rα
, ∀0 < r ≤ 4r4, (3.14)∫ r

0

`(s−2)

sα−1 ds ≤ C
`(r−2)

rα−2 , ∀0 < r ≤ 4r4 (3.15)

and ∫ r

0

sα−1

`(s−2)
ds ≤ C

rα

`(r−2)
, ∀0 < r ≤ 4r4. (3.16)

Proof. The first three inequalities follow easily from Theorem 1.5.3 of [3], while the last five
from the 0-version of Theorem 1.5.11 of [3]. �



1614 P. Kim et al. / Stochastic Processes and their Applications 119 (2009) 1601–1631

Proposition 3.12. For every a ∈ (0, 1), there exists C = C(a) > 0 such that for every r ∈ (0, r4]

and x0 ∈ Rd ,

K B(x0,r)(x, y) ≤ C
rα/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2
,

∀x ∈ B(x0, ar), y ∈ {r < |x0 − y| ≤ 2r}.

Proof. By Proposition 3.9

K B(x0,r)(x, y) ≤
c1

rd

∫
B(x0,ar)

K B(x0,r)(w, y)dw

for some constant c1 = c1(a) > 0. Thus from Lemma 3.6 and (3.7), we have that

K B(x0,r)(x, y) ≤
c2

rd

∫
B(x0,r)

∫
B(x0,r)

G B(x0,r)(w, z)J (z − y)dzdw

=
c2

rd

∫
B(x0,r)

Ez[τB(x0,r)]J (z − y)dz

≤
c3

rd

rα/2

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)
α/2

(`((r − |z − x0|)−2))1/2
J (z − y)dz

for some constants c2 = c2(a) > 0 and c3 = c3(a) > 0. Now applying Lemma 3.10, we get

K B(x0,r)(x, y) ≤
c4rα/2−d

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)
α/2

(`((r − |z − x0|)−2))1/2

`(|z − y|−2)

|z − y|d+α
dz

for some constant c4 = c4(a) > 0. Since r − |z − x0| ≤ |y − z| ≤ 3r ≤ 3r4, from (3.9) we see
that

(r − |z − x0|)
α/2

(`((r − |z − x0|)−2))1/2
≤ c5

(|y − z|)α/2

(`(|y − z|−2))1/2

for some constant c5 > 0. Thus we have

K B(x0,r)(x, y) ≤
c6rα/2−d

(`(r−2))1/2

∫
B(x0,r)

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤
c6rα/2−d

(`(r−2))1/2

∫
B(y,|y−x0|−r)c

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤
c7rα/2−d

(`(r−2))1/2

∫
∞

|y−x0|−r

(
`(s−2)

)1/2
s1+α/2 ds

for some constants c6 = c6(a) > 0 and c7 = c7(a) > 0. Using (3.12) in the above equation, we
conclude that

K B(x0,r)(x, y) ≤
c8rα/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2

for some constant c8 = c8(a) > 0. �
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4. Boundary Harnack principle

In this section, we give the proof of the boundary Harnack principle for X .
Using an argument similar to the first part of the proof of Lemma 3.3 in [27] and using

Lemma 3.10 and (3.14)–(3.15) we can easily get the following lemma. We skip the details.

Lemma 4.1. There exists C > 0 such that for any r ∈ (0, r4) and any open set D with
D ⊂ B(0, r) we have

Px
(
XτD ∈ B(0, r)c

)
≤ Cr−α`(r−2)

∫
D

G D(x, y)dy, x ∈ D ∩ B(0, r/2).

Lemma 4.2. There exists C > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(0, r) for
some r ∈ (0, r4) and κ ∈ (0, 1), we have that for every x ∈ D \ B(A, κr),∫

D
G D(x, y)dy ≤ Crακ−d−α/2 1

`((4r)−2)

(
1+

`(( κr
2 )
−2)

`((4r)−2)

)
Px
(
XτD\B(A,κr) ∈ B(A, κr)

)
.

Proof. Fix a point x ∈ D \ B(A, κr) and let B := B(A, κr
2 ). Note that, by the harmonicity of

G D(x, · ) in D \ {x} with respect to X , we have

G D(x, A) ≥
∫

D∩B
c

K B(A, y)G D(x, y)dy ≥
∫

D∩B(A, 3κr
4 )c

K B(A, y)G D(x, y)dy.

Since 3κr
4 ≤ |y − A| ≤ 2r for y ∈ B(A, 3κr

4 )
c
∩ D and j is a decreasing function, it follows

from (3.8) in Proposition 3.8 and Lemma 3.10 that

G D(x, A) ≥ c1
( κr

2 )
α

`
(
( κr

2 )
−2
) ∫

D∩B(A, 3κr
4 )c

G D(x, y)J (y − A)dy

≥ c1 j (2r)
( κr

2 )
α

`
(
( κr

2 )
−2
) ∫

D∩B(A, 3κr
4 )c

G D(x, y)dy

≥ c2κ
α r−d `((2r)−2)

`(( κr
2 )
−2)

∫
D∩B(A, 3κr

4 )c
G D(x, y)dy

for some positive constants c1 and c2. On the other hand, applying Theorem 3.4 we get∫
B(A, 3κr

4 )

G D(x, y)dy ≤ c3

∫
B(A, 3κr

4 )

G D(x, A)dy ≤ c4 rd κd G D(x, A)

for some positive constants c3 and c4. Combining these two estimates we get that∫
D

G D(x, y)dy ≤ c5

(
rdκd

+ rdκ−α
`(( κr

2 )
−2)

`((2r)−2)

)
G D(x, A) (4.1)

for some constant c5 > 0.
Let Ω = D \ B(A, κr

2 ). Note that for any z ∈ B(A, κr
4 ) and y ∈ Ω , 2−1

|y − z| ≤ |y − A| ≤
2|y − z|. Thus we get from (3.6) that for z ∈ B(A, κr

4 ),

c−1
6 KΩ (x, A) ≤ KΩ (x, z) ≤ c6 KΩ (x, A) (4.2)
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for some c6 > 1. Using the harmonicity of G D(·, A) in D \ {A} with respect to X , we can split
G D(·, A) into two parts:

G D(x, A) = Ex
[
G D(XτΩ , A)

]
= Ex

[
G D(XτΩ , A) : XτΩ ∈ B

(
A,
κr

4

)]
+Ex

[
G D(XτΩ , A) : XτΩ ∈

{κr

4
≤ |y − A| ≤

κr

2

}]
:= I1 + I2.

Using (3.4) and (4.2), we have

I1 ≤ c6 KΩ (x, A)
∫

B(A, κr
4 )

G D(y, A)dy

≤ c7 KΩ (x, A)
∫

B(A, κr
4 )

1
|y − A|d−α

dy

`(|y − A|−2)

for some constant c7 > 0. Since |y − A| ≤ 4r ≤ 4r4, by (3.9),

|y − A|α/2

`(|y − A|−2)
≤ c8

(4r)α/2

`((4r)−2)
(4.3)

for some constant c8 > 0. Thus

I1 ≤ c7c8 KΩ (x, A)
∫

B(A, κr
4 )

1

|y − A|d−α/2
(4r)α/2

`((4r)−2)
dy ≤ c9κ

α/2rα
1

`((4r)−2)
KΩ (x, A)

for some constant c9 > 0. Now using (4.2) again, we get

I1 ≤ c10κ
α/2−drα−d 1

`((4r)−2)

∫
B(A, κr

4 )

KΩ (x, z)dz

for some constant c10 > 0. On the other hand, by (3.4),

I2 =

∫
{
κr
4 ≤|y−A|≤ κr

2 }

G D(y, A)Px (XτΩ ∈ dy)

≤ c11

∫
{
κr
4 ≤|y−A|≤ κr

2 }

1
|y − A|d−α

1

`(|y − A|−2)
Px (XτΩ ∈ dy)

for some constant c11 > 0. Using (4.3), the above is less than or equal to

c12κ
α/2−d rα−d 1

`((4r)−2)
Px

(
XτΩ ∈

{κr

4
≤ |y − A| ≤

κr

2

})
for some constant c12 > 0. Therefore

G D(x, A) ≤ c13 κ
α/2−d rα−d 1

`((4r)−2)
Px

(
XτΩ ∈ B

(
A,
κr

2

))
for some constant c13 > 0. Combining the above with (4.1), we get∫

D
G D(x, y)dy ≤ c14 rακ−d−α/2 1

`((4r)−2)

(
1+

`(( κr
2 )
−2)

`((2r)−2)

)
×Px

(
XτD\B(A, κr

2 )
∈ B

(
A,
κr

2

))
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for some constant c14 > 0. It follows immediately that∫
D

G D(x, y)dy ≤ c14rακ−d−α/2 1

`((4r)−2)

(
1+

`(( κr
2 )
−2)

`((2r)−2)

)
×Px

(
XτD\B(A,κr) ∈ B(A, κr)

)
. �

Combining Lemmas 4.1 and 4.2 and using the translation invariant property, we have the
following:

Lemma 4.3. There exists c1 > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(Q, r)
for some r ∈ (0, r4) and κ ∈ (0, 1), we have that for every x ∈ D ∩ B(Q, r

2 ),

Px
(
XτD ∈ B(Q, r)c

)
≤ c1κ

−d−α/2 `(r−2)

`((4r)−2)

(
1+

`(( κr
2 )
−2)

`((2r)−2)

)
×Px

(
XτD\B(A,κr) ∈ B(A, κr)

)
.

Let A(x, a, b) := {y ∈ Rd
: a ≤ |y − x | < b}.

Lemma 4.4. Let D be an open set and 0 < 2r < r4. For every Q ∈ Rd and any positive function
u vanishing on Dc

∩ B(Q, 11
6 r), there is a σ ∈ ( 10

6 r, 11
6 r) such that for any x ∈ D ∩ B(Q, 3

2r),

Ex
[
u(XτD∩B(Q,σ )); XτD∩B(Q,σ ) ∈ B(Q, σ )c

]
≤ C

rα

`((2r)−2)

∫
B(Q, 10r

6 )c
J (y − Q)u(y)dy

for some constant C > 0 independent of Q and u.

Proof. Without loss of generality, we may assume that Q = 0. Note that by (3.13)∫ 11
6 r

10
6 r

∫
A(0,σ,2r)

`((|y| − σ)−2)1/2(|y| − σ)−α/2u(y)dydσ

=

∫
A(0, 10

6 r,2r)

∫
|y|∧ 11

6 r

10
6 r

`((|y| − σ)−2)1/2(|y| − σ)−α/2dσu(y)dy

≤ c1

∫
A(0, 10

6 r,2r)

(∫
|y|− 10

6 r

0
`(s−2)1/2s−α/2ds

)
u(y)dy

≤ c2

∫
A(0, 10r

6 ,2r)
`

((
|y| −

10r

6

)−2
)1/2 (

|y| −
10r

6

)1−α/2

u(y)dy

for some positive constants c1 and c2. Using (3.11), we get that there is a constant c3 > 0 such
that ∫

A(0, 10r
6 ,2r)

`

((
|y| −

10r

6

)−2
)1/2 (

|y| −
10r

6

)1−α/2

u(y)dy

≤ c3

∫
A(0, 10r

6 ,2r)
`(|y|−2)1/2|y|1−α/2u(y)dy,
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which is less than or equal to

c4
r1−α/2

`((2r)−2)1/2

∫
A(0, 10r

6 ,2r)
`(|y|−2)u(y)dy

for some constant c4 > 0 by (3.10). Thus, by taking c5 > 6c2c4, we can conclude that there is a
σ ∈ ( 10

6 r, 11
6 r) such that∫

A(0,σ,2r)
`((|y| − σ)−2)1/2 (|y| − σ)−α/2u(y)dy

≤ c5
r−α/2

`((2r)−2)1/2

∫
A(0, 10r

6 ,2r)
`(|y|−2)u(y)dy. (4.4)

Let x ∈ D ∩ B(0, 3
2r). Note that, since X satisfies the hypothesis H in [28], by Theorem 1

in [28] we have

Ex
[
u(XτD∩B(0,σ )); XτD∩B(0,σ ) ∈ B(0, σ )c

]
= Ex

[
u(XτD∩B(0,σ )); XτD∩B(0,σ ) ∈ B(0, σ )c, τD∩B(0,σ ) = τB(0,σ )

]
= Ex

[
u(XτB(0,σ )); XτB(0,σ ) ∈ B(0, σ )c, τD∩B(0,σ ) = τB(0,σ )

]
≤ Ex

[
u(XτB(0,σ )); XτB(0,σ ) ∈ B(0, σ )c

]
=

∫
B(0,σ )c

K B(0,σ )(x, y)u(y)dy.

In the first equality above we have used the fact that u vanishes on Dc
∩ B(0, σ ). Since

σ < 2r < r4, from (3.7) in Propositions 3.8, 3.12 and Lemma 3.10 we have

Ex
[
u(XτD∩B(0,σ )); XτD∩B(0,σ ) ∈ B(0, σ )c

]
≤

∫
B(0,σ )c

K B(0,σ )(x, y)u(y)dy

≤ c6

∫
A(0,σ,2r)

σα/2−d(
`(σ−2)

)1/2 (`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

+ c6

∫
B(0,2r)c

j (|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x |)α/2

(`((σ − |x |)−2))1/2
u(y)dy

for some constant c6 > 0. When y ∈ A(0, 2r, 4) we have 1
12 |y| ≤ |y| − σ , while when |y| ≥ 4

we have |y|−σ ≥ |y|− 1. Since σ −|x | ≤ σ ≤ 2r , we have by (3.9) and the monotonicity of j ,

j (|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x |)α/2

(`((σ − |x |)−2))1/2
≤ c7 j

(
|y|

12

)
rα

`((2r)−2)
, y ∈ A(0, 2r, 4)

and

j (|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x |)α/2

(`((σ − |x |)−2))1/2
≤ c7 j (|y| − 1)

rα

`((2r)−2)
, |y| ≥ 4

for some constant c7 > 0. Thus by applying (3.2) and (3.3), we get

j (|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x |)α/2

(`((σ − |x |)−2))1/2
≤ c8 j (|y|)

rα

`((2r)−2)
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for some constant c8 > 0. On the other hand, by (3.9) and (4.4), there exist positive constants c9
and c10 such that∫

A(0,σ,2r)

σα/2−d(
`(σ−2)

)1/2 (`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤

(
10r

6

)−d
σα/2(

`(σ−2)
)1/2 ∫

A(0,σ,2r)

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤ c9r−d (2r)α/2(
`((2r)−2)

)1/2 r−α/2(
`((2r)−2)

)1/2 ∫
A(0, 10r

6 ,2r)
`(|y|−2)u(y)dy

≤ c10
rα

`((2r)−2)

∫
A(0, 10r

6 ,2r)
`(|y|−2)|y|−d−αu(y)dy,

which is less than or equal to

c11
rα

`((2r)−2)

∫
A(0, 10r

6 ,2r)
J (y)u(y)dy,

for some constants c11 > 0 by Lemma 3.10. Hence

Ex
[
u(XτD∩B(0,σ )); XτD∩B(0,σ ) ∈ B(0, σ )c

]
≤ c12

rα

`((2r)−2)

∫
B(0, 10r

6 )c
J (y)u(y)dy

for some constant c12 > 0. �

Lemma 4.5. Let D be an open set. Assume that B(A, κr) ⊂ D ∩ B(Q, r) for some 0 < r < 2r4
and κ ∈ (0, 1

2 ]. Suppose that u ≥ 0 is regular harmonic in D ∩ B(Q, 2r) with respect to X and
u = 0 in Dc

∩ B(Q, 2r). If w is a regular harmonic function with respect to X in D ∩ B(Q, r)
such that

w(x) =


u(x), x ∈ B

(
Q,

3r

2

)c

∪ (Dc
∩ B(Q, r)),

0, x ∈ A

(
Q, r,

3r

2

)
,

then

u(A) ≥ w(A) ≥ Cκα
`((2r)−2)

`((κr)−2)
u(x), ∀x ∈ D ∩ B

(
Q,

3
2

r

)
for some constant C > 0.

Proof. Without loss of generality, we may assume Q = 0 and x ∈ D ∩ B(0, 3
2r). The left-hand

side inequality in the conclusion of the lemma is obvious, so we only need to prove the right-hand
side inequality. Since u is regular harmonic in D ∩ B(0, 2r) with respect to X , we know from
Lemma 4.4 that there exists σ ∈ ( 10r

6 ,
11r
6 ) such that

u(x) = Ex
[
u(XτD∩B(0,σ )); XτD∩B(0,σ ) ∈ B(0, σ )c

]
≤ c1

rα

`((2r)−2)

∫
B(0, 10r

6 )c
J (y)u(y)dy
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for some constant c1 > 0. On the other hand, by (3.8) in Proposition 3.8, we have that

w(A) =
∫

B(0, 3r
2 )

c
K D∩B(0,r)(A, y)u(y)dy

≥

∫
B(0, 3r

2 )
c

K B(A,κr)(A, y)u(y)dy

≥ c2

∫
B(0, 3r

2 )
c

J (A − y)
(κr)α

`((κr)−2)
u(y)dy

for some constant c2 > 0. Note that |y − A| ≤ 2|y| in A(0, 3r
2 , 4) and that |y − A| ≤ |y| + 1 for

|y| ≥ 4. Hence by the monotonicity of j , (3.2) and (3.3),

w(A) ≥ c3
(κr)α

`((κr)−2)

∫
B(0, 3r

2 )
c

J (y)u(y)dy

for some constant c3 > 0. Therefore

w(A) ≥ c4κ
α `((2r)−2)

`((κr)−2)
u(x)

for some constant c4 > 0. �

We recall the definition of κ-fat set from [27].

Definition 4.6. Let κ ∈ (0, 1/2]. We say that an open set D in Rd is κ-fat if there exists R > 0
such that for each Q ∈ ∂D and r ∈ (0, R), D ∩ B(Q, r) contains a ball B(Ar (Q), κr). The pair
(R, κ) is called the characteristics of the κ-fat open set D.

Note that all Lipschitz domains and all non-tangentially accessible domains (see [14] for
the definition) are κ-fat. Moreover, every John domain is κ-fat (see Lemma 6.3 in [20]). The
boundary of a κ-fat open set can be highly nonrectifiable and, in general, no regularity of its
boundary can be inferred. κ-fat open set may be disconnected.

Since ` is slowly varying at∞, we get the Carleson’s estimate from Lemma 4.5.

Corollary 4.7. Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists
a constant R1 such that if r ≤ R1, Q ∈ ∂D, u ≥ 0 is regular harmonic in D ∩ B(Q, 2r) with
respect to X and u = 0 in Dc

∩ B(Q, 2r), then

u (Ar (Q)) ≥ Cu(x), ∀x ∈ D ∩ B

(
Q,

3
2

r

)
for some constant C > 0.

The next theorem is a boundary Harnack principle for bounded κ-fat open set and it is the
main result of this section.

Theorem 4.8. Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists a
constant r5 := r5(D, α, `) ≤ r4 ∧ R such that if 2r ≤ r5 and Q ∈ ∂D, then for any nonnegative
functions u, v in Rd which are regular harmonic in D ∩ B(Q, 2r) with respect to X and vanish
in Dc

∩ B(Q, 2r), we have

C−1 u(Ar (Q))

v(Ar (Q))
≤

u(x)

v(x)
≤ C

u(Ar (Q))

v(Ar (Q))
, ∀x ∈ D ∩ B

(
Q,

r

2

)
for some constant C = C(D) > 1.
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Proof. Since ` is slowly varying at∞, there exists a constant r5 := r5(D, α, `) ≤ r4 ∧ R such
that for every 2r ≤ r5,

max

(
`(r−2)

`((κr)−2)
,
`((2r)−2)

`((4r)−2)
,
`(( κr

2 )
−2)

`((4r)−2)
,
`((κr)−2)

`((2r)−2)

)
≤ 2. (4.5)

Fix 2r ≤ r5 throughout this proof. Without loss of generality we may assume that Q = 0 and
u(Ar (0)) = v(Ar (0)). For simplicity, we will write Ar (0) as A in the remainder of this proof.
Define u1 and u2 to be regular harmonic functions in D ∩ B(0, r) with respect to X such that

u1(x) =


u(x), r ≤ |x | <

3r

2
,

0, x ∈ B

(
0,

3r

2

)c

∪ (Dc
∩ B(0, r))

and

u2(x) =


u(x), x ∈ B

(
0,

3r

2

)c

∪ (Dc
∩ B(0, r)),

0, r ≤ |x | <
3r

2
,

and note that u = u1 + u2. If D ∩ {r ≤ |y| < 3r
2 } is empty, then u1 = 0 and the inequality (4.8)

holds trivially. So we assume D ∩ {r ≤ |y| < 3r
2 } is not empty. Then by Lemma 4.5,

u(y) ≤ c1κ
−α `((κr)−2)

`((2r)−2)
u(A), ∀y ∈ D ∩ B

(
0,

3r

2

)
for some constant c1 > 0. For x ∈ D ∩ B(0, r

2 ), we have

u1(x) = Ex

[
u(XτD∩B(0,r)) : XτD∩B(0,r) ∈ D ∩

{
r ≤ |y| <

3r

2

}]

≤

 sup
D∩

{
r≤|y|< 3r

2

} u(y)

Px

(
XτD∩B(0,r) ∈ D ∩

{
r ≤ |y| <

3r

2

})

≤

 sup
D∩{r≤|y|< 3r

2 }

u(y)

Px
(
XτD∩B(0,r) ∈ B(0, r)c

)
≤ c1κ

−α `((κr)−2)

`((2r)−2)
u(A)Px

(
XτD∩B(0,r) ∈ B(0, r)c

)
.

Now using Lemma 4.3 and (4.5) we have that for x ∈ D ∩ B(0, r
2 ),

u1(x) ≤ c2κ
−d− 3

2α
`((κr)−2)

`((2r)−2)

`(r−2)

`((4r)−2)

(
1+

`(( κr
2 )
−2)

`((4r)−2)

)
× u(A)Px

(
Xτ(D∩B(0,r))\B(A, κr

2 )
∈ B

(
A,
κr

2

))
≤ c3 u(A)Px

(
Xτ(D∩B(0,r))\B(A, κr

2 )
∈ B

(
A,
κr

2

))
(4.6)
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for some positive constants c2 and c3 = c3(κ). Since 2r < r4, Theorem 3.4 implies that

u(y) ≥ c4 u(A), y ∈ B
(

A,
κr

2

)
for some constant c4 > 0. Therefore for x ∈ D ∩ B(0, r

2 )

u(x) = Ex

[
u(Xτ(D∩B(0,r))\B(A, κr

2 )
)
]
≥ c4 u(A)Px

(
Xτ(D∩B(0,r))\B(A, κr

2 )
∈ B

(
A,
κr

2

))
. (4.7)

Using (4.6), the analogue of (4.7) for v and the assumption that u(A) = v(A), we get that for
x ∈ D ∩ B(0, r

2 ),

u1(x) ≤ c3 v(A)Px

(
Xτ

(D∩B(0,r))\B(A, κr
2 )
∈ B

(
A,
κr

2

))
≤ c5 v(x) (4.8)

for some constant c5 = c5(κ) > 0. For x ∈ D ∩ B(0, r), we have

u2(x) =
∫

B(0, 3r
2 )

c
K D∩B(0,r)(x, z)u(z)dz

=

∫
B(0, 3r

2 )
c

∫
D∩B(0,r)

G D∩B(0,r)(x, y)J (y − z)dyu(z)dz.

Let

s(x) :=
∫

D∩B(0,r)
G D∩B(0,r)(x, y)dy.

Note that for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )

c,

1
3
|z| ≤ |z| − r ≤ |z| − |y| ≤ |y − z| ≤ |y| + |z| ≤ r + |z| ≤ 2|z|

and that for every y ∈ B(0, r) and z ∈ B(0, 12)c,

|z| − 1 ≤ |y − z| ≤ |z| + 1.

So by the monotonicity of j , for every y ∈ B(0, r) and z ∈ A(0, 3r
2 , 12),

j (12|z|) ≤ j (2|z|) ≤ J (y − z) ≤ j

(
1
3
|z|

)
≤ j

(
1
12
|z|

)
and for every y ∈ B(0, r) and every z ∈ B(0, 12)c,

j (|z| − 1) ≤ J (y − z) ≤ j (|z| + 1).

Using (3.2) and (3.3), we have that, for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )

c,

c−1
6 j (|z|) ≤ J (y − z) ≤ c6 j (|z|)

for some constant c6 > 0. Thus we have

c−1
7 ≤

u2(x)

u2(A)

/
s(x)

s(A)
≤ c7, (4.9)
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for some constant c7 > 1. Applying (4.9) to u and v and Lemma 4.5 to v and v2, we obtain for
x ∈ D ∩ B(0, r

2 ),

u2(x) ≤ c7 u2(A)
s(x)

s(A)
≤ c2

7
u2(A)

v2(A)
v2(x)

≤ c8 κ
−α `((κr)−2)

`((2r)−2)

u(A)

v(A)
v2(x) = c8 κ

−α `((κr)−2)

`((2r)−2)
v2(x) (4.10)

for some constant c8 > 0. Combining (4.8) and (4.10) and applying (4.5), we have

u(x) ≤ c9 v(x), ∀x ∈ D ∩ B
(

0,
r

2

)
for some constant c9 = c9(κ) > 0. �

5. Martin boundary and Martin representation

In this section we will always assume that D is a bounded κ-fat open set in Rd with the
characteristics (R, κ). We are going to apply Theorem 4.8 to study the Martin boundary of D
with respect to X .

We recall from Definition 4.6 that for each Q ∈ ∂D and r ∈ (0, R), Ar (Q) is a point in
D ∩ B(Q, r) satisfying B(Ar (Q), κr) ⊂ D ∩ B(Q, r). From Theorem 4.8, we get the following
boundary Harnack principle for the Green function of X which will play an important role in this
section. Recall that r5 ≤ R is the constant defined in Theorem 4.8.

Theorem 5.1. There exists a constant c = c(D, α, `) > 1 such that for any Q ∈ ∂D, r ∈ (0, r5)

and z, w ∈ D \ B(Q, 2r), we have

c−1 G D(z, Ar (Q))

G D(w, Ar (Q))
≤

G D(z, x)

G D(w, x)
≤ c

G D(z, Ar (Q))

G D(w, Ar (Q))
, x ∈ D ∩ B

(
Q,

r

2

)
.

Since ` is slowly varying at∞, there exists a positive constant r6 := r6(κ, `) ≤ r5 such that
for every 2r ≤ r6,

1
2
≤ min

(
`( κ

2

64 r−2)

`(r−2)
,
`( 4
κ2 r−2)

`(r−2)

)

≤ max

(
`( κ

2

64 r−2)

`(r−2)
,
`( 4
κ2 r−2)

`(r−2)

)
≤ 2. (5.1)

Lemma 5.2. There exist positive constants c = c(D, α) and γ = γ (D, α) < α such that for
any Q ∈ ∂D and r ∈ (0, r6), and nonnegative function u which is harmonic with respect to X in
D ∩ B(Q, r) we have

u(Ar (Q)) ≤ c

(
2
κ

)γ k `
(
(κ/2)−2kr−2

)
`
(
r−2

) u(A(κ/2)kr (Q)), k = 0, 1, . . . . (5.2)

Proof. Without loss of generality, we may assume Q = 0. Fix r < r6 and let

ηk :=

(κ
2

)k
r, Ak := Aηk (0) and Bk := B(Ak, ηk+1), k = 0, 1, . . . .
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Note that the Bk’s are disjoint. So by the harmonicity of u, we have

u(Ak) ≥

k−1∑
l=0

EAk

[
u(YτBk

) : YτBk
∈ Bl

]
=

k−1∑
l=0

∫
Bl

K Bk (Ak, z)u(z)dz.

Theorem 3.4 implies that∫
Bl

K Bk (Ak, z)u(z)dz ≥ c0 u(Al)

∫
Bl

K Bk (Ak, z)dz

for some constant c0 = c0(d, α) > 0. Since dist(Ak, Bl) ≤ 2ηl , by (3.8) in Proposition 3.8 and
the monotonicity of j we have

K Bk (Ak, z) ≥ c1 J (2(Ak − z))
(ηk+1)

α

`((ηk+1)−2)
≥ c1 J (4ηl)

(ηk+1)
α

`((ηk+1)−2)
, z ∈ Bl .

Applying Lemma 3.10 and (5.1), we get

K Bk (Ak, z) ≥ c2
(ηk+1)

α

(4ηl)d+α

`((4ηl)
−2)

`((ηl+1)−2)

`((ηl+1)
−2)

`((ηk+1)−2)

≥ 2 c2

(κ
8

)d+α (ηk+1)
α

(ηl+1)d+α

`((ηl+1)
−2)

`((ηk+1)−2)
, z ∈ Bl

for some constant c2 = c2(d, α, `) > 0. Thus we have∫
Bl

K Bk (Ak, z)dz ≥ c3
(ηk+1)

α

(ηl+1)α

`((ηl+1)
−2)

`((ηk+1)−2)
, z ∈ Bl

for some constant c3 = c3(d, α, `) > 0. Therefore,

(ηk)
−α u(Ak)`((ηk+1)

−2) ≥ c4

k−1∑
l=0

(ηl)
−α u(Al)`((ηl+1)

−2)

for some constant c4 = c4(d, α, κ, `) > 0. Let ak := (ηk)
−αu(Ak)`(

1
(ηk+1)

2 ) so that ak ≥

c4
∑k−1

l=0 al . By induction, one can easily check that ak ≥ c5(1 + c4/2)ka0 for some constant
c5 = c5(d, α) > 0. Thus, with γ = α − ln(1+ c4

2 )(ln(2/κ))
−1, we get

u(Ar (Q)) ≤ c

(
2
κ

)γ k `
(
(κ/2)−2(k+1)r−2

)
`
(
(κ/2)−2r−2

) u(A(κ/2)kr (Q)).

Applying (5.1), we conclude that (5.2) is true. �

Lemma 5.3. Suppose Q ∈ ∂D and r ∈ (0, r5). If w ∈ D \ B(Q, r), then

G D(Ar (Q), w) ≥ c
καrα

`((κr/2)−2)

∫
B(Q,r)c

J

(
1
2
(z − Q)

)
G D(z, w)dz

for some constant c = c(D, α, `) > 0.

Proof. Without loss of generality, we may assume Q = 0. Fix w ∈ D \ B(0, r) and let
A := Ar (0) and u(·) := G D(·, w). Since u is regular harmonic in D ∩ B(0, (1 − κ/2)r) with
respect to X , we have
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u(A) ≥ EA
[
u
(
XτD∩B(0,(1−κ/2)r)

)
; XτD∩B(0,(1−κ/2)r) ∈ B(0, r)c

]
=

∫
B(0,r)c

K D∩B(0,(1−κ/2)r)(A, z)u(z)dz

=

∫
B(0,r)c

∫
D∩B(0,(1−κ/2)r)

G D∩B(0,(1−κ/2)r)(A, y) J (y − z)dyu(z)dz.

Since B(A, κr/2) ⊂ D ∩ B(0, (1− κ/2)r), by the monotonicity of the Green functions,

G D∩B(0,(1−κ/2)r)(A, y) ≥ G B(A,κr/2)(A, y), y ∈ B(A, κr/2).

Thus

u(A) ≥
∫

B(0,r)c

∫
B(A,κr/2)

G B(A,κr/2)(A, y)J (y − z)dyu(z)dz

=

∫
B(0,r)c

K B(A,κr/2)(A, z)u(z)dz,

which is greater than or equal to

c1

∫
B(0,r)c

J (z − A)
(κr/2)α

`((κr/2)−2)
u(z)dz

for some positive constant c1 = c1(d, α, `) by (3.8) in Proposition 3.8. Note that |z − A| ≤ 2|z|
for z ∈ B(0, r)c. Let M :=diam(D). Hence

u(A) ≥ c2
καrα

`((κr/2)−2)

∫
A(0,r,M)

u(z)J (2z)dz

≥ c3
καrα

`((κr/2)−2)

∫
A(0,r,M)

u(z)J

(
1
2

z

)
dz (5.3)

for some constant c3 = c3(d, α, `,M) > 0. We have used (3.2) in the last inequality above. �

Lemma 5.4. There exist positive constants c1 = c1(D, α, `) and c2 = c2(D, α, `) < 1 such that
for any Q ∈ ∂D, r ∈ (0, r6) and w ∈ D \ B(Q, 2r/κ), we have

Ex

[
G D(XτD∩Bk

, w) : XτD∩Bk
∈ B(Q, r)c

]
≤ c1ck

2 G D(x, w), x ∈ D ∩ Bk,

where Bk := B(Q, (κ/2)kr), k = 0, 1, . . . .

Proof. Without loss of generality, we may assume Q = 0. Fix r < r6 and w ∈ D \ B(0, 4r). Let
ηk := (κ/2)kr , Bk := B(0, ηk) and

uk(x) := Ex

[
G D(XτD∩Bk

, w); XτD∩Bk
∈ B(0, r)c

]
, x ∈ D ∩ Bk .

Note that for x ∈ D ∩ Bk+1

uk+1(x) = Ex

[
G D(XτD∩Bk+1

, w); XτD∩Bk+1
∈ B(0, r)c

]
= Ex

[
G D(XτD∩Bk+1

, w); τD∩Bk+1 = τD∩Bk , XτD∩Bk+1
∈ B(0, r)c

]
= Ex

[
G D(XτD∩Bk

, w); τD∩Bk+1 = τD∩Bk , XτD∩Bk
∈ B(0, r)c

]
≤ Ex

[
G D(XτD∩Bk

, w); XτD∩Bk
∈ B(0, r)c

]
.
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Thus

uk+1(x) ≤ uk(x), x ∈ D ∩ Bk+1. (5.4)

Let Ak := Aηk (0) and M :=diam(D). Since G D( · , w) is zero on Dc, we have

uk(Ak) = EAk

[
G D(XτD∩Bk

, w); XτD∩Bk
∈ A(0, r,M)

]
≤ EAk

[
G D(XτBk

, w); XτBk
∈ A(0, r,M)

]
≤

∫
A(0,r,M)

K Bk (Ak, z)G D(z, w)dz.

Since r < r4, by (3.7) in Proposition 3.8, we get that for z ∈ A(0, r,M),

K Bk (Ak, z) ≤ c1 j (|z| − ηk)
η
α/2
k

(`(η−2
k ))1/2

(ηk − |Ak |)
α/2

(`((ηk − |Ak |)−2))1/2

for some constant c1 = c1(D, α) > 0 and k = 1, 2, . . . . Since ηk − |Ak | ≤ ηk ≤ r6, from (3.9)
we see that

(ηk − |Ak |)
α/2

(`((ηk − |Ak |)−2))1/2
≤ c

η
α/2
k

(`(η−2
k ))1/2

.

Thus

K Bk (Ak, z) ≤ c2 j (|z| − ηk)
ηαk

`(η−2
k )

for some constant c2 = c2(D, α, `) > 0 and k = 1, 2, . . . . Therefore by the monotonicity of j

uk(Ak) ≤ c2
ηαk

`(η−2
k )

∫
A(0,r,M)

J

(
1
2

z

)
G D(z, w)dz, k = 1, 2, . . . . (5.5)

From Lemma 5.3, we have

G D(A0, w) ≥ c3
καrα

`((κr/2)−2)

∫
A(0,r,M)

J

(
1
2

z

)
G D(z, w)dz (5.6)

for some constant c3 = c3(D, α, `) > 0. Therefore (5.5) and (5.6) imply that

uk(Ak) ≤ c4

(κ
2

)kα `
(
(κ/2)−2r−2

)
`
(
(κ/2)−2kr−2

)G D(A0, w)

for some constant c4 = c4(D, α, `) > 0. On the other hand, using Lemma 5.2, we get

G D(A0, w) ≤ c5

(
2
κ

)γ k `
(
(κ/2)−2kr−2

)
`
(
r−2

) G D(Ak, w)

for some constant c5 = c5(D, α) > 0. Thus by (5.1)

uk(Ak) ≤ c6

(
2
κ

)−k(α−γ )

G D(Ak, w)
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for some constant c6 = c6(D, α) > 0 and k = 1, 2, . . . . By Theorem 5.1, we have

uk(x)

G D(x, w)
≤

uk−1(x)

G D(x, w)
≤ c6

uk−1(Ak−1)

G D(Ak−1, w)
≤ c4c5c6

(
2
κ

)−(k−1)(α−γ )

for k = 1, 2, . . . . �

Let x0 ∈ D be fixed and set

MD(x, y) :=
G D(x, y)

G D(x0, y)
, x, y ∈ D, y 6= x0.

MD is called the Martin kernel of D with respect to X .
Now the next theorem follows from Theorem 5.1 and Lemma 5.4 (instead of Lemmas 13 and

14 in [4] respectively) in very much the same way as in the case of symmetric stable processes
in Lemma 16 of [4] (with Green functions instead of harmonic functions). We omit the details.

Theorem 5.5. There exist positive constants R1, M1, c and β depending on D, α and l such that
for any Q ∈ ∂D, r < R1 and z ∈ D \ B(Q,M1r), we have

|MD(z, x)− MD(z, y)| ≤ c

(
|x − y|

r

)β
, x, y ∈ D ∩ B(Q, r).

In particular, the limit limD3y→w MD(x, y) exists for every w ∈ ∂D.

There is a compactification DM of D, unique up to a homeomorphism, such that MD(x, y) has
a continuous extension to D × (DM

\ {x0}) and MD(·, z1) = MD(·, z2) if and only if z1 = z2.
(See, for instance, [18].) The set ∂M D = DM

\ D is called the Martin boundary of D. For
z ∈ ∂M D, set MD(·, z) to be zero in Dc.

A positive harmonic function u for X D is minimal if, whenever v is a positive harmonic
function for X D with v ≤ u on D, one must have u = cv for some constant c. The set of points
z ∈ ∂M D such that MD(·, z) is minimal harmonic for X D is called the minimal Martin boundary
of D.

For each fixed z ∈ ∂D and x ∈ D, let

MD(x, z) := lim
D3y→z

MD(x, y),

which exists by Theorem 5.5. For each z ∈ ∂D, set MD(x, z) to be zero for x ∈ Dc.

Lemma 5.6. For every z ∈ ∂D and B ⊂ B ⊂ D, MD(XτB , z) is Px -integrable.

Proof. Take a sequence {zm}m≥1 ⊂ D \ B converging to z. Since MD(·, zm) is regular harmonic
for X in B, by Fatou’s lemma and Theorem 5.5,

Ex
[
MD

(
XτB , z

)]
= Ex

[
lim

m→∞
MD

(
XτB , zm

)]
≤ lim inf

m→∞
MD(x, zm) = MD(x, z) <∞. �

Lemma 5.7. For every z ∈ ∂D and x ∈ D,

MD(x, z) = Ex

[
MD

(
X D
τB(x,r)

, z
)]
, for every 0 < r < r6 ∧

1
2
ρD(x). (5.7)
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Proof. Fix z ∈ ∂D, x ∈ D and r < r6 ∧
1
2ρD(x) < R. let

ηm :=

(κ
2

)m
r and zm := Aηm (0), m = 0, 1, . . . .

Note that

B(zm, ηm+1) ⊂ B

(
z,

1
2
ηm

)
∩ D ⊂ B(z, ηm) ∩ D ⊂ B(z, r) ∩ D ⊂ D \ B(x, r)

for all m ≥ 0. Thus by the harmonicity of MD(·, zm), we have

MD(x, zm) = Ex
[
MD

(
XτB(x,r) , zm

)]
.

On the other hand, by Theorem 5.1, there exist constants m0 ≥ 0 and c1 > 0 such that for
every w ∈ D \ B(z, ηm) and y ∈ D ∩ B(z, ηm+1),

MD(w, zm) =
G D(w, zm)

G D(x0, zm)
≤ c1

G D(w, y)

G D(x0, y)
= c1 MD(w, y), m ≥ m0.

Letting y → z ∈ ∂D we get

MD(w, zm) ≤ c1 MD(w, z), m ≥ m0, (5.8)

for every w ∈ D \ B(z, ηm).

To prove (5.7), it suffices to show that {MD(XτB(x,r) , zm) : m ≥ m0} is Px -uniformly
integrable. Since MD(XτB(x,r) , z) is Px -integrable by Lemma 5.6, for any ε > 0, there is an
N0 > 1 such that

Ex
[
MD

(
XτB(x,r) , z

)
;MD

(
XτB(x,r) , z

)
> N0/c1

]
<

ε

4c1
. (5.9)

Note that by (5.8) and (5.9)

Ex
[
MD

(
XτB(x,r) , zm

)
;MD

(
XτB(x,r) , zm

)
> N0 and XτB(x,r) ∈ D \ B(z, ηm)

]
≤ c1Ex

[
MD

(
XτB(x,r) , z

)
; c1 MD

(
XτB(x,r) , z

)
> N0

]
< c1

ε

4c1
=
ε

4
.

By (3.7) in Proposition 3.8, we have for m ≥ m0,

Ex

[
MD

(
X D
τB(x,r)

, zm

)
; XτB(x,r) ∈ D ∩ B(z, ηm)

]
=

∫
D∩B(z,ηm )

MD(w, zm)K B(x,r)(x, w)dw

≤ c2

∫
D∩B(z,ηm )

MD(w, zm) j (|w − x | − r)
rα/2

(`(r−2))1/2

(r − |w|)α/2

(`((r − |w|)−2))1/2
dw

for some c2 = c2(d, α, `) > 0. Since |w− x | ≥ |x − z| − |z −w| ≥ ρD(x)− ηm ≥ 2r − r = r ,
using the monotonicity of J and (3.9) to the above equation, we see that

Ex

[
MD

(
X D
τB(x,r)

, zm

)
; XτB(x,r) ∈ D ∩ B(z, ηm)

]
≤ c3 j (r)

rα

`(r−2)

∫
D∩B(z,ηm )

MD(w, zm)dw

≤ c4

∫
B(z,ηm )

MD(w, zm)dw = c4G D(x0, zm)
−1
∫

B(z,ηm )

G D(w, zm)dw (5.10)
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for some c3 = c3(D, α, `) > 0 and c4 = c4(D, α, `, r) > 0. Note that, by Lemma 5.2, there
exist c5 = c5(D, α, `,m0) > 0, c6 = c6(D, α, `,m0, r) > 0 and γ < α such that

G D(x0, zm)
−1
≤ c5

(κ
2

)−γm `
(
(κ/2)−2(m+1)(κ/2)−2m0r−2

)
`
(
(κ/2)−2(κ/2)−2m0r−2

) G D(x0, zm0)
−1

≤ c6

(κ
2

)−γm
`
(
(κ/2)−2m(κ/2)−2(m0+1)r−2

)
. (5.11)

On the other hand, by (3.4)∫
B(z,ηm )

G D(w, zm)dw ≤ c7

∫
B(zm ,2ηm )

dw

`(|w − zm |
−2)|w − zm |

d−α

≤ c8

∫ 2ηm

0

sα−1

`(s−2)
ds ≤ c9

(ηm)
α

`((2ηm)−2)
. (5.12)

In the last inequality above, we have used (3.16). It follows from (5.10)–(5.12) that there exists
c10 = c10(D, α, `,m0, r) > 0 such that

Ex

[
MD(X

D
τB(x,r)

, zm); XτB(x,r) ∈ D ∩ B(z, 2r/m)
]

≤ c10

(κ
2

)(α−γ )m `
(
(κ/2)−2m(κ/2)−2(m0+1)r−2

)
`
(
(κ/2)−2m(2r)−2

) .

Since ` is slowly varying at∞, we can take N = N (ε, D,m0, r) large enough so that for m ≥ N ,

Ex
[
MD

(
XτB(x,r) , zm

)
;MD

(
XτB(x,r) , zm

)
> N

]
≤ Ex

[
MD

(
XτB(x,r) , zm

)
; XτB(x,r) ∈ D ∩ B(z, 2r/m)

]
+Ex

[
MD

(
XτB(x,r) , zm

)
;MD

(
XτB(x,r) , zm

)
> N and XτB(x,r) ∈ D \ B(z, 2r/m)

]
< c10

(κ
2

)(α−γ )m `
(
(κ/2)−2m(κ/2)−2(m0+1)r−2

)
`
(
(κ/2)−2m(2r)−2

) +
ε

4
< ε.

As each MD(XτB(x,r) , zm) is Px -integrable, we conclude that {MD(XτB(x,r) , zm) : m ≥ m0} is
uniformly integrable under Px . �

Using the fact that Px (XτU ∈ ∂U ) = 0 for every smooth open set U (Theorem 1 in [28]), one
can follow the proof of Theorem 2.2 of [8] or the proof of Theorem 4.8 of [17] and show that the
two lemmas above imply that MD(·, z) is harmonic for X . We skip the details.

Theorem 5.8. For every z ∈ ∂D, the function x 7→ MD(·, z) is harmonic in D with respect
to X.

Recall that a point z ∈ ∂D is said to be a regular boundary point for X if Pz(τD = 0) = 1 and
an irregular boundary point if Pz(τD = 0) = 0. It is well known that if z ∈ ∂D is regular for X ,
then for any x ∈ D, G D(x, y)→ 0 as y → z.

Lemma 5.9. (1) If z, w ∈ ∂D, z 6= w and w is a regular boundary point for Y , then
MD(x, z)→ 0 as x → w.

(2) The mapping (x, z) 7→ MD(x, z) is continuous on D × ∂D.

Proof. Both of the assertions can be proved easily using our Theorems 5.1 and 5.5. We skip the
proof since the argument is almost identical to the one on page 235 of [5]. �
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Lemma 5.10. Suppose that h is a bounded singular α-harmonic function in a bounded open set
D. If there is a set N of zero capacity such that for any z ∈ ∂D \ N,

lim
D3x→z

h(x) = 0,

then h is identically zero.

Proof. Take an increasing sequence of open sets {Dm}m≥1 satisfying Dm ⊂ Dm+1 and⋃
∞

m=1 Dm = D. Set τm = τDm . Then τm ↑ τD and limm→∞ Xτm = XτD by the quasi-left
continuity of X . Since N has zero capacity, we have

Px (XτD ∈ N ) = 0, x ∈ D.

Therefore by the bounded convergence theorem we have for any x ∈ D,

h(x) = lim
m→∞

Ex (h(Xτm ), τm < τD)

= lim
m→∞

Ex (h(Xτm )1∂D\N (XτD ); τm < τD) = 0. �

So far we have shown that the Martin boundary of D can be identified with a subset of the
Euclidean boundary ∂D.

If I is the set of irregular boundary points of D for X , then I is semi-polar by Proposition
II.3.3 in [2], which is polar in our case (Theorem 4.1.2 in [11]). Thus Cap(I ) = 0. Using this
observation and the above lemma, now we can follow the proof of Theorem 4.1 in [27] and show
the following theorem, which is the main result of this section.

Theorem 5.11. The Martin boundary and the minimal Martin boundary of D with respect to X
can be identified with the Euclidean boundary of D.

As a consequence of Theorem 5.11, we conclude that for every nonnegative harmonic function
h for X D , there exists a unique finite measure µ on ∂D such that

h(x) =
∫
∂D

MD(x, z)µ(dz), x ∈ D.

µ is called the Martin measure of h.
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[20] O. Martio, M. Vuorinen, Whitney cubes, p-capacity, and Minkowski content, Exposition. Math. 5 (1) (1987) 17–40.
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[26] R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions, preprint, 2007.
[27] R. Song, J. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (2) (1999)

403–427.
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