
ELSEVIER Theoretical Computer Science 139 (1995) 315-354

Theoretical
Computer Science

Deciding observational congruence of finite-state CCS
expressions by rewriting

P. I n v e r a r d i a'*, M. Nes i a'b

a Istituto di Elaborazione dell'Informazione, Consiglio Nazionale delle Ricerche, via S. Maria 46,
1-56126 Pisa, Italy

b Computer Laboratory, University of Cambridge, New Museum Site, Pembroke Street,
Cambridge CB2 3QG, UK

Received March 1991; revised January 1994
Communicated by M. Nivat

Abstract

We propose a term rewriting approach to verify observational congruence between guarded
recursive (finite-state) CCS expressions. Starting from the complete axiomatization of observa-
tional congruence for this subset of CCS, a non-terminating rewriting relation has been defined.
This rewriting relation is co-canonical over a subclass of infinite derivations, structured fair
derivations, which compute all the m-normal forms. The rewriting relation is shown to be
complete with respect to the axiomatization by proving that every structured fair derivation
computes a term that denotes an rz-normal process graph. The existence of a finite
representation for o~-normal forms allows the definition of a rewritin9 strateoy that, in a finite
number of rewriting steps, decides observational congruence of guarded recursive (finite-state)
CCS expressions.

1. Introduction

The calculus of communica t ing systems (CCS) [15, 18-1 is a formalism for describing

and reasoning about concurrent systems. One of the most interesting features of CCS

is the algebraic characterizat ion of its semantics, besides the usual operat ional one
that is based on the labelled transitions interpretat ion of the language. As it is well

known, it is possible to equip CCS with several different semantics [3,8, 21] that

define which processes can be considered to be equivalent with respect to a certain

behaviour. Often, verification of properties of concurrent systems is to prove the

behavioural equivalence of different specifications of the same system. In the past few

¢r Work partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo.
* Corresponding author. Present address: Dipartimento di Matematica Pura ed Applicata, Universit~ di
L'Aquila, via Vetoio, Coppito, 67010 L'Aquila, Italy.

0304-3975/95/$09.50 © 1995--Elsevier Science B.V. All rights reserved
SSDI 0 3 0 4 - 3 9 7 5 (9 4) 0 0 0 7 4 - S

316 P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

years there has been a growing interest in the field of the analysis and verification of
properties for CCS-like languages and a number of tools and approaches have been
proposed and realized (for a survey see [12]).

In this framework we have undertaken a project [4] whose main goal is to develop
a verification system for CCS-like languages entirely based on equational reasoning.
Rewriting methods appear to be the more suitable techniques to be used. In fact,
a term rewriting approach can be adopted both to execute the operational semantics
of these languages, as advocated in a general framework in [9, 14], and to verify
behavioural equivalences defined over CCS expressions.

In particular, the axiomatic presentation of behavioural equivalences can be used
by executing an equivalent term rewriting system obtained, if it exists, by means of
a completion process [5]. In [4] this approach has been applied to the axiomatic
presentation for observational congruence over finite CCS as given in [8, 16]. When
trying to derive an equivalent term rewriting system from the axiomatization for
observational congruence, it results that the completion process diverges, i.e. the term
rewriting system has an infinite number of rules. We have coped with this divergence
by defining a rewriting strategy [10] that is able to compute the normal form of a finite
CCS term and verify the observational congruence of two finite terms without perform-
ing any completion. In doing that, we have been supported by a notion of normal form
for a finite term with respect to observational congruence (oas-normal form).

In this paper we extend our rewriting strategy to deal with guarded recursive
(finite-state) CCS terms. A correct and complete axiomatization for observational
congruence over such a subset of CCS has been given in [17], but, unlike finite CCS,
the completeness of such an axiomatization has not been proved by resorting to
a notion of recursive OBS-normal form. Thus, no explicit information about the
existence and the structure of the normal form of a recursive CCS term has been
provided. Nevertheless, CCS terms can be characterized as process graphs. In I l l the
notion of unique normal process graph with respect to observational congruence is
defined. This has influenced the definition of our rewriting relation, --'Lobs, over
recursive terms.

The presence of an unfolding rule for recursion makes --, r~bs non-terminating. This
has led to the use of the theory of infinite rewritings developed in [7], where some
conditions on infinite relations, namely left linearity, and on infinite derivations,
namely fairness, are required in order to compute the o-normal form of a term as the
limit of an infinite derivation. Our relation --'r_obs does not satisfy the left linearity
requirement, but we are still able to obtain to-normal forms as limits of derivations by
restricting to a particular subclass of infinite derivations, structured fair derivations,
and by applying ~r_obs modulo a congruence relation, which identifies those terms
that, although syntactically different, have equivalent unfolding semantics. The
congruence relation can be decided through a canonical transformation that reduces
any recursive term to the equivalent canonical one [2].

Moreover, the to-canonicity of "~r_obs can be proved with respect to structured
fair derivations and for any term a finite representation of its to-normal form,

P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354 317

recursive normal form, can be defined and computed in a finite number of derivat ion
steps. Given these results, the completeness of ~r_obs with respect to the
ax iomat iza t ion of observat ional congruence, i.e. any two observat ional congruent
recursive terms admit the same co-normal form, is proved by showing that a recursive

no rma l form denotes a no rma l process graph. Finally, we define a rewriting strategy
to compute a recursive normal form with respect to --"r_obs, thus obtaining a decision
procedure for observat ional congruence of guarded recursive (finite-state) CCS

expressions.

2. Basic ingredients

2.1. Term rewriting systems

We assume that the reader is familiar with the basic concepts of term rewriting

systems. We summar ize the most relevant definitions below, while we refer to [5-7]

for more details.
Let ~ = 0 , ~ - , be a set of function symbols, where ~-n is the set of symbols of arity

n. Let ~-- denote the set ~--(°at, Y') of (finite, first-order) terms with function symbols
and variables Y'. A binary relation > - is a partial orderin9 if it is irreflexive and

transitive. A part ial ordering > - on Y- is well-founded if there is no infinite descending
sequence tl > - r e > - ' " of terms in ~r. A relation > - on 9-- is monotonic if s > - t

impl ies f (. . s - -) >-f(..t..) for all f i n ~" and for all terms in J - (replacement property).
A partial ordering > - on 3- is a simplification ordering if it is mono ton ic and

f(..t..) >-t for all f i n ~ and for all terms in ~'- (subterm property). For any partial
ordering > - on ~--, the multiset orderin9 >->- is the smallest partial ordering

containing the following relation between multisets: S w { s} > - >-- S w { tl tn } for

s > - t a t, (n >~ 0). If > - is well-founded so is > - > - .
Let > - be a part ial ordering on ~-. The (9eneralized) recursive path orderin9 (rpo)

on ~-- is defined recursively as follows:

s=f(sl s~) > - - r p o g (t l t ,)=t if and only if

f = g and {sl s,} >-->--rpo{tl t , } or

f > - g and S > - r p o t i f o r i = l m o r

f~==g and sl ~ r p o t for some i, i - - 1 , . . . , n

and s >-fpoX if and only if xe3e'~¢(s), where >-->--rpo is the extension of >-,po to
multisets and ~ ~po is >--rpo or the pe rmuta t ion equivalence ofsubterms . It holds that

any rpo is a simplification ordering.
An equational theory is any set E = {(s, t)[s, t ~ J - }. Elements (s, t) are called equa-

tions and writ ten s = t. Let " e be the smallest symmetr ic relation that contains E and
is closed under monotonic i ty and substi tution. Let = ~ be the reflexive-transitive

closure of ~E .

318 P. Inverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

Given an equational theory E over ~--, we define that f e ~ is an AC operator if

E contains the associative and commutat ive laws for f, i.e. f (f (x , y), z)=f (x , f (y , z))
and f (x , y)=f(y , x). An AC term is a term which contains AC operators.

A term rewriting system (TRS) R is any set {(li, ri)[li, rie.Y-, ~a¢(ri) ~_ ~V'~¢(ll)}. The

pairs (l~, r~) are called rewriting rules and written l~ ~ r~. The rewriting relation ~R over

3 - is defined as the smallest relation containing R that is closed under monotonici ty

and substitution. A term t rewrites to a term s, written t---,Rs, if there exist l--*r in R,

a substitution a and a subterm t [u at the position u, called redex, such that t 1, = a l and

s = t [a r] , . A term t is said to overlap a term t ' if t unifies with a non-variable subterm

of t' (after renaming the variables in t so as not to conflict with those in t'). If I~r and

s ~ t are two rewriting rules (with distinct variables), u is a position of a non-variable

subterm of s, and a is a most general unifier for st, and l, then the equation

at=as[~rr], is a critical pair formed from those rules. A TRS R is left linear if the

left-hand side l of each rule l ~ r in R has at most one occurrence of any variable. We

use I RI to denote the maximum depth of a left-hand side of a TRS R.

Let ~+ and ~ denote the transitive and reflexive-transitive closure of ~ , respective-

ly. A TRS R is terminating if there is no infinite sequence tx ~ R t2 ~R "" of rewriting

steps in R. A TRS R is confluent if whenever s R & t *-+R q, there exists a term t ' such

that s ~ R t ' R~* q, and R is locally confluent if whenever s R'-- t ~ R q, there exists a term

t' such that s ~R t 'R& q. A term t is in R-normal form if there is no term s such that

t~Rs . A term s is an R-normal form o f t i f t ~ R s and s is in R-normal form; in this case

we write t---'!RS. A TRS R is canonical if it is terminating and confluent.

The not ion of ordering is used to correctly direct the rules of a TRS so that it is

terminating. In presence of AC operators, an rpo is able to handle commutat ive

operators, but it cannot handle the associative ones. The notion of rpo is then

extended by defining the associative path ordering >--apo. In the simplified case of the
theory we will deal with, where only the opera tor " + " is AC, in order to define an apo

it is enough to consider any rpo, provided that (i) the precedence ordering on

assigns minimal precedence to the AC opera tor " + "; (ii) when ordering terms, " + "

becomes varyadic and any AC term t is t ransformed into its "flattened" versionflat(t)
i.e. any deeper summand becomes a top level summand, e.g. the term + (a, +(b, c)) is
treated as +(a, b, c).

An equational TRS is a tuple (R, E), where R is a TRS and E is an equational theory.

The rewriting relation modulo E, written ~R/e, is defined as = E e ~ R o =E, where
• denotes composi t ion of relations.

Let Y- ~ denote the set ~-~o (~ , ~) of finite and infinite terms with function symbols

and variables ~r. It is possible to form a complete ultra-metric space on J-~° by
defining a not ion of distance d between two terms s, t such that d(s, t) = 1/2 v~'t), where

v(s, t) is the smallest depth of a symbol occurrence at which terms s and t differ, with
the convention that d(t, t)=0 .

Given a TRS R, it is straightforward to extend ~ R over j-~o. Let ~ be a (possibly

non-terminating) rewriting relation. A term t (go-)rewrites to t', written t ~ ° ' t ' , if t & t'

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 319

or if there exists an infinite derivation t = t o ~ t ~ ~ . . . ~ t , ~ ... such that lim._~ o0 t. = t'.
The relation --* is w-converging if for any infinite derivation t o - - * t ~ . . . ~ t . ~ . . .

of terms, the limit l i m . ~ t. exists. The relation --* is top-terminating if there are

no infinite derivations t o ~ q ~ ... ~ t . - -* ... with infinitely many rewrites at the

topmost position. The relation ~ is m-confluent if whenever s ° ' ~ - t ~ ° ' q , there
exists a term t' such that s ~ ' t ' ° ' ~ q . The relation --. is on-canonical if it is

m-converging and w-confluent. A term t' is an m-normal form of t if t ~ ' t ' and t'
is minimal for ~ , i.e. if t '--*t", then t " = t ' . Thus, an m-normal form need not
be irreducible. The relation ~ is m-normalizing if every finite term in ~'- admits an

co-normal form in J" ~
A derivation t o ~ t l ~ . . . ~ t . - - , . . , is fair if whenever there is a rule l ~ r and

a position u such that, for all n past some N, the subterm t.lu is a redex for l ~ r , then (at

least) one of the rewriting steps t . ~ t . + ~ (n>>,N) is an application of l ~ r at u.
Thus, a fair derivation guarantees that a redex does not persist forever. Note that

this definition does not prevent the fact that the same rewriting rule is applicable

infinitely many times at different positions.

Theorem 2.1 (Dershowitz et al. [7, Proposition 5.1]). I f R is a top-terminating TRS,

then it is m-converging.

For left linear TRS's, fair derivations compute m-normal forms at the limit.

Theorem 2.2 (Dershowitz et al. [7, Theorem 4.3]). Let R be a left linear TRS. I ra term

t o n i - admits an m-normal form t ~ 6 J "~°, then there exists a .fair derivation

t o --~ t I - --~t n --~ ... --*°t~ with limit t~ .

Theorem 2.3 (Dershowitz et al. [7, Theorem 4.4]). Let R be a left linear TRS. For any

fair derivation t o ~ t I ~ ... ~ t , ~ . . . --*°'too, the limit t~ , i f it exists, is an m-normal form

o f to.

2.2. Observational congruence over C C S expressions

Let y (~ , ~ r) with ~o={n i l} , ~ l = { v . , a . , b . , c } and ~ 2 = { + } , be the class of

CCS expressions representing finite processes, which from now on we refer to as
f ini tary CCS expressions. The set ~1 of action prefix operators is ranged over
by "#.", z is the so-called internal action and Y" is the set of process variables

{E, E1, E2 F , G }.

The operational semantics of the above operators is given by the following inference

rules:

. E ~ E

E L S E 2 implies EI + E ~ E2 and E + EI ~ E2

320 P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

The following axiomatization oBs for observational congruence over f f (~ , ~r) has
been proved correct and complete with respect to bisimulation in [8, 16]:

S1. E+(F+G)=(E+F)+G

$2. E + F = F + E

$3. E + n i l = E

$4. E + E = E

T1. # . z . E = # . E

T2. z . E + E = z . E

T3. # . (E + z . F) + # . F = # . (E + z . F)

The completeness of ors has been shown by resorting to a notion of unique (modulo
associativity and commutativity of the " + " operator) OBS-normalform of a term with
respect to observational congruence. Two finitary expressions E and F can be proved
observationally congruent by reducing them to their oRs-normal forms and then
checking these normal forms for equivalence modulo the AC axioms S1, $2.

The intuition behind this axiomatization is that, in order to compute the oRs-
normal form of a term, those summands which are "semantically contained" in others
through the operational notion of #-derivative have to be deleted. A term E' is

a #-derivative of E, written E =~ E', if E L~ ~ ~ E', where ~ is the reflexive-transitive

closure of the transition relation ~ . ~ The notion of semantic redundancy of a term

is stated in the so-called absorption lemma [8, 16].

Absorption Lemma. If E' is a #-derivative of E and OBS t-- E' = F, then ors I- E + #. F = E.

The oBs-normal form of a term is defined as follows. A term ~#i.Ei is a proper
normal form if (i) it does not take the form z. E' for some term E'; (ii) each Ei is
a proper normal form; (iii) for k ~ j no #k-derivative of #j.Ej is equivalent to Ek
modulo the AC axioms. An oRs-normal form is either E or ~. E, where E is a proper
normal form.

In [10] a rewriting relation ---~f_obs (there called -'~strat) has been defined and proved
correct and complete with respect to ors. This relation computes the oRs-normal form
ofa finitary CCS expression by implementing the absorption lemma. The main feature
of ---~ f_obs is that it makes use of control strategies and selection criteria in order to keep
some of the equations as equations, i.e. allowing expansions besides reductions, at the
same time remaining a deterministic and complete strategy.

The starting point of ~f_obs is the TRS RoBs obtained by directing the axioms $3,
$4, T1, T2 and T3 according to a chosen apo >-.

RoBs rl. E + n i l ~ E

r2. E + E ~ E

r3. # . z . E ~ # . E

r4. r . E + E ~ z . E

r5. # . (E + T . F) + # . F ~ # . (E + z . F)

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 321

RoBs is terminating but is not confluent modulo AC: during the AC-completion
process infinitely many critical pairs are generated from the overlapping of r2, r4 and
r5 and they do not reduce to identity [10-1. Note that these rules, and those derived
from critical pairs, rewrite terms by deleting one of the summands of their left-hand

side.
In order to define a rewriting strategy which is complete with respect to the

axiomatic presentation, we have to cope with all the critical peak situations, i.e. when
a term can be rewritten by means of two (or more) rules.

t

tl t2

In the critical peak above, let us suppose that t can be rewritten into tl and t2 by
applying the rules r and r', respectively, and tl >-t2. This means that tl can be
rewritten into t2 by applying the rule derived from the critical pair associated to the
overlapping of r with r'.

The definition of --*Lobs is based on the idea that all critical peaks have to be
recognized and the application of the rule derived from the associated critical pair has
to be simulated. The strategy can be seen as composed of two phases. The first phase,
Roas-normalization, normalizes the input term with respect to Roas. The second phase,
absorption, works on the resulting term by looking for critical peak situations and
summands to be deleted according to observational congruence. This is done by
rewriting the term with T2 and T3 as expansion rules (expansion process which,
roughly speaking, corresponds to moving up along the peak, on the left) and, as soon
as possible, by deleting the redundant summands by means of RoBs (reduction process
which, roughly speaking, corresponds to deleting the top-level summand which would
be deleted by applying the rule derived from the associated critical pair). When
applying such reductions, a specific redex selection criterion is used that prevents
those reductions which are exactly opposite to the previous expansions by T2 and T3.
Another criterion is then needed to stop the expansion and reduction steps, which are
applied as long as there exist summands to be deleted. Finally, to obtain the
oas-normal form, the current term is rewritten by applying the reductions opposite to
the previous expansions (contraction process which, roughly speaking, corresponds to
moving down along the peak) by using a redex selection criterion that selects the
smallest redexes with respect to the fixed term ordering.

This strategy can be defined as the following regular expression (r* means repetition
of the rule r as long as its applicability conditions are satisfied, and ";" means
sequencing of rules):

--'r_obs = def Roas-normalization; absorption

where absorption = clef(expansion; reduction)*; contraction*.

Example 2.4. Let us illustrate how the strategy works, and consider the term
t=z.(E1 +E2+E3)+E2. This term is in normal form with respect to RoBs but can

322 P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

still be reduced in the equational theory to a smaller (with respect to the chosen
ordering) term. If we give t as input to ~r_obs, we will obtain:

z . (E I + E 2 + E 3) + (E 1 + E2 + E3)+ E2

expansion 1
"r.E+E*--z.E

"r.(EI+E2+E3)+E2 z.(E1 +

I z.E+E~T.E

z . (El + E 2 + E 3)

It is easy to see that what we have done by applying the strategy is to go along the

critical peak which would generate, during the completion process, one of the new
infinitely many rewriting rules. In particular, the rule ~.(EI+E2+E3)+
E 2 - ~ . (E 1 + E 2 + E 3) is the one whose application we need to simulate in order to
reduce the term t.

reduction in RoBs modulo AC

E+E--*E

E2 + E3)+(EI + E 2 + E 3)

contraction

The rewriting strategy ---~f_obs is sound: every rewriting step applies an axiom of oBs,
thus preserving the observational congruence among terms. In [10], --~f_obs has been
shown to be correct: if ~f_obs with input E returns E', then E' is an oBs-normal form of
E. Completeness is a corollary of correctness: if E has an oas-normal form E', then

-')fobs with input E returns E' or a term which is equivalent to E' modulo associativity
and commutativity. The detailed definition of ---~f_obs is reported in Appendix A.

Let us now introduce the language ~Y-(#~, Y') of recursive CCS expressions which is
obtained by properly extending J - (~ ,SF) to deal with the recursion operator rec:

~ = ~ U ~ o = {x,y,z } w ~ l = {recx., rec y.,rec z }. In 5f the set of process con-
stant ~ o is ranged over by {X, Y, Z }, {rec X., rec Y., rec Z } range over ~1 and
{E, El, E2 F, G } is the set of variables denoting recursive CCS expressions.

The set {x, y, z } identifies what in the CCS terminology are called variables but
they are actually place holders. From now on we will stick to this CCS notation by
referring to process constants identifiers as variables.

The operational semantics for the rec operator is:

E {rec X. E/X} ~ E' implies rec X . E ~ E'

where E {F/X} denotes the result of substituting F for each free occurrence (i.e. not
bound by rec) of X in E, renaming bound variables as necessary. For any expression
E, FreeVar(E) denotes the set of free variables in E.

A free occurrence of X in E is 9uarded if it occurs within some subexpression/~. F
with kt 4: z of E. The variable X is ouarded in E if every free occurrence of X in E is
guarded, otherwise X is unguarded in E. A recursive expression rec X. E is ouarded if
X is guarded in E. An expression E is 9uarded if every recursive subexpression of E is
guarded.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 3 2 3

In the following, we deal with the subclass ~ ¢ c g - (~ , S f) of guarded recursive

closed (i.e. every variable is bound to a rec operator) CCS expressions.
A correct and complete axiomatization OBSRE% for observational congruence over

8~ has been given in [17] by adding the following axioms for recursion to OBS:

U1. r e c X . E = E { r e c X . E / X }
U2. F = r e c X . E if F=E{F/X} , provided X is guarded in E.

Note that U1 and U2 are actually schematizations of infinitely many first-order

equations.
Differently from OBS, the proof of the completeness of OBSRECg with respect to

observational congruence does not resort to an explicit definition of"recursive normal
form" over ~ . In our study for a notion of normal form for terms in g~ with respect to

a rewriting relation equivalent to OBSRECg we need different characterizations for

recursive terms, such as sets of recursive equations and process graphs.

2.3. A canonical transformation over recursive expressions

In this section we address the problem of deciding if two CCS recursive terms in 8~
can be rewritten into the same infinite term. As we will see in the next sections, this
problem turns out to be crucial in our rewriting framework.

Let the rule R1 be obtained by orienting the axiom UI in the following way:

R 1 = def rec X. E --* E { rec X. E/X }

Definition 2.5 (unfolding). A term t ' ~ 3 - ~ ° (: , ~) is the unfolding of a term t ~ g : if

t - -~R 1 ~° t ' .

Thus, the unfolding of a recursive term is the term that can be reached by applying
an infinite number of rewriting steps by ~Ra and does not contain any further redex

for --*RI •
In general, there are a number of syntactically different terms that admit the same

unfolding. Nevertheless, we can restrict our attention to a canonical term in the class
of those terms having the same unfolding. Any CCS recursive term can be equivalently

seen as a set of recursive equations; in [2] the existence of a canonical representative
for the class of systems which admit the same solution in the canonical interpretation,
is shown. Their notion of solution in the canonical interpretation corresponds to our
notion of unfolding. Actually, we will not explicitly define the notion of canonical
term, but we will take the term corresponding to the canonical system as the canonical

term.
In the following, we provide an algorithm to determine the canonical system; our

algorithm is derived from the one presented in [-2] by extending it to deal with AC
terms. The transformations from a term to a system of equations and from a system
of equations to a term are informally introduced, while we refer to [20] for more

details.

324 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

From a recursive CCS term to a system of recursive equations
Given an expression Ei = op~(E~l Eik)e~p, the associated system of equations

S(Xi, Ei) where X/is called the main variable of the system, is recursively defined as
follows:
(i) opt # rec

S(X~, El) = d e f { X i = opi(Xn, ..., Xik) } W Uj { S(Xij, Ei#)l Ei# is not a variable} where
X~j = E~j if E~j is a variable, otherwise Xij is a new fresh variable, main variable of

S(X,j, Eo).
(ii) opi=rec, i.e. E / = recZ. op'(Eii Eik) for some op' in ~ of arity k.

S(X,,E,) =aef{X,=op ' (X, , X,k)} uOj{S(X,j ,E,j{X,/Z})IE,j is not a vari-
able} where Xij = E u if Eij is a variable, otherwise X~j is a new fresh variable, main
variable of the system S(Xij, Eij {Xi/Z}).

We now informally recall the basic ideas the algorithm to determine a canonical
system of recursive equations is based on. In order to obtain the canonical system
CS(X, E) for an expression E, the system S(X, E) is normalized by means of a normal-
ization algorithm that identifies equivalent equations. Since we deal with AC oper-
ators, we have extended the original algorithm in order to cope with commutativity,
while associativity is dealt with by considering the associative operators as varyadic.
To this respect, we will make use of a flattening procedure to transform any term teSp
into a term flat(t) as defined in Section 2.1.

The algorithm presented in 1-2] works on uniform systems, i.e. systems in which the
right-hand side Ei of each equation has the form E~-op~(X, Xk,)) for some
op~E~ of arity k(i) and variables XI Xkto. Note that our transformation from an
expression to the system yields a uniform system by construction. From now on,
depending on the context, we equivalently use either CS(X, E) or CS(E) or CS to
denote the canonical system of an expression E.

From a system of recursive equations to the canonical system
Given a uniform system of n recursive equations S - { X i = o p i (X i l , . . . , X i k (i)) [

1 ~< i ~< n} where k(i) denotes the arity of opi, we define an equivalence relation R on
its variables such that X i R X j if and only if the terms E~ and Ej corresponding to the
two subsystems whose main variables are X~ and X i respectively, have the same
unfolding.

In order to constructively characterize the relation R, let us now inductively define
an increasing sequence of partitions on Vs x Vs, where Vs= {X/[1 <~i<<,n}:
1. Do= {(Xi, Xj)~ Vs x Vsl o p / # opi v (opi=opi /x opl is associative ^ k(i)-7z: k(j)}
2. D,+I=D,w{(Xi, X j) eVsx Vslopi=op~ ^ op~ is commutative ^ k(i)=k(j) ^

for every permutation /7 of {1 k(j)}3me[1,k(j)] s.t. (Xim, X~n(m))eD,}w
{(XI, Xj)eVs x Vs[op /=op j^ opi is not commutative ^ 3m~[1,k(i)] s.t.
(Xim,X~m)eD.}.

In this way any partition of the sequence contains pairs of variables (X~, X~) such that

Xj R Xj.
We can now extend the result given in [2] to our AC version of their algorithm.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 325

Lemma 2.6. (i) There exists an index r such that D, = U ~= o D,; (ii) Xi R X i if and only

i f(Xi, Xj)¢Or.

Proof. (i) It trivially derives from the fact that I/s is finite.
(ii) First half: if X i R X j then (Xi ,Xj)~D, . By contradiction, let us assume

(Xi, Xj)eD, . This means that either o p i # o p j v (opi=opj /x opi is associative
^ k(i) # k(j)), or Xi and Xj refer to subterms which are structurally different, thus
contradicting the hypothesis Xi R Xj that the associated terms have the same unfolding.

Second half: if (X~, Xj)q~D, then X~R X~. By contradiction, let us assume that
Xi R Xj. This means that the two corresponding subterms are structurally different,
i.e. they are different with respect to (at least) a subterm. Let t and t' be the two
different subterms in E~ and E j, respectively. By case analysis it is easy to see that any
structural difference, apart from those related to the associativity and commutativity
of the " + " operator, leads to a contradiction of the hypothesis. []

Let us now state the following.

Theorem 2.7. Given El, E2Egp, it is decidable if El and E2 admit the same unfolding
modulo associativity and commutativity of the " + " operator.

Proof. Let S1, $2 be the systems of equations built from fiat(El), flat (E2), respectively.
The algorithm above can be applied to compute the canonical systems CS1, CS2
corresponding to $1 and $2, respectively. Since it is always possible to assume the two
sets of variables Vcs~ and Vcs2 to be disjoint, we can consider the system
CS=CS1 wCS2 and apply the algorithm above in order to decide if X R Y, where
X and Y are the main variables of CS1 and CS2, respectively. []

From a system of recursive equations to the CCS term
Given a system of recursive equations S - {Xi=opi(Xix Xikti))l l~<i~<n}, let

E'(S) be the expression resulting from the following transformation:

E' (S)=Expr(XI ,0) where Xx is the main variable of S and

Expr (XI, env)

rec X,. opi (Expr (Xix, env u { X~ }), ..., Expr (Xik ~0, env u { X i }))

if k(i)¢O/x Xi¢env,

Xi if k(i) :/: 0 A Xi~env,

opl if k(i)=0.

The expression E(S) denoted by a system S can be obtained by eliminating the
superfluos rec operators from E'(S) using the equivalence:

rec X. E = E if E does not contain any free occurrence of X.

It is easy to show that the above axiom can be derived from OBSRECg by applying U1.

326 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

Example 2.8. For simplicity the usual infix notation for CCS terms is used in this
example. Given the expression E = a.rec X. ((a. X + b. nil) + c. nil), the flattened version
is flat (E) = a. rec X. (a. X + b. nil + c. nil). The system S (X1, E) is the following:

{ X I = a . X2, X2=Xa- I -X4- I -Xs , X 3 = a . S2 , X 4 = b . X6, X s = C . X T , X6=ni l ,

X7 =nil}.

The normalization algorithm finds out that the equations for X1 and X3 are equal,
besides the equality between the equations for X 6 and X7. The resulting canonical
system CS(X1, E) is:

{X 1 = a . X 2 , X 2 = X 1 --~-X4-~-X5, X4.~-b. X6, X 5 =c . X 6 , X 6 =nil}.

The corresponding expression is rec X 1. (a. (rec X2. X1 + rec X4. b. nil +
recXs .c .n i l)) from which those "recXi." operators whose body is constant with
respect to the variable Xi can be eliminated. The resulting expression
rec X1. a. (X1 + b. nil + c. nil) is the canonical representative for E.

Thus, we can decide whether two recursive expressions admit the same unfolding.
Two terms tl, t2 will be equivalent modulo CT (from canonical transformation) if and
only if they admit the same unfolding. In the following, we refer to this congruence

relation as =CT and the application of a rewriting relation ~R modulo =CT means

that t ~R, cTS if there exist a rule l--*r in R, a substitution a and a subterm tlu at the
position u, such that tlu=cral and s=t[ar]~. Note that ~R, CT is defined as an
extended rewrite relation, see for example [5].

2.4. Normal process graphs

The definitions and results reported in this section will not be used in the definition
of the rewriting relation for OBSRECg, but will be necessary when proving its complete-
ness with respect to OBSRECg.

CCS terms can always be represented by means of graphs and behavioural equiva-

lences can also be defined on such graphs. In [1], a characterization of the kind of
transformations necessary to obtain the unique normal graph with respect to observa-

tional congruence is defined. We assume that the reader is familiar with graph theory
and only recall some relevant notions and results on graphs taken from [1].

The considered graphs are connected, rooted multidigraphs: any graph has a root
(starting node), the edges between the nodes are directed and between two nodes there
may be several edges, every node is accessible from the root. A path n in a graph g is an
alternating sequence of nodes and edges, n: So ~ Sl ~ . - . ~ sn for n ~> O. The length of
the path is n; if n/> 1 and So and sn coincide, n is a cycle. If n = 1 and So and s~ coincide,
n is a loop. If s is lying on a cycle, it is called cyclic, otherwise acyclic. If s is a node of g,
the subgraph (g)s of g is the graph with root s and all the nodes and edges accessible
from s. Graphs differing only in their naming of the nodes are considered to be
identical.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 [1995j 315-354 327

//

St+l

T S,

S

l

arc double edge

Fig. 1.

A process graph is a g raph whose edges are labelled with act ions f rom a set A u { z }

ranged over by #. Given a graph g, let Root (g) and Nodes(g) denote the root and the
T *

set of nodes of g, respectively. We recall f rom Section 2.2 that s ~ t ifs ~ ~ ---} t. Let g,

h be any process graphs with acyclic root. It is possible to define a not ion of
bis imulat ion on process graphs in the following way. The relation R on
Nodes(g) x Nodes(h) is a z-bisimulation f rom g to h, and g, h are z-bisimilar, if:

(i) D o m a i n (R) = Nodes (g) and Range (R) = Nodes (h);
(ii) (Root(g) , Root (h))~R;

¢
(iii) if (s, t)eR and s =~ s , then there exists t ' such that t ~ t ' and (s', t')~R;

i / l t (iv) if (s, t)~R and t =~ t , then there exists s ' such that s => s and (s', t')eR.
R is an rz-bisimulation if (s,t)eR implies s = R o o t (g) and t = R o o t (h) , or s ¢: Root (g)

and t ¢: Root(h). R is called (r)z-autobisimulation of g if it is a (r)z-bisimulat ion f rom
g to itself. Fo r finite process graphs the rz-bisimulation coincides with observat ional
congruence.

A r-loop is a loop s -~ s. Given a process graph g, an arc in g is a subgraph (g)s such

that there exist two paths s tar t ing f rom s: s ---} sl --} -.. ~ si --} si+ 1 --* "'" ~ s, and s ~ s,.

A double edge is a par t icular arc where the two paths are the same of length 1, i.e. s ~ t.

Fig. 1 exemplifies the two situations.

Note that the not ions of arc and double edge characterize, at g raph level, the same
si tuation that is cap tured by the absorp t ion l emma at term level. Tha t is, they identify
those por t ions of a g raph which are redundant with respect to observat ional congru-
ence. In addi t ion to this, when considering finite-state process graphs we have to cope
with ano ther source of redundancy. It is in fact possible for a process graph to contain
a bisimilar subgraph. In order to identify this s i tuat ion the not ion of rz-rigidity is
introduced.

A process graph g with acyclic root is rz-rigid if it has only the trivial rz-
autobis imulat ion, i.e. the identity relation. A process graph g with acyclic root is
minimal if g contains no double edges, no r - loops and no arcs. A process graph g is
rz-normal if it is rz-rigid and minimal . The following two theorems guarantee that it is
possible to rely on the above not ion of normali ty .

328 P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

Theorem 2.9 (Bergstra and Klop [-1, Theorem 3.2.2]). Let g, h be rz-normal and
rz-bisimilar process graphs. Then g and h are identical.

Corollary 2.10 (Bergstra and Klop [1, Corollary 3.2.3]). Let g be a process graph with
acyclic root. There is then a unique process graph g' with acyclic root such that g' is
rz-normal and g, g' are rz-bisimilar.

Note that when talking about the process graph associated to a term t, this graph
will be derived from the canonical system CS(t). In this way, it is possible to define
a transformation between terms and process graphs, which yields the graph with the
minimum number of states (apart from the nil nodes), among all the graphs
representing the same term. On the contrary, if the graph is built from the term
representation of a canonical system, it may well be that the resulting graph is not the
smallest one. This is due to the inadequacy of the/~-calculus in expressing horizontal
sharing (see, e.g., [22, 23]).

From a system of recursive equations to the process graph
The transformation process_graph from a system S - { X ~ = o p i (X i l Xik(i)) I

1 ~< i ~< n} of equations to a process graph g can be defined as a function which builds
the graph starting from the first equation. An environment env allows the nodes
already built in the current graph to be taken into account:

process_graph (S) = def graph (X l = E l , 0)

where X1 is the main variable of S and the function graph is defined as follows:

graph (Xi = Ei, env) = dee
if X~=nil then create node Ni;
if Xi = p. Xj

then begin
if X~¢env then create node Ni;
if X~¢env

/t
then Ng ~ graph (Xj=Ej , env w {Xi})

else N ~ ~ N j

end;
if X i ~ X i l -~- ""Xir

then begin
create node Ni;
graph (Xi= Ell, env ~ {Xi });

graph (Xi =Eir, env ~ {Xi});
end;

P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 329

Note that X~=E~ need not be an equation in S. Summarizing we can say that
- to each variable X~ in S, which denotes a prefix (X~ = # . X j), corresponds a node N~

in ,q;
- an edge labelled # from a node N~ to a node Nj exists in 9 if X~ = #. Xj is an equation

in S, for some action prefix operator/~.;
- a node N~ in 9 is the common root of r subgraphs 91, . . . , 0r (Ni has r successors) if

X~=X1 + ... +X, is an equation in S and 91 9, are the process graphs asso-
ciated to X~ X,, respectively.

Example 2.11. Let us consider the canonical system CS(E) in Example 2.8 and build

the corresponding process graph according to the transformation above. We obtain
the following process graph:

a aC \
3. The rewriting relation --,,_obs over g~

Given OBSRECg=OBStJ {U1,U2}, let us consider the two axioms U1 and U2 and

how the rewriting relation -'-~f obs for finitary CCS can be extended to decide the
observational congruence over 8p. Note that in the following, when working on
recursive expressions, the equivalence = is meant to be modulo renaming of the

variables (for example, rec X . a. X + z. rec Y.a . Y---~f_obs •. rec Y. a. Y).
Let us first consider the axiom UI. The rule R1 as defined in Section 2.3 leads to

a nonterminating rewriting relation, and we cope with the problem of non-termina-
ting rewritings in the framework of og-rewriting and ~-normal forms.

Let us now consider the axiom U2: F=recX. E if F=E{F/X} , provided X is
guarded in E. In our rewriting framework, we replace it with a more convenient rule

by specializing its application patterns. The axiom U2 says that an expression F has to
be observational congruent to an expression E containing F itself as a subexpression,
and obviously this cannot be the case for finite trees. We replace U2 with the following
axiom CE (collapsing equivalence):

CE = def rec X. E = rec X. E' {X/F}
if rec X. E' {X/F} = F { Y/X}, FreeVar (E)= FreeVar(F { Y/X}), where EI , - -

rec Y .F ' for some u, Y,F',E-~RIE' by applying R1 on rec Y.F ' , E'Iv=F
for some v, such that rec Y.F'-~R1F.

The collapsing equivalence restricts the range of application of U2 and removes
bisimilar nodes other than those obtained by unfolding.

330 P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

rec Y.
--CE

Fig. 2. The collapsing equivalence

Note that it is necessary to check the equivalence recX.E'{X/F}=F(Y/X}
in the applicability condition of CE, in order to capture all the cases in which CE
is applicable. Let us consider, for example, the term recX.(a.X+rec Y.a. Y).
In order to apply CE it is necessary to consider as recX.E'{X/F} the
expression recX.(a.X+a.recY, a.Y){X/recY.a.Y}, in which an unfolding
of the internal rec expression has been performed. Instead, for r e c X . a l . (a 2 . X +
a2.al.a2.rec Y. al.a2. Y), recX.E'{X/F} is the expression recX.al.(a2.X+
a2.al.a2.recY.al.a2. Y){X/al.a2.recY.al.a2.Y} where F is the expression
a l . a2. rec Y. a l . a2. Y, which is obtained by unfolding the recursive subexpression
rec Y. a l . a2. Y. Note that the application of the CE axiom can always be decided, given
that for every term t, there exist a maximum number of unfolding steps with --*R1 to be
performed in order to check for the existence of the F expression to be folded.

Proposition 3.1 (correctness of CE with respect t o OBSRECg). OBSRECg ~--CE.

Proof. We only consider the case of E' = E and F = rec Y. F', the correctness of the
other cases trivially follows from the correctness of R1. In order to prove the
correctness of CE in OBSRECg it is more convenient to reformulate CE as follows:

CE =defF{ Y/X} =recX.E[F]

if recX.E[F] {X/F} = F { Y/X} where F - rec Y. F' is a subexpression of E
and FreeVar (E) = FreeVar (F { Y/X }).

Let us first prove the case in which the recursive expression F does not contain any
free occurrences of the bound variable X of the recursive expression E. In this case CE
becomes the following axiom:

CE1 =def rec Y. F ' = rec X. E[rec Y. F ']

if rec Y. F ' = rec X. E {X/rec Y. F'} FreeVar(rec X. E) = FreeVar(rec Y. F').

The correctness of CE1 can be proved starting from its hypothesis, by using U1 and U2:

rec Y.F'=recX.E{X/rec Y.F'}
=u, E'{X/rec Y. F'} {rec X. E{X/rec Y. F'}/X}

= E {X/rec Y. F ' } {rec Y. F'/X } (by hypothesis of CE 1)

=E{rec Y.F'/X} (by composing the substitutions)

= r e c X . E [r e c Y. F '] (by applying U2.)

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 331

Let us now prove the general case in which F may contain free occurrences of the
bound variable X. The correctness is shown by the following proof steps as above:

rec Y. F'{ Y/X}

=recX.E{X/rec Y.F'} (by hypothesis of CE)

= u , E{X/rec Y. F'} {rec X. E{X/rec Y. F'}/X}

=E{X/rec Y. F'} {rec Y. F'{ Y/X}/X} (by hypothesis of CE)

= E{rec Y. F'{ Y/X}/rec Y. F', rec Y. F'{ Y/X}/X}
(by composing the substitutions)

=u2 recX. E[rec Y. F'{ Y/X}].

Thus we have obtained:

rec Y.F'{ Y/X} = r e c X . E[rec Y. V'{ Y/X}] (,)

At this point, we have to show that rec X. E [rec Y. F'{ Y/X}] = rec X. E[rec Y. F '] .
We prove this by applying U2, thus we have to show that its hypothesis holds:

rec X. E [rec Y. F' { Y/X }] ;~ E [rec Y. F '] {rec X. E [rec Y. V' { Y/X }]/X }
(**)

where the U2-F is recX.E[rec Y.F'{ Y/X}], and the U2-E is E[rec Y.F'].
Since the occurrence of X inside F' is involved in the substitution, we can rewrite

the right-hand side of (**) as follows:

rec X. E [rec Y. F' { Y/X }]

E[rec Y. F ' [recX. E[rec Y. V'{ Y/X}]]] {rec X. E[rec Y. F'{ Y/X}]/X}

and by applying U1 on the left hand side we get:

E[rec Y. F' { Y/X}] {rec X. E[rec Y. F'{ Y/X}]/X}

~- E [rec Y. F' [rec X. E [rec Y. F'{ Y/X }]]] {rec X. E [rec Y. F' { Y/X}]/X }

which reduces to prove

rec Y.F'{ Y/X} :7: rec Y.r'[recX.E[rec Y.F'{ Y/X}]] (i)

We rewrite the left-hand side as follows:

rec Y.F'{ Y/X}=u1F'{ Y/X} {rec Y.F'{ Y/x}/r}

= F' {rec Y. F'{ Y/X}/X, rec r. F'{ Y/X}/Y}

(by composing the substitutions)

= v2 rec Y. F' [rec Y. F' { Y/X }]

Then, since the right-hand side of(i) is equivalent to rec Y. F' [rec Y. F' { Y/X}] by (*),
the thesis is proved.

332 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

The axiom CE is turned into the following rule CR (collapsing rule):

CR = def rec X . E = rec X . E ' { X/F }
if rec X. E' {X/F} = F { Y/X}, FreeVar (E) = FreeVar(F { Y/X}), where E[u =
rec Y . F ' for some u, Y,F',E-~R1E' by applying R1 on rec Y .F ' , E'I~=F
for some v, such that rec Y. F ' -~R1F.

Example 3.2. The expression E - rec X . a. ((X + b. nil) + rec Y. a . (Y + b. nil)) can

be rewritten as follows: recX.a.((X+b.ni l)+rec Y.a.(Y+b.nil))--~CR
rec X . a. ((X + b. nil) + X) -~ f_obs rec X . a. (X + b. nil).

Given the framework of ~o-rewritings, our aim is to characterize infinite rewritings

in such a way that their limit exists, are w-normal form and are obtained by applying

R1 infinitely many times after a finite number of reductions. This implies that any
redex other than those for R1 has to be reduced along the derivation and an infinite

generation of new redexes has to be avoided. Let us consider simple terms like

t - rec X . ~. (a. X + t ') for some term t', i.e. generic terms rec X . z. E, where E contains

directly prefixed occurrences of X. After the first rewriting step by means of R1, any

further unfolding step generates a new redex for -~f-obs (in particular, for the rule
/~. z. E -*# . E). In order to cope with this situation we introduce the following axiom,

action prefix equivalence, which we will refer to as ApE:

ApE = def rec X . z. E = z. rec X. E {z. X / X }

Proposition 3.3 (correctness of ApE with respect to OBSRECg). OBSRECg ~--ApE.

Proof. The correctness of ApE with respect to the axiomatizat ion OBSRECg can be
proved by first applying U1,

• . rec X . E {v. X / X } = u, ~. E {z. X / X } {(recX. E {T. X/X}) /X}

= z. E {(~. rec X . E {x. X / X })/X}

and then using U2,

z. rec X. E {'c. X / X } = rec X . z .E . []

The rule Ap is defined by orienting the axiom ApE from left to right:

Ap = aef rec X . z. E-~ z. rec X. E { z. X / X }

Note that further infinitely reducible combinat ions between a rec body and its

external context do not exist, since the guardedness hypothesis implies that a redex for

~f_obs w ~CR ~ ~Ap can arise, as a result of such a combinat ion, only after a finite
number of rewritings by ~R1- The guardedness hypothesis guarantees that possible
redexes for the absorpt ion lemma can only occur after a finite number of unfoldings
and cannot be produced infinitely many times.

P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 333

Let us now introduce the rewriting relation -"*r_obs:

" * r_obs = def "~f_obs, CT t.) "+CR k.) " * Ap L) -"*R1

The rewriting rules in "*r_obs are characterized by the following properties:
• --*Lob~,C'r reduces either inside the rec body or by considering the rec term as

a whole; this means that redexes for ~f_obs, CT cannot involve subterms of a rec term

and its external context;
• --"CR reduces a recursive expression r e c X . E by replacing an internal recursive

term with X. To be applied, ~CR checks subterms for equivalence using

--*f_obs, CX ~ --*cR w ~Ap, but --*cR does not apply such possible reductions. Thus, the
expression resulting from the application of --*CR can still be reducible according to

-"#~obs, CT k.) "-~CR k3 -"PAp ;

• after a rewriting step by -~Ap, redexes for ~f_obs, CX can occur in
z . r e c X . E { z . X / X } . This is the case when directly prefixed occurrences of the

variable X occur in the body E.
The following proposition sheds light on the interactions between R1, the rule that

leads to the limit of a derivation, and redexes for ~f_ob~,C-r u --*cR U ~Ap-

Proposition 3.4. Given EESp, let the subexpression G=Elu be a redex for

-'*f_obs, CT t--) -"*CR k.)"*Ap" I f E '~RI Et at the redex recX. F in E, then:
(i) i f G and rec X . F occur at independent positions or rec X . F is a subterm of G, then

G still occurs in E' (modulo =CT);
(ii) if G occurs in F, --*RI produces as many new redexes E' l , j for ~f_ob~,CTW --*c~W ---'Ap

in E' as the number o f the occurrences o f X in F. Moreover, G { rec X . F / X } l u, is

a redex in E' for some position u' which is prefix of uj for each j;

(iii) i f G = r e c X . F , i.e. it is a redex for --~CR or --~A~, then --*R1 produces as many new

redexes E'luj in E' as the number of the occurrences of X in F.

Proof. It follows from the definition of the rule R1 and the above properties of

--# f_obs, CT L) "*CR k.) ""~Ap - []

In thc following, wc will first show that ~r_obs is an co-canonical rcwriting rclation

over g~ and then that it is complete with respect to OBSRECg.

4. co-canonicity of -'*r_obs

In order to show that the rewriting relation ~r_obs is co-canonical over g~, we have

to provc that --%_obs is co-converging and co-confluent. Let us first considcr the

termination issues.

4.1. Top-termination and co-convergence o f -"*r_obs

Proposition 4.1. The rewriting relation "+r_obs is top-terminating over 8~.

3 3 4 P . Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

Proof. The relation ---~f_obs, CTt,-)~CR k.)-"*Ap is terminating and top-terminating over
8~: given any term t~gp, there exists a finite number of rewriting steps by

--'f_obs, CT w--'CRU--'Ap for any position, included the topmost one. Since terms are
finite, R1 can be applied only a finite number of times at the topmost position, e.g.
recX1, recX 2 ... rec X, . E. Moreover, since terms are guarded, infinitely many ap-

plications of R1 cannot generate infinitely many redexes for --'r_obs at the topmost
position. It follows that --'r_obs is top-terminating over gp. []

Proposition 4.2. The rewrit in9 relation --*r-obs is to-converoin9 over 8~.

Proof. It follows from Theorem 2.1, since ""~r_obs is top-terminating over 8p by
Proposition 4.1. []

4.2. S t ruc tured f a i r derivations

We now show that we can restrict our considerations to (structured) fair derivations
as they compute to-normal forms at the limit. We will prove a result analogous to

Theorem 2.2, even if --'Lobs is not left linear. This is possible because reductions are
applied modulo = c r .

Proposition 4.3. Given --, robs, ira term to ~ ~fp admits an to-normal f o r m t' e~7-~(~ , ~),

then there exis ts a fa ir derivation tO -* r_obs t l _,r_obs " " -* r_obstn -" r_obs " " with

lim. ~ ~ t~ = t'.

Proof. The proof is similar to the one for Theorem 4.3 in Dershowitz et al. [6]. Given
a non-fair derivation with an to-normal form as the limit, by definition of --'r_obs it is
possible to build a fair derivation with the same limit. Suppose that D:

t 0 - - - ~ r _ o b s t t " * r _ o b s " " - - - ~ r _ o b s t n - - - ~ r _ o b s " ' " " * ~ _ o b s t ' and t' is an to-normal form. If the
derivation is not fair, then for some index N', position u and rule r in ~r_obs, the rule
r must be continually applicable at u in the subderivation (t.)n>~u,, though not
actually applied. Let N>~N ' be an index such that for all n>~N, we have
d(t. , t ') ~< 1/2 l ul +IR I +IRI. Let t'. denote the result of applying r to t. at u. On account of

the low positions of reductions, any changes incurred by the steps past N take place in
the variable part of r. The situation is the following:

D: to ~ r_obs t 1 ~ r_obs " ' " ~ r_obs tN ~ r_obs tN + 1 ~ r_obs " " " ~ ~_obs t '

t ! t t tN tN+l

The rule r is continually applicable at u on t. for n/> N, though not actually applied.

The same rule also applies to t', but since t' is an to-normal form, it must be that the
result of rewriting t' is t' itself. In order to build a fair derivation from D, we have to

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 335

mimic D by applying the rule r and then linking the terms in the subderivation (t'n)n/> N

with rewriting steps t'~&r_obst'~+l, n ~>N. In this way we build a derivation in

~r_obs which is to-converging by Proposition 4.2. Therefore we have only to guarantee
that the limit is reached in a fair way. Let r' be the rule in ~r_obs such that
tN ~ , , tN ÷ 1 in D. Let us consider the following cases based on the (non-)left linearity of

the rules r, r'.
(i) If r, r' are both left linear, see Theorem 4.3 in [7].

(ii) If r is non-left linear and r' is left linear, it is always possible to rewrite
t'. &r_obst'.+l and close the diagram, since r' is left linear and independent of the

changes due to the application of r.
(iii) The interesting cases are when r' is non-left linear, independently of the

(non-)left linearity of r. Non-left linearity means that the application of a rule requires
the equality of (at least) two subterms. The application of r from tN to t~v may destroy
the redex for r', by rewriting the equal subterms into different ones and thus resulting
in the impossibility of rewriting t~v into t~+ 1. In the rewriting relation --*r_obs, the rule
r can only be R1 which rewrites subterms denoting infinite structures (otherwise the
result of rewriting t' with r would not be t' itself) and the possible changes introduced
by r in t'n are taken into account when rewriting in --'}r_obs modulo =cx. Thus, it is

always possible to close the diagram from t'. to t'.÷l with &r_obs(n>~N) and the

derivation from tN can be mimicked by a derivation issuing from t~v as follows:

D: to ~ r o b s t I ~ r_obs " " "-~ L o b s tN --~ r_obs tN + 1 ~ r o b s " ' " ~ ~_obs t '

~r lr ~r

, . , *_. . . . _ . 0 t ' tN "-~r_obs t N + 1 r_obs r_obs

Since the same reductions are essentially applied to the terms on the subderivation
(t'n)n>~N, the distance d(t'n, t')<~ 1/2 lul for all n >~ N and, moreover, l i m ~ ~o t'~ = t'. This
process may be repeated starting from some t'~, (n ' > N) such that d(t',,, t')<<. 1/2 I,l+l

to obtain a fair derivation with t' as the limit. []

In general, the limit of a fair derivation in -"}r_obs need not be an to-normal form.

Example 4.4. Let us consider the term t = (rec X. a. X) + rec X. (a. X + nil). It is easy
to check that t admits a fair derivation with the limit given by a~'+a °" which is not an

to-normal form. []

Actually, we are able to identify a particular subclass of fair derivations which have

a peculiar structure.

Definition 4.5 (structured derivation). A derivation t o - - * r _ o b s t l - - * r _ o b s ' " - * r _ o b s t n

--~Lobs"" is structured if there exists an index N such that, for all n >/N, it can only be

tn ""~R1 tn + 1 •

336 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

Thus, for any structured derivation it is possible to single out an index N that
splits the infinite derivation into a finite subderivation of terms (t.),<N, in which

~r_obs is applied, and an infinite subderivation of terms (t.),,~> N, in which only ~R~
can be applied. The fair derivation in Example 4.4. is not structured because at

each step the rule E + n i l ~ E in ~f_obs, CW can be applied at deeper and deeper
positions.

The limit of a structured fair derivation is an og-normal form.

Proposition 4.6. Given --*r_obs and a term to~gp, then for any structured fair derivation

to --*r_obs tl ~r_obs "'" ~Lobs tN ~RX "'" for some N >t 0 with l i m ~ ~ t. = t', t' is an co-

normal form o f to.

Proof. Let D: to "~r_obs t l "-'~r_obs " " " ~ r _ o b s t N " ~ R t " " be a structured fair derivation for
some N ~> 0 with lim.~ ~o t. = t'. Suppose that t' is not an co-normal form of to. Since
D is a structured fair derivation, it is not possible to generate new redexes for the same

rule at deeper and deeper positions infinitely many times. We have only to consider
the case in which t' can be rewritten at an infinite redex by a non-left linear rule in

- ' robs , whose application was never possible on any of the finite terms in the

subderivation (tn)n>>. N. In particular, this situation concerns --~f_obs, CT and ~CR,
because their application requires the equivalence of possibly syntactically different
subexpressions s ' ,s" which denote the same infinite term, i.e. s' =cTS". Since the

applicability of ~f_obs, CV and ~CR is checked modulo =CT, these rules would be
continually applicable in the subderivation (t.),/> N, thus contradicting the structured
fairness of D. []

We now prove that every term in g~ admits a structured fair derivation and that
only structured fair derivations need to be considered to compute w-normal forms.

Proposition 4.7. Any term to~8~ admits a structured fair derivation in ---~r_obs.

Proof. Starting from to, a structured fair derivation D is obtained by applying ~R1

only when no redexes for ~f_obs, CT~ ~CRU "-~Ata exist. This derivation is structured
fair for some N~>0. In fact, ~Ap and the guardedness hypothesis guarantee that

infinitely many redexes for ~f_obs, CV cannot be generated. []

Proposition 4.8. Given ---~r_obs, i f a term to ~8p admits an co-normal form t ~ ~ ~'- oo (~ , ~.),

then there exists a structured fair derivation

D': t o = t~ --*r_obs t'l " * L o b s " ' " --*r_obs t~ --*Ra "" for some N >>- 0 with lim.~oo t ' . = t ~ .

Proof. Since to admits an m-normal form t~, by Proposition 4.3 there exists a fair

derivation D: to ~r_obs tl ~r_obs"" ~r_obs t. ~r_obs"" ~ r°'_obs to~ with lim.~ ~o t. = too. If
D is not structured, it follows from the hypotheses and Proposition 3.4 that the only

P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354 337

way to produce new redexes for ""~r_obs, CT k.) "~CR k.) ""~Ap infinitely m a n y times is when

"-*R1 is applied to subterms rec X . E such that:
(i) the body E is not in normal form with respect to ~Eobs, CTU ~cRU-- 'Ap or

(ii) r e c X . E is also a redex for ~A~W--*CR'
Let D' be the s t ructured fair der ivat ion from to built as shown in the p roof of

Propos i t ion 4.7. Since D is fair, there exists an indexj such that t i is a term t[t~] where
the context t is in normal form with respect to ~r_obs and t)' only contains redexes of
the kind (i) a n d / o r (ii) or derived from them. Then, for every t, in D (n ~>j), there exist

a term t;, and a term t~, in D' (k>~N) such that t, (--~Lobs, CT k--) -"~CRk-) -"¢'Ap)* tn "~R1 tk
and this holds for the limit too of D as well, i.e. too (--*f_obs, CT w ~CR W--'Ap)* t% where
t~ can only be the limit t'~ of D'.

D: to "-~r_obs t l "*r_obs "'" "'~r obstj---~r_obs "'" "*r_obs tn ""~ r o b s " " ---* ~°obs t ~ \
D': to = t'o --,~ oUs t'~ ~_ob~ "'" ~r_obs t;~ --'R1 "" "-*R~ t~ ~R1 "'" ~ ~1 too

Since t~ is an to-normal form by hypothesis, this means that t ~ = t ~ , i.e. D' is

a s t ructured fair der ivat ion f rom to, for some N>~O, with limit too. []

Proposition 4.9. The rewriting relation --'~r_obs is to-normalizing over o~.

Proof. By Propos i t ion 4.7 any te rm toEoVp has a s t ructured fair der ivat ion D for some
N ~> 0. By Propos i t ion 4.2 ~r_obs is to-converging over gp, hence D has a limit t' which
is an to-normal form of to by Propos i t ion 4.6. []

4.3. to-confluence of "*r_obs

To show the co-confluence of ~r_obs with respect to structured fair derivations, we
have to prove the uniqueness of to-normal forms, i.e. every structured fair derivat ion
f rom a term t computes the same to-normal form. By Propos i t ion 4.6, this means
proving that any two structured fair derivat ions f rom t have the same limit (modulo

AC).
Actually, provided that --'RI is to-confluent, we can restrict our considerat ions only

to the finite subderivat ions of s t ructured fair derivations. Tha t is, given a term to, for
any two structured fair derivat ions D,,D2 with indexes N1, N2 respectively, it is
sufficient to prove the confluence of their finite subderivat ions

D'a : to ""~r_obs t l --'~r_obs "'" "*r_obs tN1 and

O~ : to = t~ "*r_obs t~ --~r_obs "'" "°r_obs t'Ivz.

It follows that -'-'r_obs can be t reated as a terminat ing relation, thus we can prove its
confluence by resort ing to local confluence due to the N e w m a n L e m m a [-5]. Local
confluence of -*r_obs is shown by analysing all the possible situations in which a term
can be rewrit ten by two (or more) rules in ~r_obs on non- independent redexes.

338 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

Proposition 4.10. The rewriting relation ~rt~ is co-confluent over ~ .

Proof. --'R~ is co-confluent if whenever S ~ l ~ t ~ l q , there exists t' such that
s ~ t'~l ~ q. --*R1 is left linear, co-convergence of ~x~ follows from Propositions 4.1 and
4.2, thus by Theorem 2.3 s and q are co-normal forms. Moreover, s and q are unfoldings of

t, hence by the uniqueness of solution in systems of recursive equations s = AC q [17]. []

Proposition 4.11. The rewriting relation -"*r_obs is locally confluent over 8g.

Proof. See Appendix B. []

Proposition 4.12. Given -'~r_obs, a term toe8p and the finite subderivations D~ and D 2 o f

any two structured fair derivations from to for some N1, N2/> 0,

O1 : to ---~r_obs t l "--~r obs "'" "-'*r_obstN1 and D 2." t o = t o ' --~r_obs ttl -'~r_obs "'" ---~r obstN2

then tN1 = o r t~/2.

Proof. The thesis follows from the structured fairness of the derivations, Proposition
4.11 and the Newman Lemma. []

Proposition 4.13. Given '~r_obs, a term to~Sp and any two structured fair derivations
DI: to---~r_obstl --'~r_obs"" ---~r_obstk"" ---~r_obstN1 --'~Xl "'" with limn~ootn=too and D2:
t o = to' ""~r_obs t 1' ""~r_obs "'" "'~r_obs tk' "'" ""~r_obs tN2' ""~R1 " ' " with llmn~ootn=too , " ' ' then t~o =AC

tL if and only if tN1 =crt~v2.

Proof. D~ and D 2 a r e structured fair derivations, thus t~ and t~ are co-normal forms
by Proposition 4.6. Moreover, since the derivations are structured, every possible

reduction by ~f_obs, CTW ~cRW ~Ap has been applied before N1 in Dx and before N2
in D2, and only rewritings by ~R1 can be applied after N1 in Dx and after N2 in D2,

respectively. Therefore, too and t~o are unfoldings of tN1 and t~v2, respectively. This

means that too =ACt~ if and only if tN1 =cTt~v2. []

Corollary 4.14. The rewriting relation -'~r_obs is co-confluent modulo AC.

We have shown that the rewriting relation~r_obs is co-canonical, i.e. the co-normal
form of any term t e g p exists and is unique (modulo AC). We are now in the position
to define our notion of recursive normal form.

Definition 4.15. A term t e ¢ p is in recursive normal form if every term t' such that

t &xl t' is in normal form with respect to ~f_obs.CT u--"cx u---'Ap.

Thus, given a term to~gp and any structured fair derivation to "-~r_obstl "~r_obs""
""r_obstN-"RI "'" for some N>~0, then t~ is in recursive normal form.

Corollary 4.16. Any term tegp admits a (unique modulo = CT) recursive normal form.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 339

5. Completeness of ~_obs

We now prove the completeness of "*r-obs with respect to the axiomatization

OBSRECg for observational congruence, i.e. any two observational congruent recursive
terms admit the same w-normal form with respect to --"~_obs. This is proved by
showing that the canonical system of recursive equations corresponding to a recursive
normal form denotes an rz-normal process graph. In order to perform the proof we
need some auxiliary definitions which set a suitable structure on process graphs.

Let us recall that an rz-normal process graph is (see Section 2.4):

(i) rz-rigid, i.e. it has no r~-bisimilar nodes;
(ii) minimal, i.e. it has no arcs, no double edges and no z-loops.

Definition 5.1. (partition 11 on the equations of a system S). Given a system
S = {X 1 = E~ X~ = E~ } associated to a term t e 8p, the partition 11 = { S~ Sk } on

S (k ~< n) is induced by the following relation 5¢: {X~=E~} 5P{Xj=Ej} if X j ~ a , ¢ (E i)
and Xi~e',z¢(E~) j ~ i where ~e~z~,(E)={Xl X,}w[Jj=l "//'~¢(Ej) if E =
op(X1 X,), o p e ~ of arity r~>0.

Definition 5.2 (level of an element S~ in the partition /7). Given a partition
11={S~ Sk} on a system S={X~=E~ Xn=En}, level(S~) is a mapping from

17 to the set of integers such that:

0 Si={Xi=cklCk constant}
level(S/)=

n+ 1 n=max{level(Sj)lSi uses Sj, j ~ i}

where, given Si = { Xil = Ell Xik =Eik }, we say that Si uses S# if 3Xir= Ei, in Si for
l ~< r ~< k such that 3Xjqe~i/'e¢(E~,) and Xj~=EjqeS i.

Definition 5.3 (distinct elements of/7). Given a par t i t ion/7 = {$1 Sk} on a system
S={X1 =El Xn=En}, S~, S i are distinct if S~ and Sj do not use each other.

In the following, with abuse of notation, the above notions will be used freely also
when referring to graphs and main variables of a system. We will also refer to the

variables of a system as the nodes of the corresponding graph.

Proposition 5.4. Given a term to~gp, let D: to " - ~ r _ o b s t l - ' ~ r _ o b s " " ""~r_obstN-"*R1 "'" be
a structured fair derivation for some N >t O. Let S be the canonical system associated to
tN, and g(tN)=process_graph(S). Then 9(tN) is an rz-normal process graph.

Proof. The proof is by induction on the level n of the elements St of the part i t ion/7 on
the system S.

n = 0 : L e v e l (S i) = 0 implies Si = {Xi=nil} by definition. In this case, the subterm
"nil" is trivially a recursive normal form and denotes an rz-normal process graph.

340 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

n = k + l : Assume the result for level k (inductive hypothesis) and consider
level(Si)=k+l. The proof is by contradiction: let g(tN) be a graph which is not
rv-normal. This means that at least one of the two conditions above is not satisfied.

rz-rigidity. If g (tN) is not rv-rigid, then there exists an rz-autobisimulation R of g (tN)
such that there exist two nodes si, s j, i 4:j and (si, sj)~R. It follows that the subgraphs
(g)~,, (g)sj with root sl, s t respectively, are z-bisimilar. Let Xi, Xj be the main variables
of the subsystems of S associated to the subgraphs (g)~i, (g)s, respectively.

Let us consider the following cases:
1. level(Xi), level(Xj) ~< k

1.1. (g)~,, (g)~j are distinct. Since they are rz-normal by inductive hypothesis, they
must be the same graph. Therefore, Xi and Xj are two equivalent variables in S thus
contradicting its canonicity.

1.2. (g)~j is a subgraph of (g)~,. Since they are rz-normal by inductive hypothesis, it
can only happen that (9)2, denotes a term ~. P and (g)~j denotes P for some term P, and
in S there exist two equations X' =/~. X~ for some action prefix operator #., where
l e v e l (X ') = k + 1. This contradicts the hypothesis that tN is in recursive normal form
since ~r_obs can be applied on the subterm #. v. P denoted by X'.

2. level(xi)=k+ 1 and level(Xj)~< k. Since (g)~, and (g)~j are bisimilar and (g)~j is
rz-normal by inductive hypothesis, it follows that (g),j is a subgraph of(g),,. Note that
this situation can only happen if the two subgraphs denote infinite trees, Xi may
denote a nonrecursive term but the tree corresponding to the subgraph (g),, is infinite
because it contains (g)~ that denotes a recursive term t j, namely Xj~Yfa~,(Ej).

Let us consider all the possible contexts in which X, uses Xj.

Prefix context: let Xi = E~ such that E~ - #. X2, for some action operator #., X2 = E2
in S and X j ~ a , (E z) .

(a) If Xi¢~e'z~,(Ei) then level(Xz)= k and the term associated to E2 is in recursive
normal form. X~ and Xj are z-bisimilar and this means that Xg denotes a subterm
which can only be the unfolding of the subterm associated to X j, thus contradicting
the canonicity hypothesis of S.

(b) If XiE't/~a,(Ei), then level (Xz)= k + 1 and there exists an equation X, = E~ such
that X~Fa~t(E2) , level(X,)= k + 1, and E~ = op(X,x Xi X~q).

X~ and Xj are z-bisimilar, the subterm q, associated to the subsystem with X, as the
main variable, denotes a recursive term and, by inductive hypothesis, Xj must denote

a recursive term as well. At term level the pattern for ~CR could have not been applied
because it was not possible to prove that either ti{X~/Xj}, i.e. the term ti in which
every reference to Xj has been replaced with a reference to X~, or one of its unfoldings
with respect to R1, is bisimilar to tj, i.e. the term associated to the subsystem with Xj
as the main variable. Since (g)~, and (g)~j are z-bisimilar, every move from one has to be
done in the other and viceversa. This means that in the subsystem associated to X~
there exists an equation X~h=E~h =--X~h~ + "" +Xih., in correspondence of which an
equat ion X j k = E j k exists in Sj such that either Ejk ==-Xjkl-~-'"-~-Xjk m with m ~< n or
Ejk ---- #. Xjk~, for some action operator/~., Xjk~ = Ez. Thus, in general, in E~h there are
some variables that denote equivalent equations, i.e. they are z-bisimilar to the same

P. Inverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354 341

equation in Sjk. Eih contains at most a summand, whose corresponding variable is of
level less or equal to k, and at least a summand, whose corresponding variable is of
level k + l, which denote bisimilar distinct graphs because one of them uses Xi and the

other uses X~. This means that the term ti { X d X j } could be reduced by --'f_obs, CT, as
long as it becomes equal to t j, thus allowing the application of --+ca and contradicting

the hypothesis that tN is a recursive normal form.
Summation context: let X i = E i in S such that E i - X~I + ... + Xiq,

X il = Ell Xiq = E~q and X j ~ ~lra¢ (E i).
(a) If Xi¢~lra¢(E~), the terms associated to Eil Eiq are in recursive normal form

and denote rz-normal process graphs. Furthermore, Xi is z-bisimilar to X j, which

denotes a recursive term. We can only have that Xi represents an unfolding of X j, thus

contradicting the canonicity hypothesis of S.
(b) If Xi6~l/'~¢(Ei) with E i - X , + ... +Xiq, then there exists an equation Xi ,= Eir

such that X~oe'~,(Eir), i.e. level (X~r) = k + 1.
The proof carries on analogously as above in the second case of prefix context.
3. level(X~)= level(X j) = k + 1. We have two cases by considering a prefix or sum-

mation context, respectively.
Prefix context: it can only happen that (g)s, denotes a term z. E and (g)sj denotes

E for some term E, and in S there exist two equations X' = #. X~ for some action prefix
operator ~u., where level (X') = level(Xi) = level (Xi) = k + 1. This contradicts the hy-
pothesis that tN is in recursive normal form since ~Lobs, CX can be applied on the

subterm #. z. E denoted by X'.
Summation context: we proceed by analysing the two outermost z-bisimilar nodes, if

more than two z-bisimilar nodes exist. The proof carries on analogously as in case 2 by
considering that, when trying to apply ~CR, the z-bisimilarity of the terms denoted by
X~ and Xj is proved by checking that tj{Xj/Xi} is z-bisimilar to t ~ { X / X j } .

Minimality: If g(tN) is not minimal, then it contains z-loops, arc and/or double
edges. As regards z-loops, since any guarded term is built from its canonical system
and the reductions performed on the term maintain its guardedness, z-loops cannot
occur. Furthermore, double edges are a particular instance of arcs, thus we have only
to consider the occurrence of arcs in g(tN). The situation is as follows: as long as levels
less or equal to k are considered, no arcs occur, but as soon as level k + 1 is considered,
(at least) an arc occurs. This means that, at term level, there exist two summands like
z . (. . . g . (... z (E + . . .) . . .) . . .) and #. F, where E = F since they are bisimilar recur-

sive normal forms. This corresponds to a pattern of the absorption lemma, which can
be reduced by --'f_obs.CT, thus contradicting the hypothesis that tN is a recursive

normal form. []

The following proposition guarantees that the use of the canonical system does not

introduce any relevant reduction with respect to the notion of normal form.

Proposition 5.5. Given a term to~ ,~ , let D: to " - ~ r _ o b s t l --~r o b s " " - - * r _obs tN ""~Rt " ' " be
a structured fair derivation for some N >10. Let S be the system associated to tN, and CS

be the canonical one. Then S:~CS if and only if tN =R1E(CS).

342 P. Inverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

Proof. The implication ~ is trivial: t~ is an unfolding of E(CS), then S is not the
canonical system. The other direction, instead, assures that the only reductions
performed when constructing the canonical system for a recursive normal form are
unfoldings with R1. Let us assume S ¢ C S . Since the two systems are built from the
same term tN and CS is canonical, by construction of S and CS, it can only be that
S has more variables than CS, and some of them are equivalent. In terms of the graph
(9)s associated to S this means that there are equivalent nodes, that is (g)s is not
rz-rigid. Let si, sj be nodes in (g)s such that the subgraphs (g)s,, (g)s~ with root si, s~
respectively, are ~-bisimilar. Let X,, X i be the main variables of the subsystems of
S associated to the subgraphs (g),,, (g),j respectively. The only relevant cases with
respect to the term structure are when X~ refers X j, directly or indirectly, i.e. (g)~j is
a subgraph of (g),,, or they refer each other. The proof is by contradiction. If

tN :~R~ E(CS), this means that some other kind of redundancy exists in tN. Since (g)~,
denotes an infinite tree and the node s~ is not an unfolding node, it must be a recursive
node, that is X i is a recursive variable. Therefore it follows that E(S~) is a recursive
expression which contains E(S~) with (g),, and (g)~j z-bisimilar, that is every move from
one has to be done in the other and viceversa. By the same arguments of the proof
above, case 2), this means that a reduction pattern for ~cR can be found that tN is not
a recursive normal form, thus contradicting the hypothesis. []

Corollary 5.6 (Completeness of -'-~r_obs with respect to OBSRECg). For any tl, t2E~ such
that OBSRECg ~ t 1 = t 2 , then tN~ =CTtN2 where tN~, tN2 are the recursive normal forms of
tl , t2, respectively.

6. A rewriting strategy for -"*r_obs

We can now define a rewriting strategy in order to compute a specific structured fair

derivation to--~r_obstl-*r_obs""--~r_obstN-*R1 "'" f r o m any term t0E~g, such that an
upper bound for the index N can be determined.

Let us first show that, given a term in normal form with respect to

~f_obs, CT u ~cR w ~Ap, rewriting by ~R1 cannot generate any redexes for -*ca and
~ a , . Moreover, rewriting by ~f_obs, CT preserves normality with respect to

-"~ CR U " " ~ A p •

Lemma 6.1. Let t ~o~ be a term in normal form with respect to -*f_obs, CT k.) --~CR k3 -"~Ap"
If t~Rat ' , then t' is in normal form with respect to ~CRU--~Ap. Moreover, if
t'~f_obs.CTt", then t" is still in normal form with respect to ~cRU ~Ap.

Proof. If t ~R1 t', then t contains a recursive subterm which is rewritten by RI:

t [r e c X . E] ~R1 t [E { r e c X . E / X }] =_ t'.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 343

A redex for ~A~ is an instance of rec X . z. E. This means that t ' contains redexes for
--'A~ if and only if they already occurred in t, but t is in normal form with respect to

~A~ by hypothesis.
A redex for ~CR is a term r e c X . E [r e c Y . F] which ~RI can rewrite on bo th

recursive subterms.
(i) Unfolding on the ou te rmos t recursive subterm: t [r e c X . E [r e c Y . F]]

~R1 t [E [r e c Y. F] {rec X . E[rec Y. F] / X }] - t'. It t' contains a redex for "-*CR given
by the subterm rec Y. F { rec X . E [rec Y. F] / X }, then the subterm rec X . E [rec Y. F]
of t is necessarily a redex for ~cR, but t is in normal form with respect to ~CR.

(ii) Unfolding on the innermost recursive subterm: t [r e c X . E [r e c Y . F]]

--*RX t [rec X . E [F{rec Y. F~ Y}]] - t'.
If t ' contains a redex for "-*CR given by the sub te rm rec X . E [F{rec Y. F~ Y}], then

the sub te rm rec X . E [rec Y. F] of t is necessarily a redex for --'CR, but t is in normal
form with respect to ~CR- Hence, t' is in normal form with respect to -*CRW ~Ap.

Let us now consider t'---~f_obs, CTt". Since --*CR is applied modu lo --*Lobs, Cr, t"
cannot contain any redexes for - ' cR. A redex rec X . z. E for ~Ap can be generated in
t" only if the redex z . E + E for --'r_obs, CT is the body of " r ecX." in t'. This cannot
happen since t ' is obta ined f rom t by applying ~R~ and t is in normal form with

respect to ""~f_obs, CT. []

Example 6.2. Rewrit ing by --*RX can generate redexes for -~f_obs, CT. For example,
the term (r e c X . (a . X + b . n i l)) + z . b . n i l is in normal form with respect to

"*f_obs, CT k-) "*CR k-) -"~Ap, but rewriting by --*R1 generates a redex for --'robs, CT:

(rec X . (a. X + b. nil)) + z. b. nil --*aa (a. (rec X . (a. X + b. nil)) + b. nil) + z. b. nil

-'*'f_obs, CT a . (rec X . (a. X + b. nil)) + z. b. nil.

Definition 6.3 (effective derivation). Given a te rm to~£~, let D be a derivat ion from to

obta ined as follows:
1. all possible reductions by (~ r_obs, c'r w ~ CR W ~ Ap), let us say k ~> 0, are first applied:

to ("-+ Lobs, CT k.2 ~ CR kJ --~ Ap)k tk ;
2. one unfolding step by ~RX on each recursive subexpression, let us say r>~0, is then

applied s tar t ing from the deepest o n e s : t k (- - * R 1) r t k + r ;

3. all possible new reduct ions by --+f_obs, CT, let us say v/>0, are then performed:

tk +r(-*f_obs, CT)V tk +r+v;
4. only rewritings by ~R1 are finally applied: tk+r+ v --*~1 tao.

The der ivat ion D is called effective and denoted as D(k, r, v).

Proposition 6.4. Given a term toyota, let D(k,r ,v) be an effective derivation from to.

Then D(k,r ,v) is a structured fair derivation to--*~obstl "-'~r_obs""--*r_obstS--*R1

where the index N has an upper bound U (N) = k +r+v .

344 P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

Proof. It is sufficient to prove that t k+r+ v is a recursive normal form. We have only to

show that rewriting tk + r + v by ---, R I cannot generate redexes for ---,r_obs, CT w ~ c~ w ~ Ap,

i.e. t k + r + v is in normal form with respect to --'r_Obs, CTW--- 'CR~A . By the
guardedness hypothesis, rewriting t k + , + v by ~ a l cannot generate any redexes for

~f_obs, C-r w ---'cR ~ --'A~, unless they already occurred in tk + ~ ÷ ~, but this is not possible
because D (k , r, v) is an effective derivation. By Lemma 6.1 only ---'R1 can be further applied

and this means that t k+,+~ is in normal form with respect to ~f_obs, fT u ~CR U ~A~- []

7. Conclusions and related works

We have presented a rewriting relation for observational congruence over guarded
recursive (finite-state) CCS expressions. On the basis of this relation, a decision
procedure has been defined that shows the use of the axiomatization for a behavioural
equivalence as a proof procedure and not only as a semantic device.

In this way we extend the approach based on term rewriting presented in [4]
to finite-state CCS expressions. In this respect, the fact that the rewriting relation
~r_obs is defined over guarded CCS expressions does not represent a limitation. It is,
in fact, possible to extend its application to unguarded recursive CCS expressions, for
which Milner has given a set of correct and complete axioms to transform an

unguarded expression into an equivalent guarded one [17]. Furthermore, it is
possible to extend the process algebra through the introduction of parallel, restriction
and relabelling operators, for which correct sets of axioms have been defined. If the

recursion and parallel operators interact in such a way that expressions are still
finite-state, our rewriting strategy remains complete.

As far as related approaches to the verification of observational congruence are
concerned, our attempt has to be considered complementary and not opposed to the

other ones based on the finite-state representation of a term. Most of the verification
systems for process algebras are based on the finite-state automata representation of

a process term [12, 13]. This means that in order to perform verification, they first
transform the term into an equivalent finite-state automata. This has the advantage of

making the application of efficient graph partition algorithms for checking behav-
ioural equivalences possible. On the other hand, these systems exhibit a few limita-
tions mostly due to the fact that they do not provide sufficient control over the
verification process. In fact, they suffer from the state explosion problem and can only

perform fully automatic proofs. Thus, there is no way either to incrementally control
(and prune) the state growth or to accomodate the verification of infinite state
processes or to produce a good diagnostics to help identify errors.

All these motivations have recently led to the definition of tools based on equa-
tional reasoning [19]. In these systems the idea is to rely on the syntactic representa-
tion of processes and to use the various equivalence laws to carry on formal proofs. In
general, these systems are less efficient, but they offer a way to cope with the
finite-state limitation and allow both interactive and automatic techniques to be

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 345

defined. Therefore, their application range is wider and they provide users with a more
flexible interface to carry on their specific verification proofs.

The rewriting strategy presented in this paper is a step ahead in the direction of
more powerful systems based on equational reasoning. It makes reasoning on recur-
sive terms explicit and allows for a better comprehension of the infinite nature of
a term. In particular, our treatment of the axiom U2 by means of the axiom CE, and
therefore of the rule CR, allows for a syntactic, even if rather complex, treatment of the
"infinite" redundancy of a term. It is worth noting that, in order to turn the
axiomatization into rewriting rules, it has been necessary to simplify some of the
axioms, namely U2 loses much of its elegance in favour of a more practical and
specific collapsing rule. Furthermore, we have introduced a new axiom, the action
prefix equivalence, that can be derived from the given axiomatization. The inclusion of
this axiom is only motivated in light of the kind of rewritings we want to deal with
(structured derivations) and not by semantic considerations. On the contrary, there
has been no problem in dealing with the unfolding axiom U1.

The approach we have followed to define the rewriting strategy integrates a number
of results and techniques which have been developed in different fields of computer
science. In our opinion, the use of the framework of infinite rewritings and ~o-normal
forms is particularly interesting since, from the rewriting technique point of view, our
experience represents both a concrete application example and an extension towards
the treatment of infinite derivations for non-left linear term rewriting systems [11].

Acknowledgements

We would like to thank the anonymous referees and Giovanni Mandorino for their
very helpful comments on previous versions of this paper.

Appendix A

As mentioned in Section 2.2, the starting point of --~f_obs is the following TRS RoBs:

RoBs rl. E + n i l ~ E

r2. E + E ~ E

r3. 12.z.E--*II.E

r4. z . E + E ~ z . E

r5. # . (E + z . F) + # . F ~ # . (E + z . F)

and the strategy --'f_obs can be seen as composed of two phases. The first phase
normalizes the input term with respect to RoBs. The second phase works on the
resulting term by looking for summands to be deleted according to the absorption

346 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

lemma. It rewrites the term by using T2 and T3 as expansion rules (expansion process)
and, as soon as possible, it deletes the redundant summands by means of RoBs
(reduction process). These reductions are performed by using a specific redex selection
criterion that prevents those reductions which are exactly opposite to the previous
expansions by T2 and T3. The expansion and reduction steps are applied as long as
there exist summands to be deleted. Finally, to obtain the oBs-normal form, the
current term is rewritten by applying the reductions opposite to the previous expan-
sions (contraction process) by using a redex selection criterion that selects the smallest
redexes with respect to the chosen term ordering >--. In the following 2. ranges over
the set of action prefix operators ~ 1 - {z. }.

Definition A.1. A term t is expandible if it is an AC instance of the right-hand side of
T2 or T3. An expansion step consists of the application of T2 or T3 as expansion rules
in the following way.

Z.X--*T2Z.X+X 2 . (X + Z . y O) ~ T a 2 . (X + Z . y O) + 2 . y o + 2 . y I + ' " + 2 . y ,

ifz. yj is a top level summand ofx, j = 1 r (underlined denotes an already expanded
summand).

In the above definition we assume that an expansion step by T3 is performed by
applying T3 for all the possible AC instances of its right-hand side: for example, the
term 2. (z. x + z. y + z) is expanded into the term 2. (z. x + z. y + z) + 2. x + 2. y (T3 is
applied twice with the two different redexes). In this way, the expansion of all the
z-prefixed subterms is guaranteed: it is necessary because, during the expansion
process, we do not know which subterm, if any, will act as p-derivative. Moreover, in
the presence of terms which may be expanded by using both T2 and T3, like
z. (x + z. y), T2 is always applied, since for/~. = z., T3 can be derived in oBs by using
T2. Thus, we have replaced the action prefix operator #. with 2. ~ z. in T3.

The rewriting relation ~f_obs is supposed to work under the following flattening
hypothesis: given the input sumform E =Y.i ~<i~<n #i. Ei (n > 1), each summand/~i-Ei is
already in oBs-normal form, while for n = 1 E1 is in oas-normal form. Let us now state
the following facts:

F1. Each summand/~. F to be deleted in order to derive the oBs-normal form of E, is
a top level summand #j. Ej for some j.

F2. For each summand ~t~. Ej to be deleted, there exists a summand #k. Ek, k ~j, such
that I~k. Ek ~ 12j • Ej.

F3. Let ti--*TE_Tatid-ti+ 1 be an expansion step, then ti>-t~+l. In fact, if
t i -~TEtid-t i+ 1 then ti >-ti+ ~ follows from the subterm property of the apo. If
t~ ~T3 tl + ti+ ~ where t~+ ~ is the summation of all summands 2. t~s such that tij is
z-prefixed in t~, the fact follows from the definition of multiset ordering and the
subterm property.

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 347

F4. If E' and F are observationally congruent subterms of E, then E' and F are
equivalent modulo the AC axioms since they are subterms in oBs-normal form by
the flattening hypothesis. Therefore, E ' = oBsF reduces to verify E ' = AcF.

Let us now describe in details how the oRs-normal form of a sumform E can be derived.
The recursive procedure n o r m a l _ f o r m is defined by cases on the sumform structure as
follows, thus assuring the application of Of_obs under the flattening hypothesis:

normal_form (E) = def i_f E = nil then nil;

i_f E = p . E' then --~f_obs(//. normal_form(E'));

i_fE-- ~ E i (n > l) then
l <~i<~n

--* f_obs (1 ~<i~< n normal_form (Ei))

The notation --*f_obs(E) denotes the normal form of E with respect to ~f_obs-
The basic steps of ~f_obs can be defined by means of inference rules and then

-~f_obs may be defined as a regular expression built from such inference rules.
Normalization with respect to RoBs, expansion, reduction and contraction are the
basic steps. Expansion, reduction and contraction are performed according to specific
redex selection criteria, which represent the applicability conditions of the corres-
ponding inference rules.

Let t be a sumform Zl~<i~<,tl. We define the following sets:

Summands (t) = { ti l i = 1 n }

Mark(t)= {(t i , mi) l ti~Summands(t), mi is ti's mark, i= 1 n}

L a b e l (t) = { (t i , l i) l t i e S u m m a n d s (t) , l~ is t~'s label, i= 1 n}

where

0 if t~ is a non-expanded summand,
m i

1 otherwise,

Default if t~ is a summand of the input term t,

li= Ik't k if the summand t~ is generated by an expansion

step from t k for some k.

A mark m~ and a label l~ are associated to every summand t~, providing information
about its expanded/contracted status and about that summand whose expansion
process has generated it. The mark is used to prevent those reductions which are
exactly opposite to the previous expansion steps. The label is used both to prevent
reductions involving summands derived from different expansion processes and to
properly drive the contraction processes. Thus, the structure manipulated by the
inference rules is a triple (t, M, L), where t is the current term, M is Mark(t) and L is
Label(t). The mark and the label of a term are supposed to be inherited by its

3 4 8 P . Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

summands, i.e. if t~/is a summation, the notations (t),m)eM and (t), l)eL denote
(t)k, m)em and (t)~, l)eL for each t)~ e Summands(t)), respectively.

Let us now give the inference rules.
T t' Rons-Normalization: (t, O, O) t- (t', M, L) if t ~ go,s/AC where M = {(ti, 0)l t 'ieSum-

mands(t ')} and {L=(t l , Default)lt ' ieSummands(t ')}.
Expansion: (t, M,L)~-(t ' ,M',L') if 3tjeSummands(t) such that (ti, O)eM and

tj--*T2-T3/Actj+t) and 3tkeSummands(t) such that (tk, O)eM, (tk, Default)eL and
tj >--tk and]] tpe Summands (t) such that tp is expandible, (tp, 0)e M and tp >-t~ where

t 4 - - t t t t =t[t~ tj+tj], M'=(M-{(t~ , 0)})w{(tj, 1), (tj,0)}, L'=Lw{(t j , lj" tj)}.

Reduction: (t, M, L) F- (t', M', L') if 3tlu = AC t j -+ - t) " * R o B s / A C tj, (tlu, 0)eM and (t), De-
fault)eL where t '=t[ti],, M'=M-{(t ' j , 0)}, L '=L-{ (t) , Default)}.

Contraction: (t, M, L) ~- (t', M', L') if 3tl. = Actj + t) --~ Ro~s/AC tj and (t), l~" ti)eL and
StkeSummands(t) such that (tk, l) t))eL where t '=t[tj]. , M'=M-{(t) ,m))} ,
L' -- L - { (t~/, lj- t~)}.

The rule Expansion deals with only the summands tj of t. Deeper expandible
subterms are considered in next (iterative) applications of the rule Expansion. This
rule selects one of the "greatest and incomparable" summands t j, whose expansion
might allow a reduction, i.e. there must exist a summand tk smaller than tj (see fact F2).
Thus, if there are two expandible summands tl, t2 such that tl >-t2, the rule
Expansion first expands t~ and considers t 2 only at a next expansion step (if t 2 has not
been deleted by the rule Reduction).

As far as the contraction process is concerned, note that an expansion step of a
term t by T3 may generate a term t '=2. (x+z .yo)+2.yo+2.y~+ ... + 2 . y , . In that
case, each 2. y~,j = 0 r, is labelled It" t and the rule contraction has to perform r + 1
steps in order to rebuild t from t'. At any single step the contraction process reduces
2.(x+z.yo)+2.yj , for some j, to 2.(x+z.yo) and still allows all the remaining
contraction steps to be performed. Thus, the order in which these steps are applied is
not significant, independently of the ordering relations among the 2. yj(s).

Finally, ~r_obs is defined as the following regular expression:

- - ~ f _ o b s = d e f Roas-normalization; absorption

where absorption = def (expansion; reduction)*; contraction*.
Due to the flattening hypothesis, absorption cannot produce redexes for Roas-

normalization.

Appendix B

Proposit ion 4.11. The rewriting relation ~r~bs is locally confluent over 8¢.

Proof. Let t e¢¢ be reducible by means of the rules in -~r_obs on non-independent
redexes. By case analysis we consider all the possible ways a term can be rewritten by
two rules.

P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 3 4 9

1. The term t can be rewritten by -~f_obs, CT- If t'f_obs~--t--,f_obs t' ' local confluence

follows from the canonicity of ~f_obs as proved in [-103. If t f_obs, CT * - - t - ' ~ f_obs,CT t" such
that one or both rewritings are not possible via --'f_obs only, there exists a term s such

, , ~__. c T S " ' that s = c x t , s'f_obs*-s--*r_obsS" for some s', s", and s = c x t , t" The confluece of
s', s" to a c o m m o n term follows from the canonicity of -Of_obs.

2. The term t can be rewritten by ~R1 and any other rule in -*r_obs- Local
confluence follows from Proposi t ions 3.4 and 4.10.

3. The term t can be rewritten by -*f_obs, Cl and by ~CR.
3.1. The redex for -oCR is a subterm of the redex for -*f_obs.C'r. We distinguish two

situations.

3.1.1. ~f~obs, CX deletes a summand different from "nil". The case in which the
deleted summand is "nil" is trivial.

Given t -= Ex + ..- + E, , suppose without loss of generality that a top level sum-

mand El, which is also reducible by ~CR, is deleted by -'f_obs, Cl. By definition
of ~f_obs, CT there exists a summand E k in t which contains some derivative E',

which is equivalent to E~. Since -"f_obs, CV does not make use of ~cR, E' can also
be rewritten by ~ c g obtaining a summand E~,. On the other side, once Ei has been

rewritten by --*c~ obtaining E~, it is sufficient to apply -oCR on E' and then "*f_obs, CT to
delete E;.

t = E l + "" + E l + "" + E k [- E '] + ' " + E .

,~ Lobs, CT ,~ CR on E i

El + --" +Ei_ 1 +Ei+ 1 + "- + E k [E '] + "" + E .

ICR on E'

E~ + ... + E ~ + ... + E k [E '] + . . . +E,,

,Lcg on E'

E1 + "" + E i - a + E , + t + "'" +E~,+ ... + E,, ~Lobs.CTE 1 + ... + E~ + ... + E'k + "" + E,,

on E~ and E~,

Note that the two rewritings by ~ c s on the r ight-hand side, on Ei and E' respectively,
can be applied in any order.

Moreover , if the redex for --'CR is contained in a summand different from those
involved in the reduction (Ei, Ek), this can be seen as a situation of independent

redexes. We have a similar situation when the redex for --'CR occurs in the context of
E' in g k and is not involved in the reduction (Ei, ER).

3.1.2. -'*f_obs, CT deletes an internal action.
This situation can be simply depicted by the following diagram:

t[v.,.E]

$Lobs, CV ,L CR

t [1 2 . E] t E l ~ . z . E ']

c~ ~ Lobs, CT

t [~ . E ']

E contains a redex for ~CR

350 P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354

3.2. The redex for -'*f_obs, CT is a subterm of the redex for --'ca.
This situation is independent of the kind of reduction performed by ~r_obs, CT. The
rule --'oR is applied on a recursive subterm recX.E[F[rec Y.F']]. The redex for
~f_obs, CT can occur in the external context E of rec Y. F' or in F'. If it occurs in E,
~CR recognizes this reduction but does not apply it (see remarks in Section 3). The
term t [rec X. E { X/F [rec Y. F '] }] resulting from the application of ---'OR can still be
reduced by ~Lobs, CT, thus obtaining t [r e cX . E"{X/F[rec Y. F ']}] . On the other
side, --*f_obs, CT reduces E to E". The resulting term is still reducible by --*ca, thus
closing the diagram.

t [r e c X . E [F [r e c Y. F ']]]

Lobs, CT ~ c .

t[recX.E"[rec Y.F]] t[recX.E'{X/f[rec Y.F']}]

~, CR I f_obs, CT

t [rec X. E" { X/F [rec Y. F '] }]

If the redex for ~f_obs,CT occurs in F', the same arguments apply except that the last
reduction by --*f_ob~,CT on t [rec X. E' {X/F[rec Y. F '] }] is not necessary.

t [r ecX. E [F [r e c Y. F ']]]

~, Lobs, CT J, CR

t [recX. E [F"[rec Y. F "]]] t [rec X. E'[X/V[rec Y. F ']]]

CR

and

t[recX.E'{X/F"[rec Y . F "] }]

t [rec X. E'{ X/F" [rec Y. F"] }] = t [rec X. E' { X/F [rec Y. F '] } 3.

4. The term t can be rewritten by --'Lobs, CT and by --'Ap-

4.1. The redex for ~Ap is a subterm of the redex for ~Lobs, CT. The same arguments
as in case 3.1 apply, with --*cR replaced by --'A~-

4.2. The redex for --*fobs, CX is a subterm of the redex for --'A~. The following
diagram illustrates this situation, for the cases in which E v~ ~. E':

t [r ecX .T. E] E contains a redex for --~f_obs, CT

~, f_obs, CT J, Ap

tFrecX.r.E'] t[z.recX.E{z.X/X}]

~, Ap ~, f_obs, CT E {~. X/X} is still reducible by --*f_obs, CT

t[z.rec X.E' {r.X/X}]

In the case in which E - ~. E', the redex for -*f_obs, Cr is z. ~. E', then the right-hand
part of the above diagram is modified as follows: t [rec X. r . E] --'A, t [r . rec X.
E{v.X/X}]--*A, t[z.r.recX.E'{~.~.X/X}] --*~_obs, cTt[v.recX.E'{r.X/X}].

P. lnverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 351

5. The term t can be rewritten by ~Ap and ~ c x .
5.1. The redex for --'cx is a proper subterm of the redex for --~Ap. This situation can

be simply depicted by the following diagram:

t [rec Z. r. (E" [rec X. E'[-F[rec Y. F ']]])]

,LAp

t [r. rec Z. E' [rec X. E [rec Y. F]] {z. Z/Z}]

~, cx

,L CR

t [rec Z. z. (E" [rec X. E' {X/F [rec Y. F']}])]

,LAp

t [z . recZ. E' [rec X. E{X/rec Y. F}] {z .Z/Z}]

5.2. The redex for --, A~ is a proper subterm of the redex for ~ CR.
Let r e c X . E ' [F [r e c Y. F ']] be a redex for ~ c x in t, such that the external context

of rec Y. F ' in E and /o r F' contain a redex for -*Ap. If ~ A , is first applied on any redex

in the external context of rec Y. F ' or in F' , the resulting term is still reducible by ~ cR.

On the other side, once --* CR has been applied, the resulting term can still be reducible

by ~Ap if a redex for ~A~ is in the external context of rec Y.F ' , while it is not

reducible if the redex for -~Ap is only in F' .
Let ~Ap be applicable on the external context of rec Y. F ' in E'; we then have the

following diagram:

t [rec X . E ' [F [r e c Y. F ']]]

,•Ap ~, CR

t [recX.E'F[[rec Y. F ']]] t [recX.E ' [F{X/rec Y .F '])]

~cR lap
t [rec X . E" {X/F [rec Y. F '] }]

Let --~Ap be applicable on F ' ; we then have the following diagram:

t [rec X . E ' [F [r e c Y. F'333

~Ap ~CR
t[recX.E'[F[rec Y . F "]]] t [recX.E '{X/F[rec Y. F '] }3

~cR

t I-rec X . E' { X/ F [rec Y. F "] }]

and t [rec X. E'{ X / F [rec Y. F "] }] = t [rec X. E'{ X /F [rec Y. F '] }] trivially holds.

5.3. The same subterm is a redex for both --, Ao and --* CR.
Let -~ Ap be applicable on rec X . E, i.e. E - z. E' for some E'. This implies that rec Y. F
has to be a redex for --'A~, i.e. F' - z .F" for some F", otherwise --'cR would not be
applicable on rec X . E I F [rec Y. F ']] . The diagram is the following:

352 P. Inverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

t[recX.z.(E"[F[rec Y.z. F"]])]

t[r.(recX.E"[F[rec Y.~.F"]3{z.X/X})]

(now ---'OR is not applicable) ~Ap

t[T .(rec X. E"[F[z. (rec Y. F"{z. Y/Y})]] {~. X/X})]

(now ~CR is again applicable) $CR

J, CR

t[recX.T.(E'{X/F[rec Y.~. F"]})]

,L Ap

t[T. (rec X. E' {X/V[rec Y. ~. F"] } {~. X/X})]

t [T. (rec X. E' {X/F[z. (rec Y. F" {z. Y/Y})] }3 {~. X/X})]

where t[T.(recX.E'{X/F[T.(rec Y.F"{T. Y/Y})]}] { r .X /X})] and t [T . (r e c X .
E'{X/F [rec Y. ~. F"} {T. X / X })] are equal. Note that the two rewritings by ~ A , on
the left can be applied in any order.

6. The term t can be rewritten by --'CR.

This is the case when a redex for ~CR is contained in another redex for ~cR, as in
t [r e c X . E [r e c Y.F'[recZ.G']]] such that both r e c X . E [r e c Y.F'[recZ.G']]
(both X w.r.t. Y and X w.r.t. Z) and recY. F'[recZ.G'] are redexes for ~CS.
Applying ~CR on the ou te rmos t redex for X w.r.t. Y results in replacing X for
rec Y. F'[-rec Z . G '] , thus losing the previously possible reduction on it. On the other
side, applying ~ CR on the innermost redex (Y w.r.t. Z) results in a term which is still
reducible by ~CR :

t [rec X. E[F[rec Y. F'[G[recZ. G ']]]]]

(on the outermost redex) lcR

t [rec X. E' {X/F [rec Y. F' [rec Z. G'] }]

and

ca (on the innermost redex)

t [rec X. E ' [F[rec Y.F'{ Y/G[recZ.G']}]]

,Lca

t[recX.E'{X/F[rec Y.F'{ Y/G[recZ. G']}]}]

t [rec X. E' { X/F [rec Y. F' [rec Z. G'] }] = t [rec X. E' { X/F [rec Y. F' { Y/G [rec Z. G'] }] }].
Applying --*ca on the ou te rmos t redex for X w.r.t. Z results in replacing X for

G[recZ.G'], obtaining a term which is still reducible by ~CR (X w.r.t. Y). On the
other side, applying ~CR on the innermost redex (Yw.r.t. Z) results in a term, which is
still reducible by ~ c R (X w.r.t. Y):

t [recX.E[F[rec Y.F'[G[recZ.G']]]]]

~,CR

t I-rec X. E ' [F [rec Y. F'{X/G[rec Z. G'] }]]]

,L CR

t [recX. E'[F[rec Y. F'{ Y/G[recZ. 6'] }]]]

+cR

t [rec X. E' {XIF [rec Y. F' {X/G [rec Z. G'] }] }] = t [rec X. E' { X/F [rec Y. F'{ Y/G [rec Z. G'] }] }]

P. Inverardi, M. Nesi / Theoretical Computer Science 139 (1995) 315-354 353

7. The term t can be rewritten by ~Ap.
This can only be the case ofa redex for ---'Ap which contains another redex for --,%, as
in the following diagram:

t [rec X. ~. (E [rec Y. z .F])]
(on the outermost redex) ~Ap ~A~ (on the innermost redex)

t[z.recX.E[rec Y.z.F]{z.X/X}] t[recX.z.(E[z.rec Y.F{z. Y/Y}])]

t[z.recX.E[z.rec Y.F{z. Y/Y}]{z.X/X}]

References

[1] J.A. Bergstra and J.W. Klop, A complete inference system for regular processes with silent moves, in:
Proc. Logic Colloquium 86 (North Holland, Amsterdam, 1988) 21-81.

[2] B. Courcelle, G. Kahn and J. Vuillemin, Algorithmes d'equivalence et de reduction a des expressions
minimales dans une classe d'rquations recursives simples, in: Proc. 2nd lnternat. Colloq. on Automata,
Languages and Programming, Lecture Notes in Computer Science, Vol. 14 (Springer, Berlin, 1974)
200-213.

[3] R. De Nicola and M. Hennessy, Testing equivalences for processes, Theoret. Comput. Sci. 34 (1984)
83-133.

[4] R. De Nicola, P. Inverardi and M. Nesi, Using the axiomatic presentation of behavioural equivalences
for manipulating CCS specifications, in: Proc. Workshop on Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science, Vol. 407 (Springer, Berlin, 1990) 54-67.

[5] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, Vol. B: Formal Models and Semantics (Elsevier Amsterdam, 1990) 243-320.

[6] N. Dershowitz and J.-P. Jouannaud, Notations for rewriting, Bull. European Assoc. Theoret. Comput.
Sci. 43 (1991) 162-172.

[7] N. Dershowitz, S. Kaplan and D.A. Plaisted, Rewrite, Rewrite, Rewrite, Rewrite, Rewrite Theoret.
Comput. Sci. 83 (1) (1991) 71-96.

[8] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, d. Assoc. Comput.
Mach. 32 (1) (1985) 137-161.

[9] H. Hussmann, Nondeterministic Algebraic Specifications, Ph.D. Thesis, University of Passau, English
Literal Translation as TUM-19104, March 1991.

[10] P. lnverardi and M. Nesi (1990), A rewriting strategy to verify observational congruence, In]brm.
Process. Lett. 35 (1990) 191-199.

I-11] P. lnverardi and M. Nesi, Infinite normal forms for non-linear term rewriting systems, in: Proc. 16th
lnternat. Symp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, Vol. 520 (Springer, Berlin, 1991) 231-239; full version to appear in Theoret. Comput. Sci..

[12] P. lnverardi and C. Priami, Evaluation of tools for the analysis of communicating systems, Bull.
European Assoc. Theoret. Comput. Sci. 45 (1991) 158-185.

[13] E. Madelaine, Verification tools from the CONCUR project, Bull. European Assoc. Theoret. Comput.
Sci. 47 (1992) 110-128.

[14] J. Meseguer, Conditioned rewriting logic as a unified model of concurrency, Theoret. Comput. Sci. 96
(1) (1992) 73-156.

[15] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92
(Springer, Berlin, 1980).

[16] R. Milner, Lectures on a calculus for communicating systems, in: M. Broy. ed., Proc. Control Flow and
Data Flow: Concepts of Distributed Programming, NATO ASI Series, Vol. F14 (Springer, Berlin, 1985)
205-228.

354 P. lnverardi, M. Nesi/ Theoretical Computer Science 139 (1995) 315-354

[17] R. Mi•ner•Ac•mp•eteaxi•matizati•nf•r•bservati•na•c•ngruence•f•nite-statebehavi•urs••nf•rm.
and Comput. 81 (1989) 227-247.

[18] R. Milner, Communication and Concurrency (Prentice-Hall, London, 1989).
[19] Proc. of the 3rd Workshop on Computer Aided Verification, Lecture Notes in Computer Science, Vol.

575 (Springer, Berlin, 1992).
[20] D. Taubner, A note on the notation of recursion in process algebras, Inform. Process. Lett. 37 (1991)

299-303.
[21] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation semantics, in:

Proc. IFI P l lth Worm Computer Conoress, San Francisco (1989).
[22] Z. Ariola and J.W. Klop, Cyclic lambda rewriting, in: Proc. LICS 94, Paris (IEEE, 1994) 416 425.
[23] Z. Ariola and J.W. Klop, Equational term rewriting, Tech. Report, CWI, Amsterdam, to appear in

Fund. lnform.

