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I. INTRODUCTION 

This is the third and last of my papers on the Landau problem (L.P.) (See [2] 
and [3]) and is a direct continuation of L.P.11. In Part I of this paper we apply 
the general approach of L.P.11 to the Landau motions on a few simple curves r. 
In Part II we collect as consequences of Theorem 1 of L.P.11 several theorems 
on time-optimal control problems. Part III deals with skew motions, a con- 
jecture , and a question from Murray Klamkin. 

I. MOTIONS ON SPECIAL CURVES 

2. f IS A CIRCLE C,, OR AN ARC OF A CIRCLE 

Circular uniform motions have been around since the dawn of Astronomy. 
The following theorem seems to describe a new extremum property of these 
simple motions. 

THEOREM 2. If r= CR is a circle of radius R, then the Landau motion for 
the control constant A is the uniform circular rotation 

(2.1) At) = Rei’m. 
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PROOF: The statement that the uniform rotation (2,1) is the Landau motion 
(or L-motion) on CR for the control constant A, means the foIlowing: That the 
motion (2.1) is the fastest motion on C,, at every point of C,, within the class 
of motions 

(2.2) (CR), = (f(t); f(t) E CR and If(t)1 SA for all t ). 

From (2.1) we obtain f(t) =fl i exp(itv) and therefore that i?(t) 1 = 
=f-. AR To establish Theorem 2 we are therefore to show that 

(2.3) f(t) E (C,), implies that [fit) 1 s/‘% for all t. 

Following our general approach of L.P.11 we prove (2.3) by passing from 
v=ds/dt to the new variable u= v 4. Then the inequality (2.3) amounts to 
dz2lX, or 

(2.4) u s A2R2. 

That (2.4) holds for all motions of the class (2.2) follows from Lemma 1 of 
L.P.11 6 3, in particular from its differential inequality (3.15). For the L-motion 
we have ds/dt = m, whence 

Therefore s = ffl, and for the angular variable 19 = s/R = t/m. This estab- 
lishes (2. j). 

From&) = I&? i exp(itm) we find that IljIi = m, and the Corollary 2 
of L.P.11 9 2 shows that 

in agreement with the equation (6) of L.P.1 0 2. 
We pass now to the case when 

(2.4) r= CR,/ is an arc of the circle of length I. 

This problem gives rise to the simplest possible fig. 2 of L.P.11 Q 6. Because 
R = R(s) is constant, the upper boundary y of the domain !Z is the horizontal 
line u = A2R2, except that we have the discontinuities 

R(s)=O, if s=O, k i, k21, . . . . 

Being in Case 4 we may even consider only one half of the period, which is the 
interval [0, I). Thus we deal with fig. 2 where 

(2.7) 
if O<s<l , 
if s=O, or s=I. 

338 



Within this rectangular domain D we are to solve our basic D.E. 

(2.8) ey=16u(A2- -$. 

Writing U&s) = + 41/u(A2 - uR-‘), this splits into the two D. equations 

(2.9) du ds = U(U,S) and 2 = - u(U, S). 

Since variables separate, we easily find that the solutions of the first D.E. (2.9) 
are given by the translates of the increasing branch of the function 

(2.10) 
I 

z4=g0,;A2R2(1-cos$)=.42R2sin2$, 

I ( -Rx/4sssRn/4), 

while the solutions of the second equation (2.9) are the translates of the 
decreasing branch of (2.10). (The reader is asked to draw a rough diagram). 

In order to carry out the construction of the function r.?(s) for the L-motion as 
given by equation (6.2) of L.P.II, we must realize that we have in [O, I] precisely 
three critical motions: 

1) Iz,(s) = g(s) for OsssR7r/4, 
2) Z&~(S) = A2R2 for 0 5s 5 1, 
3) z&(s) = g(s - I) for I - Rn/4 5 s s 1. 

The minimum (6.2) of L.P.11 evidently depends on the size of 1. There are two 
cases: If 

(2.11) ZzRz/2, 

i.e. the arc C,,, is a quarter circle or larger, then in the half-period [0, l] of c(s) 
we have 

g(s) if OsssRz/4, 
(2.12) ii(s) = A2R2 if Rn/4~s~l-Rx/4, 

g(s-1)if I-Rm’4sssl. 

However, if 

(2.13) 15 Rn/2, 

then 

If (2.11) holds, then ]]j]I = ( max ti(s))! = m, while if (2.13) holds, then 
]]f]I 4 = g(//2) = A2R2 sin2(1/R), whence ]]f 1) = l/m. Now Corollary 2 of 
L.P.11 5 2 establishes our 
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THEOREM 3. The Landau constant of the arc CR,, is given by 

(2.15) L(cR,I)= 
fm iflsR11/2, 

if IzRzr/2. 

If we let R+w then CR,, becomes a straight segment I,,2 of length I; letting 
R+oo in (2.15) we obtain L(Il,,) =a which is Landau’s original result (1) of 
L.P.1 5 2. 

As an application of (2.15) let OD be a segment of length d; we divide OD 
into n equal parts, and on each part as diameter we construct a half-circle alter- 
natingly above and below OD. These n semi-circles of radii R = d/(2n) form a 
(corrugated) smooth arc r, of diameter = d. By Theorem 3 we find that L(T,J = 
=fi=l/m.F 1 or arge n this establishes our statement (1.7) of L.P.11. 

3. THE ARC I- IS A PARABOLA 

The parabolic motion of a material particle in a constant field of forces is 
also an old motion due to Galileo. We state an apparently new extremum 
property of this motion as 

THEOREM 4. On the parabola 

(3.1) 17: y=l$ 
2P 

the Landau motionSit) for the control constant A, is identical with the Galilean 
motion 

(3.2) fG(t) = t@+ i.+At2 

having the constant acceleration&(t) = imA. 

PROOF: We select the vertex I/ of n as origin of its arc-length s. The radius 
of curvature R(s) of I7is an elementary but complicated function whose explicit 
expression we do not need. We only use the readily verified fact that in the 
(s, @-plane the graph of the curve 

(3.3) y: u=A2R2(s), (-a<~<-), 

is a convex curve symmetric in the u-axis (fig. 1). From R(0) = 2p, the curve y 
has a unique minimum at the point M= (0, 4p2A2). There being therefore only a 
single critical motion z&(s), we conclude that the L-motionf(t) is defined by 

(3.4) B(s) = CM(s) for all real s. 

According to our general discussion of L.P.11 8 5, the graph L’ML of GM(s) 
passes through the point M of y and is composed of two arcs 

(3.5) L’ME V!!, andMLE y’:, 
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which are decreasing and increasing solutions, respectively, of the D.E. 

(3.6) 2 2= 
0 

16u(A*-uR-*(s)). 

The function ti(s), defined by (3.4) has the following properties: 

(3.7) G(s) > 0 for al/ s, 

(3.8) u’(s) is everywhere confinuous, 

(3.9) C(s) satisfies the D.E. (3.6) for all reals. 

Also the Galilean function 

(3.lo) UC@)= IfGtt)14, 

arisingfrom (3.2), enjoys the threeproperties (3.7), (3.8), (3.9). Let us point out 
that there are many functions U(S), made up of a succession of arcs from V+ 
and V-, which satisfy the two conditions (3.7) and (3.9). An example is the 
function U(S) defined by the curve BCDEFGH of fig. 1. However, the 
function ti(s) is among them the only one whoses graph is free of corners. The 
reason is that the point A4 is the only smooth junction point of an arc from V, 
(V-) with an arc from V- (V,). It follows that we must have that 

UC(s) = ii(s) for all s, 

proving Theorem 4. 



4. THE CURVE I- IS AN ELLIPSE 

Let it be 

(4. I) 
X2 E=E& -+2= 1, (O<b<a). 
a2 b2 

This is an example of Case 3. A period [0,21] of the curve 

(4.2) y: u=A2R2(s), (- 00 cs< q, 

is sketched in fig. 2. Taking on E its vertex V as origin for the arc-length, we 
have u(0) =A2R2(0) = A2b4/a2 and u(U2) = A2R2(f/2) = A2a4/b2. Fig. 2 also 
shows a sketch of the periodic graph M0C1M1C2M2 of the Landau motion 
according to $6 of L.P.11. 

Fig. 2 

Because R(s) is an elementary but complicated function of s, we use the repre- 
sentation 

(4.3) E: x=a cos 0, y= b sin 19 

in terms of which we find 

(4.4) R = (a2 sin2 B+ b2 cos2 8)3a-2b-2. 

Passing to the independent variable 0 we find the D.E. for the increasing solu- 
tions of the class V, to be 

(4.5) - %=4 sin2 0+ b2 cos2 19) - a2b2u’ 
(a2 sin2 6+ b2 cos2 t9)2 

with the initial condition for the arc MOCI being 

(4.6) zijB=o=A2b4/a2. 

By Corollary 2 of L.P.11 0 2 we find that 

(4.7) L(E, b) = (zqU2))“A - f , 

and it suffices to determine the value of zi(U2). 
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Here is a simplification: Observe that by similitude 

In terms of the functional Fdf) = llj11 m we have that 

Fdf) = imfi). 

By taking suprema on both sides we find that 

(4.8) L(E,J = d&(El,,), where r = b/a. 

To determine the value of u(U2) we have chosen in (4.5) 

A=l,a=l, and b=r=.1,.2 ,...,. 9 

and integrated numerically the D.E. (4.5) from 8= 0 to 8= 71/2. This was 
beautifully done by C. Vargas, of the MRC Computing Staff, by a Runge- 
Kutta method. A source of difficulty is that (4.5) does not satisfy a Lipschitz 
condition in a neighborhood of the starting point 6= 0, z?=A2b4/a2. For this 
reason the solution was started by an appropriate power series expansion. The 
results are shown in table 1 for the values of the Landau constant. 

Table 1 

r -WI,J r UEt.r) 

.O 1.41421 =fi .5 1.30011 

.l 1.40978 .6 1.24811 

.2 1.39643 .7 1.18609 

.3 I .31394 .8 1.11782 

.4 1.34199 .9 1.05409 
1 .o 1 .OOOOO 

A glance at fig. 2 shows the Landau motion y(t) to be accelerated on the arcs 
F/Wand I”W’ of fig. 3, and descellerated on WV’ and WV, the maxim@ speeds 
occuring at Wand w’. At these points are the only discontinuities of 3, as indi- 
cated in fig. 3. 

We mention the following three limiting cases in fig. 3: 
1. If b decreases and tends to zero, then the angle I;I = L (f, , y-) increases 

to 180” andfbecomes the to and fro Landau motion on the segment VI/‘. 
2. If b increases and tends to the value a, then the angle ar decreases to zero, 

while Jbecomes the uniform rotation on the circle ,!& = C,. 
3. If we keep fixed the focus F of E, and also its vertex V, whiIe we let its 

second focus F’ tend. to - 00, then E approaches a parabola n. Also the 
acceleration pattern $ on the arc W’VW is fanning out and approaches in the 
limit the horizontal acceleration vectors of the Galilean motion on the para- 
bola 17. 

The last example of a closed curve r which we mention here, leaving out the 
simple details, is the following. Let RTo,b denote a racerrack composed of a 
rectangle (2a) x (2b), whose sides of length 2b have been replaced by two semi- 
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Fig. 3 

circles of radius 6. Using our approach and the results of 0 2, it is easy to show 
that 

L(RT&J = fm. 

For details see 9 94 of Reference [l] of L.P.11. 

II. TIME - OPTIMAL CONTROL PROBLEMS ON CURVES 

5. THE CASE WHEN l- IS A SEGMENT AND ITS GENERALIZATIONS 

Let r= (0 sss I} be a straight segment of length 1. Let 

(5.1) s=f(t), (Ost(=T), 

be a motion on r restricted by the requirement that 

(5.2) IRt) 1 sA, where A is prescribed, 

and satisfying the boundary conditions 

(5.3) f(O) = 0, f(O) = 0, and f(T) = I, f(T) = 0, 

the problem being to determine the shortest time T in which such a motion is 
possible. 

This is a well-known problem (See e.g. [6, pp. 233-2361). Its connection with 
the Landau problem is shown by the general 

THEOREM 5. Let T=OL be an arc of length I (Case 4), and let S(t) be its 
Landau motion for the control constant A. We knowy(t) to be an even function 
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of period 2T, say. In particular, its restriction 

(5.4) f(t), (Ogg). 

is known to satisfy the boundary conditions 

(5.5) s(O) = the endpoint 0 of c with f(O) = 0, 

and 

(5.4) A?=;> = the endpoint L of C with $(n = 0. 

Furthermore, let 

(5.7) f(t), (Osf;tTT), 

be any motion along rsuch that f(t) E (r) Cl .land 

(5.8) Ijlct>I ~4. 

We also assume that 

(5.9) f(0) = the endpoint 0 of r, with f(O) = 0, 

and 

(5.10) f(T) = the endpoint L of r, with f(T) = 0. 

A/so that f(t) moves throughout 0 5 t s T in the direction of increasing arc- 
length s, so that 

(5.11) v=Q. 
dt = 

Then 

(5.12) Fs T, 

with equality only if the motions $and f are identical. 
This shows that the Landau motion is the solution of this time-optimal 

control problem. 

PROOF: Following L.P.11 $ 3 we introduce the variable u= v4, where 
v = ds/dt. Let z&s) and u(s) be the functions corresponding to $ and f, re- 
spectively. Moreover, let the two motions be at the same point of arc-length s at 
the times ?and t, respectively, so that s(f) =f(t). This implies the relations 

(5.13) G=$=(a(s))+= Ij(f)I, v = $ = + (u(s))+ = If(t) 1 . 

Notice that in the second relation we have used the assumption (5.11). From 
(5.13) we derive for the corresponding times the values 
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From Theorem 1 of L.P.11 9 2 we know that Is(?) 1 2 If(t) I, and therefore that 
z&s) 2 U(S), for all s. Now (5.14) evidently implies (5.12), including the condition 
for the equality sign to hold. 

6. THECURVEl-'ISACLOSEDCURVE,ORANARC 
Let r be a closed curve (Case 3). We propose the problem of determining the 

shortest time 2T in which a motion along r restricted by 

( 6 . 1 ) jf(:<t) 1 siA for all t, 

can perform one complete revolution around r. The solution is given by 

THEOREM 6. Let f(t) be the Landau motion of period 2F along r for the 
constant A. Then 

(6.2) 2Ts2T, 

with equality only if the motionsJl(t) andf(t) coincide, except for a shift in the 
time-origin. 

A proof which is much like the proof of Theorem 5, may be omitted. 

THE CASE WHEN TIS AN ARC. Somewhat different from the two problems so 
far discussed is the following: Let 

(6.3) r=XY be an arc of length I, asssfl=a+l, say. 

What is the shortest time Tfor a motion f(t), (0 s t $ T) to move from s = a to 
s = /l, satisfying (6.1) and the boundary conditions f(0) =X, f(T) = Y? 

Notice that our previous boundary conditions f(O) = 0, i(T) = 0, of $ 5, have 
been omitted. 

The solution is given by a slight modification of the construction of the L- 
motion as given in L.P.11 80 5 and 6. Let 

(6.4) y: u =A2R2(s), (asssp), 

be the curve (5.2) of L.P.II 9 5, but restricted to our arc r=XY. The modifi- 
cation is this; If the point s = a happens to be a relative minimum point of y in 
the interval [a, p], we include in the construction (6.2) (L.P.11) of u”(s), the 
critical motion attached to the minimum at s = a. Similarly for the endpoint 
s=p. 

We discuss this problem when T=XY is an arc of the parabola Z7 defined by 
(3.1). Referring to its (s, @-diagram of fig. 1, there are two cases: 

1. If the arc XY contains the vertex I/ of the parabola, hence a $0 $ fi, then 
the least time T is furnished by the Landau motion. By Theorem 4 this is 
identical with the Galilean motion (3+2). 

2. If the vertex V is outside the arc XY, O< a’</?’ say, then we must 
construct the arc PQ E V’f , defined as the graph of 

(6.5) the solution u = u(s) of the D.E. du/ds = + U&s) 
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such that u(a’)=A2R2(a’). This graph defines the fastest motion, and the 
shortest time is given by 

Observe that the time T, given by (6.6), is below the corresponding traversal 
time for the Galilean motion given by the arc P’Q’ of fig. 1. The reason is that 
now the motion need not worry about negotiating safely the perilous vertex V 
of the parabola. 

III. MOTIONS ON SKEW CURVES, A CONJECTURE, AND AN ANSWER TO A QUES- 
TION FROM MURRAY KLAMKIN 

Here we collect three disconnected subjects. 

7. MOTIONS ON SKEW CURVES 

Let Z-be a curve in the space R3 belonging to any of the four cases of L.P.II 
$ 2. If we apply our analysis used for plane curves, and use for this purpose the 
Frenet formulae (See [5, Chap. III, 5 73) we find that the acceleration f(t) 
depends on the curvature Q = l/R(s) of r, but disregards entirely its torsion t. It 
folIows that the Landau motion on r depends on the arc-length s in the same 
way as the L-motion on a plane curve r* having, for all relevant values of s, the 
same curvature as r. For example, the L-motion on a circular helix of curvature 
l/R, represented by s =5(t), is the same as for a circle CR of same curvature, 

Let us determine the Landau constant L(S,) of the spherical shell 

(7.1) S,: x2+y2+z2=a2. 

If Tis any smooth curve on S,, it is known [5, Chap. IV, 5 121 that for its radius 
of curvature we have R(s)sa, for all S. It follows that the curve y defined by 
(5.2) of L.P.11, will never rise above the horizontal line u=A2a2. But then for 
the L-motion on r we must have 6(s) 5 A2a2, for all S. By Corollary 2 of L.P.11 
5 2 we conclude that 

This also follows from Theorem 1 of L.P.1 concerning the L-constant of a solid 
spherical shell on letting b = a. 

8. A CONJECTURED GENERAL EXTREMUM PROPERTY OF UNIFORM ROTATION 

The content of Theorem 2, for R =, 1, is evicJently the following: For the 
uniform rotation f(t) = eir we have if 11 = 1, I[$[[ = 1. If f(t) is any smooth 
motion on the circle Cl such that 

IIYII s II 81 = 1, then llftl s 1l.f II = 1. 
Let me state the rather bold. 
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CONJECTURE 1. Let n be an integer >= 2. If f(t) is any smooth motion on the 
circle Cr, such that 

03.1) IIf@) II 5 IIP’II = 1, 

then 

(8.2) Ilfk) 11 s Ilf(k) [I = 1, for k = 1,2, . . . , n - 1. 

We may rephrase this in connection with the famous result of Kolmogorov: 
If j’z R+ C is a smooth map, and we write Mk = 11 f tk) 11, then 

(8.3) MkSC,r,kMO- l (k'n)M;'",for k= l,...,n- 1. 

Here we have equality for the Euler spline gn(f) (For references see [4]). The 
Conjecture 1 is equivalent with the statement that for circular motionsflt) we 
may sharpen (8.3) to 

Mk&-tk’n)M;‘“, for k= 1, . . ..n- 1. 

9. AN AFFIRMATIVE ANSWER TO A QUESTION FROM MURRAY KLAMKIN 

On the occasion of a lecture of mine at Edmonton, Alberta, Murray Klamkin 
raised the following,mteresting question: 

The acceleration f(t) of the Landau motion on a circle is continuous, while it 
is discontinuous for a non-circular ellipse, Are there closed convex curves I’, 
besides circles, having a continuous j? 

We give here an affirmative answer by constructing a family of closed convex 
r having this property. Let a be a parameter such that 

(9-U OS@&, 

and let us prescribef(t) by 

(9.2) fil)=e;(n+t-asin 2t). 

A function f(t) is readily recovered by using Bessel functions. From the identity 
(See [l, page 3611) 

(9.3) 

we find that 

(9.4) f(l)= 

whence by two 

(9.5) f(t)= 

f (- l)k+ lJk(a)eW+ lIti, 

-m 

integrations 



If CI= .4, say, this series converges very fast as seen from the table 

k Jd.4) 

0 .96040 
1 .I9603 
2 .01973 
3 JO132 
4 .oooo7 

The curve 

(9.6) l-z z=f(t), (O$tz527r), (a= .4) 

is an oval symmetric in both coordinate axes, because the function Re f(t) is 
even and Imf(t) is odd. Moreover, the function v(t) = n + f - a sin 2t is strictly 
increasing, and this implies by (9.2), that the curves described by the pointsf(t), 
andf(t), are both strictly convex. We have plotted accurately the transcendental 
curve (9.6) and found it to differ little from an ellipse, which it can not be. 
Why? The reason is that we will show in (9..7) that the motionf(t) is its own 
Landau motion, and then the continuity of f(t) shows that rmust be different 
from an ellipse, whose L-motion has a discontinuous acceleration. Concerning 
r we found 

f(0) = -f(?r) = 1.13330, 4;) = +> = (.7847O)i. 

I claim: The motion 

(9.7) m =m 
is also the Landau motion of the curve (9.6). 

PROOF: Here f(t) is the motion on rdefined by (9.5), whilef(t) denotes the 
L-motion on f for A = 1, 

As mentioned before, the vector f(t), of (9.2), turns steadily by 360” as t 
varies from 0 to 2n. This being the hodograph of the motion of the pointfit), it 
follows that also z=f(t) describes a closed and convex curve with center of 
symmetry at 0. The symmetry follows from f(t + n) = -f(t) and implies that 

(9.8) f(t)#O, if Ost%27r. 

This already implies the identity (9.7) for the following reasons: From Iy(t) 1 = 1 
for all t, we infer that the graph u = U(S) for the motion f(t) is composed of a 
succession of arcs from the classes V, and V-, A junction point M1 of two 
such arcs C1A4r and MIC, say, must be a stationary point of the curve 

P-9) y: u =A2R2(s), (A = l), 

because there is no corner at M1. 
Suppose this junction point M, to be a minimum point of y. It is then 

349 



impossible that CIM, E V, and A4,C2 E V-, because this would forcibly lead to 
a point where u = 0, in contradiction to (9.8). We must therefore have the situa- 
tion shown by fig. 4, where A.&, M,, M2 are the minimum points of y. This 
already shows that U(S) = Us(s) gives rise to the L-motion, and the claim (9.7) is 
established. 

Notice that we have placed the junction points Ct and C, at the maximum 
points of y. This follows from the continuity of U’(S) implied by the continuity 
of f(f). Indeed MOC1 E V, and CM, E I/- can only join smoothly at a maxi- 
mum point of y, because of the web-like structure of the solutions of the D.E. 

du 2 
0 z 

= 16U(A2 - URF(S)). 

CONCLUDING REMARKS. Let us say that a Landau motion [is a Landau- 
Klamkin motion, or L-K motion, provided that the acceleration 3 is continuous 
for a/l t. Now that Murray Klamkin mentioned them, we can see many L-K 
motions, not necessarily on closed curves. A nice example is a symmetric para- 
bolic arc r which is part of the parabola 17 of (3.1). We refer to fig. 1 and let the 
interval (- cr, a) be the support of the bell-shaped curve formed by the arc of 
V, with endpoint at M, and by the arc of V- starting at M, I remind the reader 
that these arcs are, respectively, the solutions of the differential equations (2.9) 
for the parabola 17, both passing through M. Let 

(9.10) u=ti(s), (-osssoa), 

denote the function having the bell-shaped graph of fig. 1. Writing 

’ ds (9.11) t=t(s)= - 
s o vw)f’ 

(-assg7), 

Fig. 4 

350 



and solving for s to get 

(9.12) s=s(t), (- T/25ts T/2), 

we obtain precisely a half-period of the Landau motion f(‘<t) on the arc 
r= 17[ - 0, o] = XY of I7 (Case 4). This is a to and fro motion Jon r with 

(9.13) j(- T/2)=&2)=0. 

Of course, we do know that 1 y(l) 1 =A for all t. However 

(9.14) j+(t) is continuous for all times t. 

PROOF: This is evident for all t except if t = (T/2) + kT. However, Taylor’s 
series shows that we must have 

(9.15) ‘(;+o)=‘($-0). 

the common value being a vector of length A which is tangent to n at the point 
Y and pointing into the arc. Here we have used the equations (9.13). 

It is interesting to compare the L-motion for r=17[ - 0, a] with Landau’s 
original motion on a straighi segment la of the same length 2~7. In passing from 
I, to r the discontinuity of 3 has disappeared. As a matter of fact we achieved 
the same effect in 0 2, without pointing it out, that the discontinuity for I0 dis- 
appears if we bend the segment into a circular arc of radius R ~4a/lr. 

Let me close with the following problem: Can the above L-K motion on the 
parabolic arc A![ - o, a] be explicitly determined in terms of known functions? 
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