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Abstract

The propagation of the scalar (σ and δ) and vector (ω and ρ) mesons in an iso-asymmetric nuclear matter is studied in detail, using the Walecka
model. We calculate the invariant masses and spectral functions of the mesons, including the effect of meson mixing. At finite density, the mixing
effect is quite important in the propagation of the scalar and (longitudinal) vector mesons. In the σ channel, we find a three-peak structure in the
spectral function, caused by the mixing effect.
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The variation of hadron properties in hot and/or dense nu-
clear matter has recently drawn a great deal attention. In partic-
ular, the medium modification of the light vector (ρ, ω and φ)
meson masses, which may be a probe to study hadron prop-
erties in the extreme matter, has been investigated by many
authors [1].

Experimentally, the photoproduction of ω mesons on a Nb
target was recently measured at the ELSA tagged photon fa-
cility [2]. The result shows that, for low momenta less than
500 MeV, the in-medium ω meson mass at 0.6ρ0 (ρ0 is the sat-
uration density of nuclear matter) is about 8% smaller than the
free mass. Furthermore, the experiment to measure the invariant
mass spectra of e+e− pairs produced in 12 GeV proton-induced
nuclear (C and Cu) reactions was also performed at the KEK
proton synchrotron [3]. On the low mass side of the ω me-
son peak, a significant enhancement over the known hadronic
sources is observed. It is well understood by a model that takes
account of the medium modification for the vector meson mass.
These experimental results may suggest a downward shift of the
vector meson mass in a nuclear matter (see also Ref. [4]).
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On the other hand, the σ meson has been treated as a cor-
related two-pion state in the scalar channel for a long time.
However, some people have argued for the existence of the
σ as a genuine resonance [5]. Anyway, it is well recognized
that the σ meson is vital to produce the mid-range, attractive
force between two nucleons in a matter. The δ (or a0) meson
also plays an important role in an iso-asymmetric nuclear mat-
ter.

At finite nuclear density, the scalar meson can couple to the
longitudinal (L) mode of the vector meson [6]. Furthermore,
when charge symmetry is broken, the iso-scalar meson can cou-
ple to the iso-vector one. In an iso-asymmetric nuclear matter,
where the number of protons, Z, is different from that of neu-
trons, N , the effect of charge symmetry breaking (CSB) is more
enhanced than in vacuum, because the difference between the
in-medium proton, M∗

p , and neutron, M∗
n , masses is larger than

that in vacuum [7,8].
This work is an extension and elaboration of studies in

Ref. [9], where the iso-scalar σ and ω mesons moving in an
iso-symmetric (Z = N ) nuclear matter were considered. Here
we generalize it in an asymmetric (Z �= N ) nuclear matter, in-
cluding the iso-vector δ and ρ mesons. We do not consider the
propagation of pseudoscalar (π and η) mesons, because we use
the relativistic Hartree approximation (RHA) in the calculation.
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Instead, we include the effect of the scalar or vector meson de-
cay into these pseudoscalar mesons.

We use a purely hadronic model, i.e., quantum hadrodynam-
ics (QHD or the Walecka model) [10]. The Lagrangian density
is given by

(1)L= LQHD-I +Lδ +Lρ + δLCT,

where LQHD-I is the usual, QHD-I Lagrangian density for the
σ–ω-nucleon system [10] and δLCT is a counter term for renor-
malizations.

The δ and ρ mesons are, respectively, described by Lδ

and Lρ . The δ meson couples to a nucleon through the isovec-
tor, scalar interaction: Lint

δ = gδψ̄τzδψ , where ψ(δ) is the field
of the nucleon (the neutral member of δ meson) and gδ is the δ-
nucleon coupling constant. The nucleon mass in matter is thus
given as M∗

(p
n)

= M(p
n)

−gσ σ ∓gδδ with σ the σ mean field and

gσ the σ -nucleon coupling constant. Here Mp(= 938.27 MeV)

and Mn(= 939.57 MeV) are, respectively, the proton and neu-
tron masses in vacuum. The ρ meson has a tensor as well as
a vector coupling to a nucleon, and the interaction is given by
Lint

ρ = −gρψ̄γμρμτzψ + (fρ/2Mi)ψ̄σμν∂
νρμτzψ , where i =

proton (p) or neutron (n), ρμ is the neutral ρ meson field and
gρ (fρ ) is the vector (tensor) coupling constant.

Firstly, we have to solve the nuclear ground state within
RHA. The total energy density is given by Etot = ERHA +�EVF,
where ERHA is the usual one in RHA [10]. The second term
comes from the vacuum fluctuation correction (caused by the
nucleon loop) to the σ and δ meson propagators [8,9], and it is
given by (also see around Eq. (7))

�EVF = 1

4π2

∑
i=p,n

[
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where mσ(δ) is the σ(δ) meson mass, yj (i) = 1 − (4M2
i /m2

j )

with mj the meson mass (j = σ or δ), M = (Mp + Mn)/2 and
f (y) = 2

√−y tan−1
√−y−1.

The effective nucleon mass, M∗
i , in matter is self-con-

sistently calculated by solving the following, two equations:

ρs(p) ± ρs(n) − m2
j

g2
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,

where ρs(i) is the proton or neutron scalar density in matter and
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)
.

A complete investigation of the propagation of σ , ω, δ and
ρ mesons requires the inclusion of the meson mixing effect in a
medium. To compute it, we sum over the ring diagrams [6–9],
which consist of repeated insertions of the lowest order, one-
loop proper polarization part. It is convenient to use the full
meson propagator, Pab (a, b = 1 ∼ 10), in the form of a 10×10
matrix. The lowest order meson propagator, P0, is then given
by a block-diagonal form: P0 = block-diag(s0,w

μν
0 , d0, r

μν
0 ),

where the free propagators for the σ , ω, δ and ρ are, re-
spectively, expressed by s0(q) = pσ (q), w

μν
0 (q) = ξμνpω(q),

d0(q) = pδ(q) and r
μν
0 (q) = ξμνpρ(q) with ξμν = −gμν +

qμqν/q2
λ and pj (q) = (q2

μ − m2
j + iε)−1 (j = σ , ω, δ or ρ,

and qμ is the four-momentum).
Dyson’s equation for P is also given in matrix form as

(5)P =P0 +P0ΠP,

and the polarization insertion, Π , is written by a 10×10 matrix

(6)Π =

⎛
⎜⎜⎝

Πσσ (q) Πν
σω(q) Πσδ(q) Πν

σρ(q)

Π
μ
ωσ (q) Π

μν
ωω(q) Π

μ
ωδ(q) Π

μν
ωρ (q)

Πδσ (q) Πν
δω(q) Πδδ(q) Πν

δρ(q)

Π
μ
ρσ (q) Π

μν
ρω(q) Π

μ
ρδ(q) Π

μν
ρρ (q)

⎞
⎟⎟⎠ ,

where Πab (a, b = σ,ω, δ,ρ) stands for the polarization for
the process where the b meson is converted into the a meson
through the nucleon loop. (Hereafter, Πaa is simply denoted by
Πa .) The polarization insertion, Π , can be separated into two
subspaces, i.e., the iso-scalar and iso-vector block matrices. The
coupling between the two blocks vanishes when charge symme-
try is exact. However, even in vacuum, there exists the explicit
CSB, i.e., the small difference between Mp and Mn, and the
CSB effect is magnified in an asymmetric matter [8].

Because the nucleon propagator, G(k), is divided into the
Feynman (F ) and density-dependent (D) pieces, the polariza-
tion due to the nucleon loop consists of the contribution de-
pending on ρB (the nuclear density) and that involving only the
Feynman piece. The former (the D part) can be calculated ana-
lytically, while the latter (the F part) is divergent. We thus treat
the F part using the method of dimensional regularization. For
the detail of the D part, see Refs. [8,9,11].
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To regularize the nucleon loop contributions to the scalar
meson propagators and the σ–δ mixing, we choose the counter
term in Eq. (1) as

δLCT = 1

2
Zσ ∂μσ∂μσ + 1

2
Zδ∂μδ∂μδ +

4∑
l=2

Al

l! σ l

(7)+
4∑

l=2

Bl

l! δl +
2∑

l,m=1

Clm

l!m!σ
lδm.

To fix the coefficients (Zj , Al , Bl and Clm), we adopt the fol-
lowing renormalization conditions:

ΠF
j

∣∣
q2
μ=m2

j ,σ=δ=0 = 0,
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(8)ΠF
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σδ
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q2
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where ΠF is the F part of the polarization insertion. This
counter term yields the vacuum fluctuation correction, Eq. (2),
to the energy density.

In addition to the nucleon loop contribution, the lowest order
polarization insertion for the σ involves the pion loop contribu-
tion [9]

(9)Πσ,π (q) = 3

2
ig2

σπm2
π

∫
d4k

(2π)4
�π(k)�π(k + q),

with gσπ the σ–π coupling constant, mπ the pion mass and
�π(k) the pion propagator. The imaginary part of Πσ,π de-
scribes the σ meson decay into 2π . In contrast, the δ polar-
ization insertion includes the η–π loop contribution [12]

(10)

Πδ,πη(q) = ig2
δπη

(
m2

δ − m2
η

m2
π

)2 ∫
d4k

(2π)4
�η(k)�π(k + q),

with gδπη the δ–π–η coupling constant and �η(k) the η me-
son propagator (mη is its mass). To remove the divergences
appearing in these polarizations, we use the renormalization
conditions on the real parts of the polarizations:

(11)�eΠσ,π

∣∣
q2
μ=m2

σ
= 0, �eΠδ,πη

∣∣
q2
μ=m2

δ
= 0.

For the vector meson, the F part of the polarization insertion
arising from the nucleon loop, ξμνΠF

j=ω,ρ , again contains the
divergent piece, and it may be removed by the condition [9,13]

(12)ΠF
ω

∣∣
q2
μ=m2

ω,σ=δ=0 = 0,
∂nΠF

ρ

∂(q2
μ)n
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q2
μ=m2

ρ,σ=δ=0
= 0,

where n = 0,1,2, . . . . The polarization insertion for the ρ me-
son also involves the pion loop contribution [14]
Πμν
ρ,π (q) = ig2

ρπ

∫
d4k

(2π)4

[
(2k + q)μ(2k + q)ν

(13)×�π(k + q)�π(k) − 2gμν�π(k)
]
,

where gρπ is the ρ–π coupling constant. This again involves the
divergence, but the same condition as in Eq. (11) may remove
it.

For the ρ–ω mixing in vacuum, the polarization insertion
due to the proton or neutron loop diverges. A finite mixing
amplitude is then obtained by taking the difference between
proton and neutron contributions [7]. In contrast, the diver-
gent piece arising from the tensor coupling is proportional to
M∗

i /Mi in matter, and hence it cannot be removed by the same
method as in vacuum. However, we simply ignore this divergent
piece in the present calculation.1 In the F part of the polariza-
tion insertion, the finite mixing amplitude from the tensor cou-
pling is thus given by Π

F(t)μν
ρω = ξμν(gωfρ/8π2)(Kp − Kn),

where

(14)Ki = M∗
i

Mi

q2
μ

1∫
0

dx ln

[
M∗2

i − q2
μx(1 − x)

M2

]
.

The mixing between the scalar and vector mesons, e.g.,
Πσω, etc., does not occur in vacuum and hence the regulariza-
tion for such mixing is not necessary [8,9].

The dielectric function, ε, in a medium is now defined by
[6,9]

(15)ε = det
(
I −P0Π

) = ε2
T × εSL,

where εT [SL] is the dielectric function for the transverse (T )

[scalar (S) and longitudinal (L)] mode. We find
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ω
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ω
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{
(1 − pσ Πσ )pδΠ

0
δωΠ0

δρ

+ (1 − pδΠδ)pσ Π0
σωΠ0

σρ

}
+ 2pσ pδΠσδ

{(
1 − pρΠL

ρ

)
pωΠ0

σωΠ0
δω

+ (
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ω

)
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}

1 The tensor interaction is not a renormalizable one in the conventional sense,
and the strict renormalizability is not necessary in effective field theories. The
present prescription is equivalent to taking only the minimal, finite part of

Π
F(t)μν
ρω . This ambiguity may not affect much the final results of the invari-

ant mass and the spectral function (see Figs. 1, 2), because the ω branch is not
close to the ρ branch in the dispersion relation and hence the effect of ρ–ω

mixing is small in matter.
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+ 2pσ pδpρpωΠσδΠ
L
ρω

(
Π0

σωΠ0
δρ + Π0

σρΠ0
δω

)

(17)+ ζ 2pσ pωpδpρ

(
Π0

σωΠ0
δρ − Π0

σρΠ0
δω

)2]
,

with ζ 2 = −q2
μ/|�q|2, ΠT (= Π11 = Π22) the transverse polar-

ization (we choose the direction of �q as the z-axis) and ΠL(=
Π33 − Π00) the longitudinal one. The free propagator of the ω

meson is now assumed to be p−1
ω = q2

μ − m2
ω + imωΓ 0

ω , where
we add the width of the ω in vacuum (Γ 0

ω = 9.8 MeV) [9]. Us-
ing the dielectric function, one can calculate the full propagator,
P (see Eq. (5)).

In the present calculation, we use the following values
of the free meson masses: mδ = 983 MeV, mσ = 550 MeV,
mω = 783 MeV, mρ = 769 MeV, mη = 548 MeV and mπ =
138 MeV. So as to fit the saturation condition of normal nuclear
matter (Etot/ρB −M = −16 MeV at ρ0 = 0.17 fm−3), the sym-
metry energy (a4 = 30 MeV) and the observed ρ–ω mixing am-
plitude in vacuum (〈ρ|Hmix|ω〉|q2

μ=m2
ω

= −4520 MeV2) [15],
we determine the coupling constants, gσ , gω, gρ and gδ . The
ratio of the tensor to vector coupling constants for the ρ meson
is assumed to be fρ/gρ = 3.7, which is suggested by the vector
dominance model. The coupling constants, gδπη and gρπ , are,
respectively, fixed so as to reproduce the decay widths of the δ

and ρ mesons in vacuum, Γ 0
δ = 59 MeV and Γ 0

ρ = 150 MeV.
Furthermore, we assume the decay width of the σ meson in
vacuum, Γ 0

σ = 500 MeV, and determine the coupling constant,
gσπ , so as to yield it. We then obtain the following values of
the coupling constants: gσ = 8.119, gω = 9.506, gρ = 4.445,
gδ = 3.732, gσπ = 23.65, gδπη = 0.4385 and gρπ = 6.014. The
present calculation gives the (proton–neutron averaged) effec-
tive nucleon mass, M∗/M = 0.72, at ρ0 and the incompress-
ibility, K = 465 MeV.

Now we are in a position to show our results. The condition
for determining the collective excitation spectrum is equivalent
to searching for the zeros of the dielectric function. Because
we are interested in the medium modification of the meson
propagation, we restrict ourselves to the meson branch in the
time-like region.

In Fig. 1, we present the “invariant mass” as a function of ρB .

The mass is defined by m∗
inv ≡

√
q2

0 − �q2, where q0 and �q sat-
isfy the dispersion relation for the meson branch. In the calcu-
lation, the proton fraction, fp = Z/(N + Z), is chosen to be
0.3, and the three-momentum transfer, q(= |�q|), is 500 MeV.
In the figure, we can clearly see the role of mixing. It is quite
important in determining the meson mass at finite density. If
the mixing is ignored, the masses of the L and σ modes cross
each other and the L mass of the ρ meson is below the other
ones at high density. However, when the mixing is included, the
L and σ masses never cross each other. At high density, the L

mass is pushed upwards, while the σ mass is pulled downwards.
We can understand this phenomenon as a level–level repulsion
due to the mixing, which was first studied by Saito et al. [9].
Fig. 1. Invariant mass with or without the mixing effect (fp = 0.3 and q = 500 MeV). The left, two figures are for the meson masses without the mixing effect,
while the right ones are for the masses including it.
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Fig. 2. Spectral functions Si (i = σ, δ,ωL,ωT ,ρL,ρT ) at ρB/ρ0 = 2 and fp = 0.3.
It is familiar in conventional nuclear physics, e.g., in the Nils-
son diagram. For the T mode, because the difference between
the masses of the ω and ρ mesons is large, the mixing effect is
small even at high density. The similar result is obtained even
in case of fp = 0.1.

It is very interesting to calculate the spectral functions. Be-
cause, in a thermal model, the dilepton yields in heavy ion
collisions are proportional to the spectral functions, the dilep-
ton production rate per unit of four-momentum (d4q) is given
by dNl+l−/d4x d4q = LμνH

μν , where d4x is the space–time
element, and Lμν and Hμν are respectively the lepton and
the hadronic tensors in matter. The latter is then given in
terms of the spectral function. The spectral function for the
ith mode (i = σ, δ,ωL,ωT ,ρL,ρT ) is usually defined by
Si(m

∗
inv, q, ρB) = −�m[Pi]/π .
In Fig. 2, we present the spectral function Si (at ρB/ρ0 = 2
and fp = 0.3) as a function of m∗

inv and q . The shape for the
L or σ mode is very complicated. In particular, the σ mode
is quite remarkable: at q = 0 MeV there is only one peak,
while at finite q three peaks appear in the spectral function.
The two peaks, which have relatively large amplitudes, are seen
at m∗

inv  mσ , and this two-peak structure is due to the σ–ω

mixing [9]. In addition to it, a new, third peak appears around
m∗

inv  0.4 GeV, which is caused by the mixing effect between
the iso-scalar and iso-vector mesons.

In the ωL mode, the large peak is seen above m∗
inv 

0.5 GeV, that approaches the usual ω-meson branch in the limit
ρB → 0. At finite density, the second, small peak appears be-
low m∗

inv  0.4 GeV. It is again generated by the mixing effect
between the iso-scalar and iso-vector mesons, because such



570 Y. Muto, K. Saito / Physics Letters B 659 (2008) 565–570
structure cannot be seen at fp = 0.5 [9]. For the ρL mode,
in addition to the main peak around m∗

inv  0.4 GeV, the sec-
ond, small peak also appears above m∗

inv  0.5 GeV. In case of
fp = 0.1, these second peaks become more clear.

The spectral function is very simple for the T mode, be-
cause the mixing effect is small. However, even for the ωT

(ρT ) mode, the second, very small peak appears around m∗
inv 

0.4 GeV (above m∗
inv  0.6 GeV), which cannot be seen in a

symmetric matter [9]. Thus, it is again due to the effect of
iso-scalar and iso-vector mixing. In the δ mode, the spectral
function is very simple, because the mixing effect on it is quite
small.

The present result is not sensitive to the decay width of the
σ meson in vacuum. We have checked it using Γ 0

σ = 600 MeV.
In contrast, the spectral functions strongly depend on fp . In the
σ mode, one can clearly see that the third peak around m∗

inv 
0.4 GeV grows very quickly as fp decreases.

Finally, we would like to add a comment concerning the
present result. Although QHD is renormalizable and very prac-
tical, it is not natural [16]. However, the obtained results,
namely, the level–level repulsion, the mode–mode coupling due
to the mixing, etc., are very reasonable, and such phenomena
are universal in quantum many-body systems.

In summary, using QHD, we have studied the propagation
of σ , δ, ω and ρ mesons in an iso-asymmetric nuclear matter.
We have illustrated that the effect of the meson mixing is quite
important in the propagation of the σ , longitudinal ω and ρ

mesons at finite density. In particular, in the σ channel, we have
found a three-peak structure in the spectral function at finite
three-momentum transfer. It is very interesting to measure such
novel structure in future experiments.
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