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ABSTRACT 

Foundations of the theory of continuous systems based on the concept of states 
a r e  studied with rigorous definitions, using generalized functions. Both finite- and 
infinite-dimensional, linear, time-invariant systems are characterized; application 
to Cauchy problems and distribution semigroups is presented. 

1. INTRODUCTION 

The purpose of this paper is to study the foundations of the state-space theory 
of continuous systems, and in particular, to present a precise formulation of the 
basic concepts and the related fundamental results. For the motivation and background 
of theory, reference may be made to the pioneering work of Zadeh [1]. So long as 
the systems are linear and the state-space fnite-dimensional, as in the studies of 
Zadeh [1] and Kalman [2], one is on fairly familiar and physical foundation, and an 
emphasis on precision on the notions involved is not essential. However, in dealing 
with systems with state spaces that cannot be finite-dimensional, such as systems 
governed by partial differential equations, or even those described by frequency 
transfer fimctions which are not rational, the need for precise formulation becomes 
more apparent. In fact with the increasing range of systems amenable to optimization 
and their attendant complexity (see, for instance, [3-5] for purely mathematical 
aspects), the framework provided by system theory has to rest on firmer ground. 
This is even more true in problems involving system identification. It  is in this spirit 
that we have undertaken to define the primary concepts both of "system" and 
"state". In this formulation we have also allowed the input and output to be generalized 
functions. 

* The results reported in this paper were obtained while the author was an exchange professor 
at the Department of Mathematics, University of Paris, supported in part by a grant 
(AFOSR 700-65) from the Air Force Office of Scientific Research, Applied Mathematics 
Division, U. S. Air Force. 
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In the definitions we have tried to keep the thread of physical application as much 
visible as possible. However, in order to keep within the bounds of reasonable length, 
we have had to shorten and even delete altogether all background and motivational 
material. Also, the use of generalized functions has meant a different treatment even 
for linear systems with finite dimensional state spaces. These differences have not 
been emphasized, and the interested reader should consult References [1], [6], [7] 
for more detail. 

As signified in the title, this is the first part of the paper and begins with the basic 
notation and definitions and then goes into systems that are linear and time-invariant-- 
which here as elsewhere provide a natural starting point, and yet are sufficiently 
important on their own. The notation to be used (which needs some care since we 
are dealing with generalized functions on the half-line) is explained in Section 2, 
where we also include a version of the Schwartz kernel theorem for the half-line. 
The definitions of "system" and "state" are given in Section 3. It  is of course basic 
that a "system" is not a "function" relating input to output, but rather a "graph". 
The definitions are based on the earlier ones given by Zadeh [1]. We have assumed 
that the inputs and outputs are (or have their ranges in) real or complex variables, 
but the generalization to finite-dimensional or Euclidean spaces presents no difficulty. 
A generalization to infinite-dimensional inputs and outputs may be found in [6], 
although the functions therein are not "generalized functions". Following the basic 
definitions, we also include some related terminology and definitions. Some conditions 
such as "input-continuity", for example, would appear to be minimal conditions 
in order that a useful theory be evolved. Nevertheless there is a loss in generality 
here; indeed no claim is made for complete generality in any event. 

In Section 4, we study systems which are linear and time-invariant in the state-space 
description. We show how the reduced states may be topologized to yield a locally 
convex space and a strongly continuous semigroup theorem enabling us to relate 
state to input in a unique manner ("state-input" relations) and indicate under 
additional assumptions how the output can be related to the state ("state-output" 
relation). The results are summarized in Theorem 4.1, although the methods 
themselves are equally useful. The Zadeh result that finite-dimensionality of the 
state space implies that the system is "dynamic" (the input may be related to the 
output through an ordinary differential equation) is now given precise form and 
proof for inputs and outputs allowed to be generalized functions, clarifying in particular 
the input-state and state-output equations. It  is shown that this result holds if we 
assume that the reduced state space (with its output-induced topology) is normable. 
This result was proved in [7] under the assumption that the outputs are ordinary 
functions which are Lebesgue-measurable. To explore this situation, we go on to 
consider an example where the state space is infinite-dimensional--a near canonical 
example where the inputs and outputs are given in terms of a semigroup over a 
Banach space, the semigroup being strongly continuous at the origin (corresponding 
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for instance to well-posed or Cauchy problems for partial differential equations), and 
the relationship between the Banach space and the state space is examined. A final 
example in which the semigroup is not even measurable (and hence not even Laplace- 
transformable), namely the distribution semigroup of Lions [8J--shows how state 
spaces may be constructed for such systems, and how they fall under the purview 
of systems as defined herein. In particular, the state-space theory in turn sheds some 
light on distribution semigroups. 

2. NOTATION 

For each a, - 0 9  ~ a < 4-0% let -~, denote the class of infinitely differentiable 
(complex variable) functions with compact support in the open interval (a, ~-09), 
endowed with the Schwartz topology, and let ~,~' denote its dual. We shall always 
use the weak-star topology for it. For each a, --09 < a < t-09, let ~ a -  denote the 
class of all infinitely differentiable functions with compact support in the half-closed 
interval [a, -1-09), the compact sets now allowed to include the origin, and again 
endowed with the Schwartz topology. Another way of describing ~ a -  is as follows: 
for each f in .~_~. let us define the transformation 

P f  = g; g(s) - f (s) ,  s >~ a, 

thus mapping .~_~ into .@a_. This is actually an onto mapping; in fact, for any g(-) 
in 9 , _  we can clearly define a function f in ~ ..... for each E > 0 such that 

P f  = g. 

Furthermore, P is linear and continuous in the respective Schwartz topologies. 
Let us denote the dual of -~,_ by ~'~_. Then for any W in -~'a-, we can define a 
continuous linear functional on - ~  by 

L ( f )  = W(Pf), 

and hence there is a generalized function in the usual sense (or Schwartz distribution) 
vanishing in the open set ( 09, a) corresponding to L, and only one of this kind. 
Since the representation is unique, we shall continue to use W to denote it as well. 
Again, "~a being a linear subspace of ~ , 

M ( f )  = W(f),  f ~  ~ 

defines a continuous linear functional on 2 , , ,  and by the Habn-Banach theorem 
for locally convex spaces, the functional M can be extended to ~ a _ .  If l&" 0 is such 
an extension to ~ , _ ,  we note that 

W - -  |,V,, 

must have its support reduced to the origin. 
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For each a , s , - -oo  ~ a,s, < + ~ ,  we shall define a linear transformation, 
denoted T(a -j- s; a), corresponding to a translation by the amount s of the time 
origin, mapping -~a- into -~a+~)- by 

T(a + s ;  a ) f  = g ; g ( t )  = f ( t - - s ) ,  t >~ a + s .  (2.1) 

This is clearly linear, continuous, and onto, and also one-to-one. 
Next we define a translation semigroup (corresponding to "left translation") 

Sx(t), t >~ 0 by 

S l ( t ) f  = g; g(s) = f ( t  + s), s >f a, (2.2) 

mapping ~ a -  into itself. This is linear and continuous for each t; and for f in ~ a - ,  
S l ( t ) f  is continuous in t, t />  0. 

We also need a right-translation semigroup Sr(t). This is defined by 

Sr ( t ) f  ---- g; g(s) := f(s -- t), s >/ a q- t, 

==0, a ~ s ~ a q - t .  

which for each t is a linear continuous mapping of ~a into itself. Also, for each f in 
~ ,  S r ( t ) f i s  continuous in t, t />  0. 

For each t, we can extend St(t) to . ~ '  by defining for each W in 9 '  �9 a - - "  

(Sr(t) W ) ( f )  ---- W(S l ( t ) f ) ,  f ~ ~a-  

and St(t) W is then continuous in t in the weak-star topology of "~'a- " Similarly we 
may extend Sx(t ) to -~a' by defining for each W in ~ ' :  

(sl(t)  w)(r  = W(Sr(t) 4~), r E ~o ,  

and Sl(t ) W is now continuous in t in the weak-star topology~of .~ ' .  
We shall denote by C~ ~176 the class of all infinitely differentiable functions on the 

half-open interval [a, oo). Every element of C~ ~~ clearly defines a linear functional 
on ~ _ .  The topology on C~ ~176 will be taken to be that induced on it as a subspace 
of .@~', the latter being of course taken in the weak-star topology over -~a �9 

For the rest of this section we shall specialize these spaces to a --- 0. For each W 
! 

in -~o-, and f in - ~ ,  we observe that the integral 

/co St(t) Wf(t) dt (2.3) 
0 

is well-defined as a Pettis integral. In fact for any g in g0--, we have 

foo Sr(t) W(g)f( t )  dt = W(h), (2.4) 
0 
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where 

h = fro Sl(t)gf(t) dt, (2.5) 

the integral being definable as a Riemann integral, with h ~.~o_ �9 It is clear that (2.4) 
defines a linear (continuous) functional on ~0-  �9 We shall denote the element in . ~ _  
so defined by the "convolution" 

W * f  

The restriction of this functional to ff~o, yields an element of -~o'. We shall denote 
the latter element so obtained by 

(W * f )o .  (2.6) 

Suppose now that f is actually an element of-~0.  Let 

f(s) : f(s), s ~ O, 

: - 0 ,  s < 0 .  

Then f is an element of ~ _ ~ .  As we have noted, W can be identified with a (unique) 
element of ~'_o~ vanishing in the open set(- -m,  0). Let us denote this element by ~176 
Then the convolution in the ordinary sense of ~176 and f defines a function in C_~ ; 
in fact it vanishes in ( - o o ,  --'r for some �9 > 0. It  is not difficult to see that ( W . f )  
coincides with this function, and that in fact: 

Sr(r ) (W*f)ECo ~ for every t ~ O ; f ~  o 

A l s o :  

Sr( t ) (W*f)  = W *  (Sr(t)f), t > 1 0 ; f c ~  o (2.7) 

We can also verify that (2.6) defines a continuous linear transformation mapping 
-~o- into -~o', considering -~o- as a linear subspace of ~ _ .  For let ~b, E ~ o -  and let 
~n converge to an element ~b in ~o-  in the weak-star topology of -~o-. Then for each u 
in ~o we have: 

(W �9 '~,)o (u) = ~ (Sr(t) W)(u) q~n(t) dt, 
Jo 

and the function 

Sr(t) W(u), t >/0 

clearly belongs to ~ o - ,  so that 

lim(W �9 (") = &Ct) wOO, Ct) dt = ( W �9 ("). 
0 
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We also note the converse, being an extension of the Schwartz kernel theorem 
[cf. 9], which we can state as 

THEOREM 2.1. Let L denote a linear transformation of ~o-  into ~-~o' such that 

(i) for each f in ~o  , L f  is in Co ~176 and 

Sr ( t )L f  :-= L(Sr ( t ) f ) ,  t >t- O; (2.8) 

(ii) L is a continuous mapping, considering ~o -  as a subspace of ~o-  , the latter 
being taken in the weak-star topology. Then 

L f  = ( W  *f )o  for some W in ~ _ .  (2.9) 

Proof. We shall outline a proof since it is different from the one for ~ _ ~ .  First 
let r be a delta-convergent sequence in ~o  (that is, ~n * u converges to u for every 
u in ~0 in the latter's Schwartz topology; such a sequence is also known as a 
"regularizing" sequence). Let  u be an element of ~ 0 .  Then,  because of (2.8), we have 

L(r  �9 u) = (Lr �9 u = (Lu) �9 4 . ,  (2.10) 

and also for every t >~ 0, 

L(Sr(t)r * u) = (nSr(t)6~) * u = (LSr( t )u)  * ~n, (2.11) 

and hence the functions 

L(Sr(t) 4.) * u 

converge pointwise. For each u, let 

(t~c(s) = u(N --  s), where u(s) = 0 for s >~ N.  

Then  uN belongs to ~ o ,  and letting 

we have that 

L(r ---- f .  

(Sr(t)f~)(u) ~-- ( (LSr( t )r  * aN) 

evaluated at the point N, and hence the left side converges. Again for a n y f  in ~ o - ,  
we can find r in -@0 and some t ~> 0, such that 

f = Sl(t) 4- 

Hence 

fn ( f )  = (Sr(t)fn)(r 
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converges for every f in 2 0_ . Itence there exists an element W in .~_  such that 

l imA(f)  = W(f) .  

Again, Cn * f  converges to f in the weak-star topology of ~ _ .  Hence 

for u in -~0- limL(r , f ) (u)  = (Lf)(u) 

But again using (2.8), 

I.(r * f)(u)  = (f~ * f )(u)  

o r  

( Sr( t) fn)(u) f (  t) dt = 

-- ~oo W(SI(t) u)f(t) dt 

= ( w  , f ) (u)  

Lf  = ( W  * f)o" 

97 

3. Pm~ClSE DEFINITIONS 

In this section we define precisely the basic notions of "System" and "State" 
using the notation of Section 2; we also include some terminology and related 
definitions. 

Definition of a System 

For each real number a, - - ~  < a < t o %  let U(a) and V(a) denote two classes 
of functions, including generalized functions, on the half-closed interval [a, oo), the 
class U(a) including ~'a- and the class V(a) including .~ ' a .  Let S(a) be a subset 
of the cross-product space U(a) • V(a). A system (or more correctly a continuous 
system as opposed to a discrete system) is a collection of all these subsets, subject 
to the following conditions: (i) For each a, let U~ denote the projection of S(a) on 
U(a). The elements of Ua will be called "inputs starting at time a". It will be assumed 
that Ua includes ~ _ .  For each element u a of Ua, the elements in the intersection 

(uo • g(a)) c~ (Sa) 

57I /X/x -7  
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will be called the "outputs" corresponding to the input u~. It  will be assumed that, 
for each u~ in . ~ _ ,  the corresponding outputs are contained in ~ ' .  (ii) Each element 
in S(a) will be denoted (u~, v~) and called an "input-output" pair. It will be assumed 
that, for each input-output pair (u,,, va) with u, in ~ a _ ,  

(T(a ~- t; a)Sl( t  ) ua, T(a + t; a)Sl( t)vo) 

is in S(a + t) for each t ~> 0; and what is crucial, that every input-output pair in 
S(a + t) with u~+t in ~,+t can be obtained in this manner. (iii) For each a, let (u, ,  va) 
be an input--output pair with u a in . ~ ' .  Then it is possible to find a sequence of 
input-output pairs (u~ ", v,"), with u~" in ~ such that ufl ~ and v~" converge, in the 
weak-star topology o f - ~ ' ,  to ua and v~, respectively. 

Definition of State Space 

Let a system be defined as above, and let us retain the same notation. For each a, 
- o o  < a < ~ ,  let a set S(a) be given, and a transformation mapping the cross- 
product space Z ( a ) •  U a into V(a). We shall denote this transformation by 
A(a; x; ua), x eZ(a) ,  u~ ~ U~. For each a, Z(a) will be called a "state space at 
time a", if the following two conditions hold: 

(H,): For each u~ in ~ a ,  let v~ be a corresponding output; then there is 
an element x in Z(a) such that 

V~ = A(a; x; u.) 

and conversely, given any x in Z(a), and any u~ in ~ , ,  

A(a; x; uo) 

yields an output corresponding to ua �9 

(H2): For any a, and t > 0, let C(a; t) denote the class of all functions in . ~ _  
which agree on the interval (a, a +- t). Then there is an element y in 
Z(a q- t) such that, for each ua in C(a; t) with corresponding output va, 

T(a + t; a) St(t) v~ := A(a + t; y; T(a + t; a) Sl(t ) ua) 

Remark. We shall use the term "system with a state-space description" to 
denote a system that has state spaces as defined above for every instant of time. 

In the following definitions it is assumed that the system has a state-space 
description. 
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1. State Equivalence. Two states in Z(a) are said to be "equivalent", denoted 
x I eq x 2 , if 

A(a; X 1 ; Ua)  = A(a; X 2 ; Ua) 

for every u~ in ~ . . . .  

Remark. It is clear that the states in Z(a) can be partitioned into equivalence 
classes under this equivalence relationship. 

2. Zero-input Equivalence. Let 0 denote the zero-element in ~ a - .  Two states 
x 1 , xz in Z(a) are said to be "zero-input equivalent" if 

A(a; x I ; 0 )  - A(a; x 2 ;0) .  

Remark. It  is clear that the states can again be partitioned into equivalence 
classes using zero-input equivalence as well. 

3. Input-Continuous System. A system is said to be input-continuous if for every a 
and each x in Z(a), A(a; x; .) is a continuous mapping of ~ a -  into "~a', the former 
being taken in the weak-star topology of ~ 'a-  �9 

4. Input-Analytic System. A system is said to be input-analytic if for every a, 
and each x in Z(a), A(a; x; .) is a continuous mapping as in Definition 3, above, 
and A(a,x; .) is an "analytic" mapping in the sense that, for each u~,ha  in 
~ _ ,  A(a; x; u a + Ah~) is an entire analytic function of h in ~a ' .  

5. Ground State. If  Z(a) has any element x in it such that 

A(a; x; O) - O, 

then x will be called a "ground state at time a". 

Remark. It is clear that all ground states are zero-input equivalent. 

6. Time-Invariant System. A system is said to be time-invariant if we can take 

Z(a) = z 

for every a, and for every x in Z, 

A(a; x, u~) -= T(a; 0) A(0; x; T(0; a) ua). 

7. Linear System. A system is said to be linear if we can take Z(a) to be a linear 
vector space for each a, and the mapping A(a; .; .) is linear on the cross-product 
space Z(a) • ~ a - ,  and continuous in the sense of Definition 3 above. 

8. Reduced State Space. A state space Z(a) is said to be reduced (at time a) if 
x 1 eq x~ implies that x x = x~. 

Remarks. It  is clear that if a system is linear, then zero-input equivalence 

57x/x/x-7* 
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implies equivalence, and that the zero-element of the vector space 27(a) is a ground 
state. 

9. Separable System. A system is said to be separable if it has a ground state 
(which we shall denote by 0) and the response or output is separable: (for each a): 

A(a; x; ua) = A(a; 0; u,) + A(a; x; 0), ua ~ ~a-  ; x ~ Z(a). 

The first term here will be called the ground-state response, and the second term 
the zero-input response. 

Remark. It is clear that a linear system is separable; and in this case, the ground 
state response will be called the zero-state response as well, since the zero-state is 
a ground state and all ground states are equivalent. 

10. Physical Realizability. A system is said to be physically realizable, if for 
each a, and each x in ~'(a), the transformation A(a; x; ua) is "physically realizable" 
in the sense that if ua 1, ua 2 are two inputs in ~a which agree on the interval [a, b], 
so do the outputs A(a; x; ual), A(a; x; uaZ). 

Remark. It will be assumed that in what follows every system considered is 
physically realizable. 

4. LINEAR TIME-INVARIANT SYSTEMS 

It  is natural to begin our study of systems from the state-space point of view by 
first considering linear time-invariant systems. It should be noted that the concept 
of state was used in the very definition of linearity. We shall only consider input 
continuous systems; in fact even this is too general in that it is not possible to deduce 
structural relationships. In any event we shall require that an additional condition 
is satisfied by the ground-state response: 

(S): For each input in 9 0 , the ground-state response is in C0% This is 
certainly reasonable in that the response to an infinitely smooth input 
starting from rest should surely be expected to be smooth. 

As in Section 3, linearity implies that we can decompose the output as 

A(a; x; ua) : Zt(a; x) + Zs(a; ua) 

where Zl(..) is the "zero-input" response, and Zs(..) the "zero-state" response. The 
first step is to examine the space of reduced states. Because of linearity, two states 
are equivalent as soon as they are zero-input equivalent. Hence, let us begin with 
the zero-input response. For any a, time invariance implies in particular that the 
state spaces do not depend on time: 

27(a)=27, say. 
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Also 
Z,(a; x) := T(a; 0) Z,(0; x), x ~ Z(a)  = Z(0) = Z, (4.1) 

and hence it is enough to consider 

Z~(O; x), x E Z. 

Let  
Z o = [x/Zl(O; x) = zero element of ~0']  (4.2) 

(we note that the zero-input response is the response to the zero-input function 
which is in ~ o ,  and hence the response is by assumption in ~0') .  The  class of reduced 
states is readily verified to be a linear space; in fact, since Z o is clearly a linear 
subspace of Z, we have, denoting the reduced states by Z'r ,  

Zr = ~ / Z  0 ; factor space modulo Z o . 

In  order not to complicate the notation unnecessarily, we shall continue to denote 
the reduce states by letters x, y etc., since in particular we will only be dealing with 
reduced states in the rest of this section. In particular, we shall continue to use the 
zero-state response 

Z,(O; x) 

for states in Z'r ,  it being understood that this is the response corresponding to any 
member  of the corresponding equivalence class. Let 

P x  = ZI(0; x) x ~ Xr .  (4.3) 

Then  P is a linear (one-to-one) mapping of Xr into -@0'. I t  should be noted that so 
far there has been no topology on the state spaces 2, 7 or Xr .  We now proceed to 
topologize Z r .  For this we use the mapping P which maps Z'r into -~0'. Thus  a set E 
in Zr is open if and only if P E  is open in P Z r ,  considered as a subspace of ~o ' ,  the 
latter in the weak-star topology. We observe that Xr is a locally convex space in 
this topology. We may, and do, proceed to complete the space Xr in this topology, 
and denote the completed space by ~ r  �9 We note that 

Z'r  = P - l ( p ~ ' r )  

since P can clearly be extended to the completed space Zr  and is homeomorphic 
onto (PEr). 

We shall next see how the state hypothesis H 2 leads to a semigroup of linear 
transformations over Z r .  For this, we observe that for each x in ~ r ,  and t >~ 0, 
there is an element of Z, and hence a unique element y of Z r ,  such that 

T(t; O) S l ( t )  P x  -= A(t;  y; O) = T(t; 0) Zt(0; y)  
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o r  

Sl(t ) Px = Zl(0; y) y E ~'r 

Hence we may define a transformation T(t) such that 

T(t) x = P-xS~(t) Px, (4.4) 

mapping Z'r into S t .  For each t, T(t) is clearly linear, and because the transformation 
Sl(t) is continuous on ~0'  in the weak-star topology, as we have noted in Section 2, 
it follows that T(t) can be extended to be linear and continuous on Xr.  Moreover, 
for each x in Z'r, T(t) x is continuous in t >~ 0, because Si(t) Px is continuous in t ~> 0. 
Of course T(t) is clearly also a semigroup. Let  A denote the infinitesimal generator 
of this semigroup. Then  A is defined on all of S t ,  and in fact 

Ax  = P-XDPx, (4.5) 

where D denotes the differential operator over~0 ' .  It is clear that for x in Xr ,  Ax  
belongs in general to Z'r, since DPx is in the closure of PXr in the weak-star topology 
of ~o"  

Let us next consider the zero-state response. First we have, by time invariance, 

Zs(a; ua) = T(a; O) Zs(0; T(0; a) u,). (4.6) 

Let  u be any element of 9 o ; then for any t >~ 0, Sr(t) u also belongs to ~ o ,  and 
if we let 

h = Zs(O; Sr(t)u),  

h is in Co ~176 by assumption(s), and (by the physical realizability hypothesis) vanishes 
in the interval [0, t], as does 

g = St( t)Zs(0;  u). 

Next, by the state hypothesis Hz,  we must have 

[since h t -= T(t; O) Sl(t ) A(0; 0; St(t) u) = A(t; 0; T(t; 0) u)] 

where 

and since 

h,  - Z~(t;  ~ )  

h~(s) = h(s) ,  s >~ t; u~(s) = u(s  - t),  s >~ t, 

T(0; t )ut  = u, 

h, = T(t; 0) Zs(0; u) 

it follows from (4.6) that 



and hence that 

or, finally, 
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h(s) = g(s), s ~ t, 

Zs(0; St(t) u) := St(t) Zs(0; u), u ~-@o. 
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Hence the transformation 

&(0; u), 

mapping ~o-  into ~o', satisfies all the conditions under which Theorem 2.1 (the 
extended version of the Schwartz kernel theorem) holds, and hence (cf. Section 2) 

t there is an element W in ~o-  such that 

Zs(0;f)  ---- (W *f )o ,  f ~  ~ o - .  (4.7) 

Let W o denote, as in Section 2, the restriction of W to -~o : 

Wo(u ) = W(u),  u e ~2o , Wo E ~o' .  (4.8) 

We shall now prove that there is an element (denoted B) in Z'r such that: 

P B  = W o . (4.9) 

For this, let q~n be a delta-convergent sequence in -@o such that the support of q~n is 
contained in the interval [0, ~,], E, -~ 0. Then, by the state hypothesis H2, it follows 
that there must be an element x, in Xr such that 

Sl(En) Zs(0;  (~,,) == P x  n . 

But by (4.8), 

Sl ( ' n )  Zs(0;  C~n) = S I ( E n ) ( W  ~ On)O,  

and the right side of this equality is readily verified to converge in the weak-star 
topology of-~0' to W 0 . Hence the sequence x,, converges in Srr and denoting the 
limit by B, (4.9) is obtained. 

Next we observe that the integral 

Fo T( t  - -  s ) B f ( s ) d s  (4.10) 

is well defined as a Pettis integral, for each f in -~o-. In fact, for each u in -~o, 

~o f `  (S , ( t  - s )Wo) (u ) f ( s  ) ds = W o (ft~ Sr(t  - s)uf(s)ds): 
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clearly defines a linear continuous functional on ~o-  Moreover, since Sl(t ) W o is 
in PZr for every t >/O, this functional is also in PZr,  and hence (4.10) defines an 
element in Zr .  

We can now define a state-transition relation: 

tl 

x(t) = T(t) x + J T(t -- s) Bf(s) ds, (4.11) 
0 

which defines the state at time t, starting with state x at time zero, and with input f 
in -@o-. This can be "differentiated" (in the state topology defined) to yield 

*(t) = Ax(t) § Bf(t), (4.12) 

where the dot indicates the derivative. It should be noted that in (4.12) no restriction 
is placed on the initial state at time zero. 

Let us next consider the problem of relating the state function defined by (4.11) 
to the output. For this let us first define a (continuous) linear functional on Zr for 
each n by 

L,(x) = Px(r 

where r is a delta-convergent sequence in -@0. For each n, 

L,,(T(t) x) -~ Px(Sr(t)r 

is continuous in t. For any u(.) in ~o ,  

f Ln(T(t) x) u(t) dt = Px(h.), 

where 

h, = J~o Sr(t) ~,u(t) dt ~- 4, * U,  

and since h, thus converges to u in -@0, we have that L,(T(t)x)  converges in the 
weak-star topology of -@o' to the zero-input response. Since the latter is in general 
only an element of-@0', pointwise convergence is not to be expected, or even meaningful. 
The second term in (4.11) cannot be handled in a similar manner without additional 
constraint, since it involves only Wo, and the zero-state response involves IV. A 
convenient assumption is the following: 

(A): Let u,, be any sequence in -@o such that u,~ converges to an element f 
in ~o-  in the weak-star topology of ~o'; then W(u,,) = Wo(u,) converges, 
and the limit depends only on f (that is, it is independent of the 
particular sequence chosen). 



STATE-SPACE THEORY OF CONTINUOUS SYSTEMS 105 

An example where (A) is not satisfied is 

Wo(u) = elau(t) dt, u(.) ~.@o . 
0 

On the other hand (A) is clearly satisfied if IV. corresponds to a measurable function 
which is integrable on finite intervals. 

We shall now explore some of the consequences of this assumption. 

LEMMA 1. I f  (A) holds, then for each f in ~ o - ,  we have 

r 

W * f  = 1~ * f  + ~ a k dkf/dt k, (4.13) 
0 

where lgd ~ ~o' and also satisfies (A). 

Proof. Let 

W,,(f) = Wo(r * f ) ,  f ~ o - ,  

where q~,~ is a delta-convergent sequence in 2 o . Then  since r * f  converges in the 
weak-star topology of ~o '  to f ,  W,~(f) converges for each f in ~ o - ,  and setting 

l ~ ( f )  = l i m  W~(f) 
t l  

defines l~  as an element of ~ ' o - ,  and since it agrees with W o on ~ o ,  it satisfies (A). 
In  fact, l~  is clearly the smallest extension of W o to 3 o_ . Now l ~  - -  W m u s t  have 
its support  confined to the origin, so that 

( W  -- lFV)(f) = ~ ak dff/dt ~, 
0 

from which (4.13) follows. 
Since 

l ~ ( f )  = lim Wo(~h,, * f ) ,  
n 

it follows that, if W1, W 2 are two elements of  . ~ _  such that 

Wl( f )  - -  W2(f) = lira W o ( r  
n 

then their difference W x - -  W~ must be zero; and hence if 

W * f = W 1 * f + ~, ak dkf/dt ~ 

= W2 * f  + ~ bk dkf/dt k, 

we must  have a~ = b , .  In  other words, the decomposition (4.13) is unique. 
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L~MA 2. Let f e ~o-  and let 

t *  

y(t) = J T(t -- s) Bf(t) dr. 
0 

Then, i f  (A) holds, we have that the (continuous) functions 

L.(y(t)), 0 <~ t 

converge in the weak-star topology of ~'o-- to 

(1~ * f)o" 

Proof. 

L.(y(t)) = w(f '  ~ s.(,- ,)+Z(s) ds). 
For any g in ~ o - ,  

r..(.(,)) , ( , ) , , :  r~(.)., r.(,) .o(..(,- .) , .) , ,  
d 0 ~o d ~  

where 

and by Assumption (A), 

7o f~ = f(s) ds o g(t q- s) Wo(Sr(t ) ~n) dt 

= ~oof(S ) Wo(r Sl(s) g) ds 

= w o ( r  �9 h) 

f 
oo 

h = Sl(s) J ( s )  as, 
0 

lim Wo(r * h) = l~(h) = (1~ *f)(g), 

as required. 
Combining Lemma 2 with Lemma 1, we have 

(4.14) 

(4.15) 

L/~MMA 3. Let x(t) be the state function defined in (4.11). Then La(x(t)) , which for 
each n, is a continuous function of t, converges in the weak-star topology of ~o', and 
t.he output 

n 

v = A(0; x ; f )  = limL,(x(.)) + ~ a~ dkf/dt k. (4.16) 
0 
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In the case of the zero-state response, we can get pointwise convergence for inputs 
in ~ o ,  since by assumption W ~ f  then belongs to Co ~176 

LEMMA 4. Suppose f e ~o.  Then, assuming (A) holds, for every t ~ 0, 

lim(I~ *f)(Sr(t) 4-) = lim L,(y(t)). (4.17) 

Proof. Since f e ~ o ,  we know that ~ , f  belongs to C0 =~ and the left-side of 
(4.17) converges to the latter for each value of t. But for each n, 

where 

f 
oo 

(ff,' , f )  st(t)  r  = (st(s) ff/)(sr(t) r  dr 
0 

f~ Wo(Sr(t s) q~,)f(s) ds 
0 

-~- Z I~(S~(s -- t)r ds 

= L.(y(t)) + [7v'(f.), 

As we have already seen, 

where 

f 
~O 

L = S~(s)r + t) ds. 
0 

L.(y(t)) - Wo(g~), 

(4.18) 

For any u in 9 o ,  

or g, converges now to the function f defined by 

f(s) = f(t  --s), 0 ~ s ~ t, 
= 0 ,  2 > t  

in the weak-star topology of 9o', f being in ~o-  since f is in ~o .  Hence Ln(y(t)) 
converges to Wo(f) for each t. Hence #(f,~) converges also. But 

l~(fi) -- lim Wo(9~.. ,f~). 
in 
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the function 4,~ * 4'. is given by 

(4= * 4 ~ ) ( Y ) :  fro f l  4,~(Y --~)4,,(s + ~)f(s + t)ds, 

and, for each u(.) in 2 0 ,  the double sequence 

f o(4,, * 4,~)(t) u(t) dt 

converges to zero. Hence by Assumption (A) the double sequence 

Wo(4,. * 4-) 

converges to a limit. On the other hand, it is readily verified that for fixed m, the 
sequence 4m * 4 ,  actually converges to zero in the Schwartz topology of 20!. Hence 
it follows that 

lim W(f.) : lim Wo(4,. * 4.) = lira Wo(4, . . 4-) = O. 
~o~tg m , n  

Hence (4.17) follows. 
Let us observe that we have proved that 

lim I~(f.)  = lim(I4z, Sa(t)f)(4. ) = 0 

for any f in 20 . Since, for any g in ~o--, we can write 

g = Sl( t ) f  for some f i n  2 0 ,  

it follows that 

= 0, g e 2 o _ .  (4.19) 

We can use this fact to prove 

LEMMA 5. For any t, such that ( l~ * f )o , where f ~ 2o__ , coinddes with an~integrable 
function in a neighborhood of t, 

(I;~ *f)0 (t) = limL.(y(t)) 

on the Lebesgue set of the limit function in that neighborhood. 

Proof. We have only to observe that on the Lebesgue set, the left side of (4.17) 
converges to the function. On the other hand, in (4.18), W(f.) now converges to 
zero from (4.19). 

We may sum up these results as 



STATE-SPACE THEORY OF CONTINUOUS SYSTEMS 109 

THEOREM 4.1. Given any time-invariant linear system with a state-space description, 
that is input-continuous and whose zero-state response has Property (S); it is possible 
to define a locally convex topology on the reduced states and a semigroup of linear 
continuous transformations T(t) on the (complete) locally convex state space X,  which 
is strongly continuous in t ~ O, and a sequence L~ of linear continuous functionals on X 
such that the response 

A(a; x; ua) = T(a; 0) A(0; x; T(0; a) Ua) 

can be expressed in terms of state-input and state-output relations as follows: 

x(t) -~ T(t) x + f T(t -- s) Bf(s) ds; ~(t) = Ax(t) + Bf(t) 
0 

where B is a fixed element of X, and f E ~o- ; letting 

v = A(0; x ; f )  (4.20) 

we have that, if  Condition (A) is satisfied, 

v --limLn(x(t)) + ~ ak dkf/dt ~, 0 ~ t (4.21) 
n 

0 

where the limit may be taken in the weak-star topology of ~0', and pointwise whenever 
the response is continuous, and almost everywhere in any interval where the response is 
Lebesgue-integrable. 

We proceed next to examine what may be looked upon as special cases of 
Theorem 4.1. The first and simplest case is of course the "degenerate" ease where 
the state-space has finite dimension. We have then the Zadeh result [1] that the input 
and output are related by an ordinary linear differential equation. This was proved 
in [7] under the assumption that the outputs were Lebesgue-measurable "ordinary" 
functions. We shall now state and prove this in the light of our definitions, the proof 
in particular being immediate. 

THEOREM 4.2. Suppose the state space of a linear time-invariant system is finite- 
dimensional. Assume that the zero-state response satisfies Condition (S). Then confining 
ourselves to inputs and outputs starting at time zero, (which we may because of time 
variance), any output corresponding to an input f in ~o- must satisfy the differential 
equation 

q 

~. c~ dkv/dt k = Z dj(dJf/dtJ) �9 (4.22) 
0 0 
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For any piecewise-continuous input f, any corresponding output v is also in ~ '  o--, and 

q 

Z ck D*v = ~, dj D~f, (4.23) 
0 0 

where D denotes the derivative operator on ~o'. The reduced state space being also 
finite-dimensional, the state-input relation can be defined as 

~(t) = Ax(t) + Bf(t); x(O) = x, f e ~  o_ (4.24) 

in the sense that x(t) is the unique solution of this equation with the initial state being 
the prescribed element x, B being a fixed element of the state space. The state-output 
relation is 

v(t) = [C, x(t)] + ~ ak dkf/dt ~, (4.25) 
0 

where C is a fixed element of the state space, and [ , ] denotes inner product. For any 
piecewise-continuous input f,  the usual "distributional" interpretation of (4.24) and 
(4.25) may be made. 

Proof. The state space X being finite-dimensional, so is the state space Xr, 
and hence 

Z~ = Z r  = X. 

The semigroup T(t) is then trivially uniformly continuous and hence 

T(t) = exp At, (4.26) 

where A is a linear bounded transformation on X. Hence for any x in X, we have 

m 

T(t) x = ~ 4'k(t) Akx, (4.27) 
0 

where the Ck(.) are (from the usual matrix exponential formulas) in COO~ Hence, also 

m 

Sl(t)(Px) = ~ Ck(t) Dk(Px). (4.28) 
0 
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Let us denote the element Px by w. We shall now show that (4.28) implies that w 
is actually an element of Co% For this, let us note that 

foo  w( f  �9 g) = (Sl(t) w)(f)  g(t) dt (for f ,  g ~ ~o)  
0 

co m 

= fo ~o Ck(t)(D~w)(f)g(t) dt 

: (Dkw)(f) r g(t) dt. 
0 0 

Let f .  be a delta-convergent sequence in -~o. Then 

w(g) -- lim w(f ,  * g) = lim (D~'w)(f,) rkx(t)g(t) dt. (4.29) 
0 0 

Now, the functions Ck(t) are linearly independent over any interval of [0, oo) and 
by suitable choice of g, it will follow that every term in (4.29) must converge, since 
the number  of terms therein is finite. This shows that w must coincide with a linear 
combination of the functions Ck(t), and in particular, must be in Co% Hence every 
element in P2,'r is in C0% Hence so is Wo, and its Laplace transform is rational. 
For any element x of X, let us recall that 

L,(x) = (Px)(dp,), 

and it follows that Ln(. ) converges and defines a linear functional on X. Hence there 
must be an element C in X such that 

[C, x] = lim L,(x). 

Moreover, the output is now continuous for any input f in -~0-,  so that from (4.21) 
we have 

In particular, 

v(t) == [C, x(t)] -4- ~ ak d~f/dt ~. (4.25) 
0 

[C, fro T(t - s)Bf(s)ds] : fro [C, T(t - s)B]f(s)ds  

-= (IJP * f)(t) ,  t >/O, 
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and since clearly 1~ coincides with Wo, it follows that 

Wo(t) = [Cea"-s)B], (4.30) 

where in particular we note that 

[C, ea")x] = 0, t >~ 0, implies x = 0 

From (4.25) it is immediate that (4.22) holds, p being the degree of the minimal 
polynomial of A, as well as the dimension of X. Similarly (4.23) and (4.24) are easily 
deduced. 

COROLLARY. The statements of theorem remain valid if we merely assume that the 
reduced state-space X is normable. 

Proof. We have only to note that by construction X is homeomorphic with a 
subspace of ~0' in the weak-star topology, and any such subspace that is normable 
must be finite-dimensional (as is shown, for instance, by a ready application of the 
Kolmogorov theorem which states that normability is equivalent to the existence 
of a bounded convex symmetric neighborhood of the origin). 

This Corollary should not be too surprising since the topology we have defined 
for the reduced state space is the weakest. For a similar result with a slightly different 
topology, see [7]. In order to clarify some of the relationships, we shall now consider 
an infinite-dimensional example which has many canonical features. We shall 
incidentally also indicate how a state space may be derived from given input-output 
description in the process; although the general problem of determining state from 
input-output is much more complex and will be taken up later. 

We shall actually begin with a simple version first. Let E be a Banach space, and 
let S(t) denote a semigroup of linear bounded transformations, strongly continuous 
at the origin; that is, 

S(t) x is continuous for t >/0,  x ~ X. (4.31) 

Let B be a fixed element of E, and x* a fixed element of the adjoint space. We now 
define an output for each ua in ~a_ by 

where the integral is a Bochner integral (in general), and x is an arbitrary element 
of E. It is clear that va(.) is actually in C~ ~176 It is evident that E will serve as the set 
of states as defined in Section 3. We shall denote it by 27 to indicate that there is no 
topology on it as yet. Moreover the system is time-invariant and linear. Hence we 
may (and shall) take the initial time "a" to be zero. 
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We may proceed now to obtain the space of reduced states and the corresponding 
state-input/state-output relations. Thus 

Z o = [ x e E l x * ( S ( t )  x) = 0 ,  t>~O] 

This is of course a linear subspace of Z (closed in E). The space 2:r can be made 
into a Banach space if (take the Gelfand-Neumark norm) 

II x IIt = inf II x + 2:0 II 

But our topology (termed the "output induced topology" in [7] and which we shall 
adopt to avoid confusion) is that induced by considering 

x*(S( t )  x), t >7 0 

as elements of ~0'. In this topology, 2:r is not necessarily closed (in fact it is closed 
if and only if it is finite-dimensional). Thus in completing Zr we have introduced 
new states, the significance of which will be dear presently. The semigroup T(t) 
is given by 

P(T(t )  x) x*(S( t  + •) x) = x*(S(o) S(t)  x), cr >~ 0 (4.33) 

for x in Zr .  Let A~ denote the infinitesimal generator of the semigroup S(t).  Then 
for any x in the domain of A', 

P(nx) x*(s(~) nx), ~ > 0. 

Otherwise A x  is defined as the distributional derivative of x*(S(.) x). The element W 
and W o are the same in the present case, and avoiding the trivial case when B is 
an element of X o , W o corresponds to the function 

Wo(t ) = x*(S( t )  B) (4.34) 

and clearly satisfies Condition (A), although not necessarily in C0 ~176 The integral 

f'o T(t  -- s) Bf(s) ds 

now corresponds to the function in -~o': 

l x*(S(cr) y(t)), ~ >~ 0, where y(t)  = S( t  --  s) Bf(s) ds, 
o 

and the latter is always an element of E for f(.) in N 0_ . It continues to be even when 
f(.) is not necessarily in N 0_ , but is rather measurable and bounded on finite intervals. 
But if f(.) is allowed to be an element of ~0', it is no longer in E, necessarily, and 
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the completed space X is necessary. Thus if we extend the inputs in (4.32) to be 
elements of 90 '  , then the state-space E is no longer sufficient, but X is. In many 
variational and control problems, the inputs have to be extended in this or a related 
manner. The nature of the extension of the inputs to 90 ' is exactly as demanded 
in the definition of "System" (cf. Section 3). 

The condition of strong continuity of the semigroup (4.31) may be dropped to 
make the example more general. We may thus consider the case where the semigroup 
is merely (strong) Lebesgue-measurable, that is 

S(t) x is Lebesgue-measurable for each x in E. (4.35) 

But in this case the PhiUips-Miyadera theorem [9] asserts that S(t )x  must then be 
actually continuous for t positive. Hence we may define a system by 

va(t) = x* ( S ( ' -  a) x + fo S ( t -  s)Bu.(s)ds), (4.36) 

but here the inputs have to be confined to 9~  in order that the integral be defined. 
We can of course proceed to construct the reduced state-space X as before. However, 
since W now corresponds to the function 

x*(S(t) B), t ~> 0, 

and is continuous only in t > 0, we need to add a condition similar to (A) to enable 
us to connect the state function with the output. But if we do add such a condition, 
we can then apply the results of Theorem 4.1. 

From this point of view, we may note that we can consider the case where the 
semigroup is not necessarly even Lebesgue-measurable. We may then consider the 
"distribution semigroup" of Lions [8]. A distribution semigroup is a linear continuous 
mapping (denoted S) of 90 into the Banach space of linear bounded transformations 
on E. Let B be again a fixed element of E, and let x* be as before. Then for each f 
in 9 0 ,  

x*(S(f) x), x ~ E 

defines a linear continuous functional on 9 o or an element of 9o ' .  We may thus define 
outputs corresponding to inputs in 9 o ,  analogous to (4.32) (with a ----- 0) by 

v = x*(S(.) x) + x*(S(u) B). (4.37) 

The properties of a distribution semigroup (for which reference may be made to 
Lions [8]) relevant here are 

(i) S[~*~b] x = S [ ~ ] .  S [ ~ ]  x, x e E,  ~b~b ~ 9 0 ; 
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(ii) There  is a subspace L (dense in the strong topology) in E, such that for 

any w in -@o' and any ~ in -@o 

S[w*~] x = S[~b] 8[w] x, x eL ,  

where ~[w] is a closed linear transformation with domain L. 
We shall now show that we can take L as a state space, for the input-output  pairs 

described by (4.37), where for simplicity we shall assume that B is also in L. Let  us 
first note that, for x in L, ~ in ~ 0 ,  

Sl(t)[x*S[~ ] x] = x*[S[~] ~[8(t)] x] 

since 

S1(t)[x*S[. ] x](r = x*S[~b*8(t)] x, 

where 8(t) is the distribution corresponding to the delta-function concentrated at t. 
Moreover, ~[8(t)] x is again in L. Again, let a be defined so that 

a(s) = u(t  - s), 0 <~ ~ <~ t 

= 0 otherwise for s > t. 

Then  a is an element of ~0 ' ,  and 

,~[~.] B eL.  

Hence we have 

T(t; 0) Sl(t ) V = T(t; O)[x*S[.](3[8(t)] x + ~[a] B) + x*S[g] B] 

where 

g(s) = . (s  + t), s > / 0 .  

(4.38) 

This  shows that L is a proper state space in the sense of the definition in Section 3, 
and that we thereby obtain a linear time-invariant system. Proceeding then to 
obtain Z r ,  and the completion Z r ,  we note that the semigroup T(t) is such that it 
"corresponds to" 

~[8(t)]. 

We omit the details of the corresponding state-output  relations. I t  may be noted 
parenthetically that we have as a byproduct  of the state-space theory, a "representa- 
tion" for the distribution semigroup I in terms of an ordinary (strongly continuous) 

1 According to the referee, a similar result has been obtained using completely different 
methods, simultaneously and independently, by D. Fusiwara (to be published in the Journal 
of the Mathematical Society of Japan, Vol. 18, 1966). 
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semigroup on a locally convex space. Also, this example shows the generality of the 
systems that may be studied using the state-space approach. 
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