
Volume 255, number 1, 92-96 FEBS 07586 September 1989 

Ion channels in vacuoles from halophytes and glycophytes 
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The electrical properties of the vacuolar membrane (tonoplast) of a halophyte, sugar beet, and a glycophyte, tomato, 
have been investigated using the patch-clamp technique [( 1981) Pfliigers Arch. 391, 85-100]. Voltage-dependent ion chan- 
nels were analyzed using isolated membrane patches. Both species displayed channel activities which were nonselective 
between sodium and potassium. Beet tonoplast channels displayed inward rectification (65 pS and 10 pS for negative 
and positive potentials, respectively), while tomato tonoplast channels showed a constant conductance (25 pS) in the 
range -80 to + 80 mV potentials. The observed low channel conductance at positive potentials in halophytes would 
prevent a significant loss of the Na + accumulated in the vacuole through the operation of the Na+/H + antiport [(1987) 

Physiol. Plant. 69, 731-734], while channel rectification in glycophytes would have no physiological significance. 
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1. INTRODUCTION 

The ionic relations of  the vacuole of  plant cells 
are still very inadequately known; this is true for 
both glycophytes and halophytes. It is likely that 
the tonoplast plays an important role in controlling 
the ionic concentrations in the vacuole particularly 
for these halophytes which accumulate high con- 
centrations of  sodium chloride in their cell 
vacuoles. In general the tonoplast membrane 
potential is about + 20 mV (vacuole positive) and 
there is a pH difference of  the order of 2 units 
(vacuole more acidic). The electrochemical poten- 
tial difference for protons, A/~H + (/zH+vac > >  
/zH+cyt) is generated by electrogenic proton pumps 
on the tonoplast driven by the hydrolysis of  ATP 
[3] and, perhaps, by the hydrolysis of  
pyrophosphate [4]. The situation for ions other 
than protons is far from clear. For instance, their 
electrochemical potential differences are not well 
known. But we can say that, with a tonoplast 
potential of  + 20 mV, if sodium, potassium and - 
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say - chloride are in passive equilibrium then, their 
vacuolar concentrations would be about one half, 
one half and twice their cytoplasmic concentra- 
tions, respectively. Since rough values for 
cytoplasmic Na +, K + and CI- concentrations are 
< 20 raM, 200 raM, < 20 mM, respectively, rough 
values of  equilibrium vacuolar concentrations 
would be < 10 mM, 100 mM, < 40 mM. (Nitrate 
would also be in very low vacuolar concentrations 
at equilibrium). For osmotic reasons alone all of  
these ions are likely to be at higher vacuolar con- 
centrations and thus all o f  them, except possibly 
K + in some cases and maybe Na + for glycophytes, 
must be actively transported into the vacuole. 

Such active ion transport would be expected to 
be secondary, using the electrochemical potential 
difference for H +, the protonmotive force, as the 
source of energy. One such secondary active 
transport,  the Na+ /H + antiport in beet, has been 
fairly well characterized [5,6]. But there is as yet no 
definite information about a possible K+/H + an- 
tiport system and the clear necessity to postulate 
porters for the inward fluxes of  anions such as Cl- 
and NO~ is still just that: a postulate. 

Such anion porters would be of  considerable in- 
terest for they would be strongly electrogenic; they 
must be A - / H  + antiporters and thus carry two 
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negative charges into the vacuole, but there is suffi- 
cient energy available from the protonmotive force 
for the accumulation of  univalent anions to a level 
approaching 1000 times greater concentrations in 
the vacuole than in the cytoplasm. The negative 
charge carried in raises no difficulties; at flux 
equilibrium the influx of  each ion equals the efflux 
which for all the ions, other than H ÷, would be ex- 
pected to be via ion channels. 

This paper is concerned with an aspect of  ion 
transport  at the tonoplast other than active trans- 
port; this is the existence of  passive ion transport 
via channels in the membrane. Membrane channels 
for  the passive passage of  ions, of  various degrees 
of  specificity, seem to be ubiquitous. Thier 'func- 
t ion'  in most cases is not quite clear, but in general 
a degree of  passive permeability to the major ions 
would seem to be required for the physiological 
functioning of  all membrane-bound compartments 
at the cellular and sub-cellular levels. Such 
(passive) channels of  course act as leaks and to a 
more or less greater extent clearly affect the results 
of  the active-transport systems. 

2. MATERIALS AND METHODS 

Vacuoles were isolated by osmotic shock of protoplasts ob- 
tained from cell suspension cultures of sugar beet (Beta vulgaris) 
and tomato (Lycopersicum esculatum) [6]. Cells were incubated 
at 30°C for 1.5-2 h in a medium containing 2°70 cellulase Y-C, 
0.1% pectolyase Y-23 (both enzymes from Seishin Phar- 
maceutical Co., Ltd, Tokyo, Japan), 0.5% BSA, 0,5 mM 
CaC12, 0.4 M sorbitol, and 25 mM Mes-KOH buffer, pH 5.5. 
Protoplasts were separated from digestion medium by cen- 
trifugation at 800 rpm for 5 min, and purified in a 25070 Percoll 
discontinuous gradient (1200 rpm, 10 min). Lysis of protoplasts 
was carried out by mixing one volume of purified protoplasts 
containing 0.4 M sorbitol, 0.2 mM CaCl2, and 15 mM Tris-Mes 
buffer, pH 5.5, with three volumes of lysis medium (15 mM 
Tris, 2 mM EDTA, 2 mM EGTA, 50 mM KCI, pH 8.0), at 4°C 
for 20 min. Released vacuoles were stabilized by adding an equal 
volume of 0.7 M mannitol, 50 mM KCI, 3070 Ficoll, and 15 mM 
Tris-Mes buffer, pH 8.0. Vacuoles were finally isolated by layer- 
ing on top of the vacuole suspension 2-3 ml of a medium con- 
taining 0.4 M mannitol, 50 mM KC1, 5 mM Tris-Mes buffer, pH 
8.0 and centrifugation at 800 rpm for 30 min at 4°C. Vacuoles 
were recovered at the top of the Ficoll gradient. 

Isolated tonoplast patches were obtained by initially sealing 
the patch pipette against the vacuole and breaking the underly- 
ing membrane by a pulse of 1 V and 30 ms. Once in the whole 
vacuole configuration [12], the pipette was pulled away from the 
vacuole, and thus, obtaining an outside-out patch [1]. Singe- 
channel recordings were made with a 8900 patch clamp 
amplifier (Dagan Corporation), low pass filtered at 1 kHz with 
a two pole active filter and data were recorded on FM tape. For 

subsequent analysis, data were low-pass filtered (Bessel), digitiz- 
ed and processed with the PAT V 6.0 program developed by 
J. Dempster (University of Strathclyde, Glasgow, Scotland) in 
a PCII-286 computer. 

3. RESULTS 

The tonoplast of  sugar beet and tomato cells 
displayed voltage-dependent single-channel activi- 
ty. Fig. 1 illustrates the single-channel current on 
tonoplast patches of  both sugar beet (fig.la) and 
tomato (fig.lb) cells. In sugar beet, negative 
pipette potentials elicited channel activity with a 
conductance of  65 pS. In contrast, positive pipette 
potentials only elicited small channel openings, of  
conductance 10 pS (note the change in scales). In 
tomato patches, single-channel openings increased 
proportionally with the voltage applied, between 
- 8 0  mV and + 80 mV, with a constant conduc- 
tance of  25 pS. Single-channel recording in tomato 
patches showed that the channels were in the open 
state most of  the time. The constant amplitude of 
the brief deflections observed were assumed to cor- 
respond to current changes due to channel closings. 
The fact that the tomato channels were open 
almost all the time, could explain the high level of  
noise observed in these recordings. 

The current-voltage relation of  single channels 
for membrane patches f rom sugar beet vacuoles 
bathed in K + solutions on both sides is shown in 
fig.2. The patches are orientated so that the 
cytoplasmic side is facing the bathing solution; 
thus the voltage (of the pipette electrode) is that 
between the vacuole and the cytoplasm, i.e. Vvc in 
conventional symbols. Clearly these channels rec- 
tify: with symmetrical 100 mM K + solutions the 
conductance is about 65 pS at negative potentials 
and less than, or about, 10 pS for positive voltages. 
The I - V  curve for asymmetrical K + solutions (100 
mM K+va¢/10 mM K+cyt) shown in the same figure 
cuts the voltage axis at about - 3 5  mV. The 
average zero current potential is - 4 0  mV in- 
dicating that the channels are cation channels with 
a selectivity for cations over anions of  the order of  
6:1. Although the channel activity is completely in- 
hibited by 10 mM TEA (tetraethylammonium) or 5 
mM Ba 2+, two well known inhibitors of  K + selec- 
tive channels in animal cells [7,8] (data not shown), 
the current-voltage relation when there is a K ÷ 
solution on one side and a Na ÷ solution on the 
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Fig. 1. Single-channel recordings from vacuolar membranes of (a) sugar beet and (b) tomato cells. The membrane potential of isolated 
outside-out tonoplast patches was continuously polarized to the values shown on the left of the individual traces. Solutions were: 
100 mM KCI, 2 mM KgCl2, 0.1 mM CaC12, 5 mM Tris-Mes, pH 7.5, in the pipette and the bath, and adjusted to a final osmolarity 

of 550 mOsmol with mannitol. Temperature was 22°C. 

other is identical with that for symmetrical K ÷ solu- 
tions (fig.2). These observations suggest that these 
channels are nonselective between K ÷ and Na ÷. 
The absence of  an effect o f  DIDS (4,4'-diisothio- 
cyanatosti lbene-2,2'-disulfonic acid), an inhibitor 
o f  CI-  channels [9], on the I - V  curves confirms 
that  the current is carried, mostly, by the cations 
(fig.3). 

Single channels in membrane patches f rom 
tomato  vacuoles do not rectify (fig.4). This is true 
for patches bathed by symmetrical or asymmetrical 
K + solutions or by patches bathed by K + solutions 

on one side and Na + solutions on the other (fig.4). 
In all cases the single-channel conductance is about  
29 pS at all voltages between - 8 0  mV and 
+ 80 mV with solutions of  concentrations of  about 
100 mM. The reversal potential in a 100/10 mM 
solution is - 2 5  to - 3 0  mV, again indicating a 
cation-selective channel with a cat ion/anion selec- 
tivity of  about  4:1. These tomato ion channels are 
also nonselective between K + and Na +, although 
the addition of  5 mM Ba 2+ to the bathing solution, 
totally inhibited the single-channel currents (data 
not shown). 
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Fig.2. Singe-channel current as a function of  vacuolar mem- 
brane potential in sugar beet. Under  symmetrical 100 mM  KCI 
(O), the I -V  relationship is linear between - 8 0  mV and 0 mV, 
with a reversal potential of  0 mV, and the slope giving a conduc- 
tance of  65 pS. At  pipette positive potentials, the conductance 
decreased to 10 pS. With 100 m M  KCI in the pipette and 10 mM 
KCI in the bath (0) ,  the reversal potential shifted towards a 
negative potential o f  - 40 mV (average value). The conductance 
under  asymmetrical  K ÷ concentrations,  decreased to 20 pS. 
Substi tut ion of  100 m M  Na + for 100 m M  K ÷ in the bath (A)  did 
not  change either the conductance of  the channel,  or its reversal 
potential.  In addition to the different concentrations of  K + and 
Na +, pipette and bath solutions also contained 2 mM  MgCI2, 
0.1 m M  CaCI2, 5 m M  Tris-Mes, pH 7.5, and mannitol  to give 
a final osmolari ty of  550 mOsmol .  Points  are the mean  +_ SE 
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Fig.3. Single-channel current as a function of  vacuolar mem- 
brane potential in tomato.  The I -V relationship of  tonoplast  
patches exposed to symmetrical solutions of  100 mM KC1 (O) 
was linear between - 80 mV and 80 mV, with a conductance of  
29 pS, with a reversal potential of  0 mV. Establishing a K ÷ con- 
centration gradient across the patch (100 mM K+v/10 mM K+c) 
(©), sh i f t ed  the zero membrane  current to a potential of  
- 30 mV. The conductance of  the channel however, was not 
altered by the reduction o f  external KCI. Substitution of  Na ÷ 
for K + (100 m M  K+v/100 m M  Na+c) (A),  yielded a linear I -V  
relationship with a reversal potential of  0 mV and a conduc- 
tance of  29 pS. Pipette and bath solutions always contained 
2 rnM MgCI2, 0.1 m M  CaCI2, 5 m M  Tris-Mes, pH 7.5, and ad- 
justed to an osmolari ty o f  550 mOsmol  with mannitol .  Points  

are the mean + SE (n = 8). 

4. DISCUSSION 

The striking feature of these results is that the 
sugar beet (a halophyte) tonoplast cation channels 
rectify, i.e. their conductance is much higher when 
the vacuole is negative with respect to the 
cytoplasm; while in the physiological range of  
positive tonoplast potentials, the conductance is 
much lower. In the glycophyte, tomato,  there is no 
such rectification. Such channel behaviour seems 
'appropriate '  for the two groups of  plants. 
Halophytes,  of  the sugar beet type, must ac- 
cumulate Na ÷ to high concentrations in the 
vacuole, with a probable concentration ratio of  
more than 10:1. Such a concentration ratio, 
together with the positive membrane potential, 
results in a large outward (vacuole to cytoplasm) 
driving force of  about 100 mV equivalent electro- 
chemical potential difference. If the passive con- 
ductance were appreciable, an electrochemical 
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Fig.4. Effect of  DIDS on the inward rectifying currents of  
sugar  beet tonoplast .  The voltage-dependence o f  the single- 
channel  currents of  sugar beet tonoplast  patches, exposed to 
symmetrical  KC1 (O), was not  altered by the addition of  100/~M 
DIDS (D).  The data for the DIDS experiments are the mean + 

SE (n = 4). 
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potential difference of  100 mV could not be main- 
tained by the Na+/H + antiport. (Note that the 
energy available for the antiport is about 150 mV, 
from the protonmotive force created by the proton 
pump(s).) Glycophytes seem to have no Na+/H + 
antiport and thus a rectifying behaviour of  the 
channels would have no relevance. Whatever the 
conductance, Na + and K + would be distributed 
passively; although it is true that one would expect, 
on osmotic grounds, that Na + and /or  K + would be 
at a somewhat higher electrochemical potential in 
the vacuole; this point needs some attention and 
resolution. 

We are making measurements on the conduc- 
tance of  the whole vacuolar membrane, to obtain 
the conductance per square metre of  tonoplast; but 
we can estimate rough figures for these conduc- 
tances from the average number of  channels per 
1/zm 2 patch, from the channel conductance and 
from the ratio of  open/closed times. Such esti- 
mates yield physiological conductances for the 
sugar beet tonoplast of  the order of  1 S. m -2 and 
20-50 times bigger for the tomato tonoplast. This 
beet conductance is of  the same order of  magnitude 
as that reported for negative potentials by Hedrich 
and Neher [10] for the so-called SV (slow vacuolar) 
type of  ion channel, although they reported a 
single-channel conductance of  about 80 pS. 

We see no rectification of  the tomato tonoplast 
channel conductance, nor, by calculation, should 
there be any rectification of  the total ionic conduc- 
tance of  the whole tonoplast.This behaviour is dif- 
ferent from that reported by Hedrich et al. [11] for 
the vacuoles of  the glycophyte, maize (Zea mays). 

Whether in beet or in tomato,  the channels are 
not selective between cations, at least not between 
Na + and K +, nor are they completely cation/anion 
selective for the reversal potentials for 100/10 mM 
KC1 solutions of  less than - 54 mV (the figure ob- 
tained using K + activities rather than concentra- 
tions). This indicates some anion, presumably Cl- ,  

conductance of  between 1:4 for tomato and 1:6 for 
sugar beet of  that of  K +. However, the absence of  
an effect of  DIDS (fig.3), does not suggest much 
CI- conductance; also in experiments where a CI- 
concentration gradient was established across the 
membrane patch (100mM Cl -v /10mM Cl-c) 
while keeping K + at 100 mM on both sides, a rever- 
sal potential of  0 mV in the I- V curve was obtained 
(data not given), thus indicating a low CI- 
premeability. It may be that the ion channels 
observed in these experiments are the only types in 
the vacuolar membrane and they serve for passive 
transport  of  both K + and Na + and, to a lesser ex- 
tent, anions such as CI-. The apparently lower 
anion conductance is consistent with a lower leak 
to give the high anion concentrations produced by 
the hypothetical, but apparently necessary, anion 
pumps in the tonoplast. 
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