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SUMMARY

Experience continuously imprints on the brain at
all stages of life. The traces it leaves behind can pro-
duce perceptual learning [1], which drives adaptive
behavior to previously encountered stimuli. Recently,
it has been shown that even random noise, a type of
sound devoid of acoustic structure, can trigger fast
and robust perceptual learning after repeated expo-
sure [2]. Here, by combining psychophysics, elec-
troencephalography (EEG), and modeling, we show
that the perceptual learning of noise is associated
with evoked potentials, without any salient physical
discontinuity or obvious acoustic landmark in the
sound. Rather, the potentials appeared whenever
a memory trace was observed behaviorally. Such
memory-evoked potentials were characterized by
early latencies and auditory topographies, consistent
with a sensory origin. Furthermore, they were gener-
ated even on conditions of diverted attention. The
EEG waveforms could be modeled as standard
evoked responses to auditory events (N1-P2) [3],
triggered by idiosyncratic perceptual features ac-
quired through learning. Thus, we argue that the
learning of noise is accompanied by the rapid
formation of sharp neural selectivity to arbitrary and
complex acoustic patterns, within sensory regions.
Such a mechanism bridges the gap between the
short-term and longer-term plasticity observed in
the learning of noise [2, 4–6]. It could also be key to
the processing of natural sounds within auditory
cortices [7], suggesting that theneural code for sound
source identification will be shaped by experience as
well as by acoustics.

RESULTS

We used an experimental paradigm where listeners learned ex-

emplars of acoustic noise [2, 5, 6, 8]. Although noise is not repre-

sentative of natural sounds, it is a unique tool to probe auditory
Current Biology 25, 2823–28
[2] or even visual [9, 10] perceptual learning. First, noise lacks

semantic content, thus revealing pure perceptual learning.

Also, there is normally no prior exposure to a specific noise

exemplar. Finally, noise exemplars can contain tens of thou-

sands of random samples, with no sample-to-sample predict-

ability, pushing any learning mechanism to the extreme.

The surprising ability of listeners to learn meaningless, random

patterns is also relevant to the long-standing debate about the

nature of experience-dependent changes in the brain: are such

changes distributed or local [1, 11]? A distributed code posits

subtle changes in a whole population of neurons, with the func-

tional benefits appearing only at the population level. For audi-

tion, perceptual learning has indeed been observed through

distributed changes in ‘‘tonotopic’’ frequency maps, using pure

tones [12, 13]. As noise has a flat spectrum on average, a distrib-

uted code could not rely on tonotopy, but it could possibly recruit

more-complex timbre maps [14, 15]. In contrast, a local code

posits dramatic changes at the single-neuron or small-network

level, with small neural populations expressing the full benefit

of learning [7, 16]. For noise, such a localized code could apply,

if repeated exposure to a random pattern created a form of ultra-

selective response [17, 18].

Recently, Luo et al. [5] applied magnetoencephalography

(MEG) to the noise-learning paradigm. They found that noise

learning induced stable phase patterns in brain neural re-

sponses, as measured by inter-trial phase coherence (ITPC) in

the 3–8 Hz theta range. Those results were interpreted as a

distributed and holistic learning process [19, 20]. Strikingly, there

was no effect of perceptual learning on event-related potentials

(ERPs), which further advocated against a local process: if lis-

teners learned isolated perceptual events within the noise, those

should be accompanied by ERPs [21]. However, the local ac-

count may be reprieved with an additional hypothesis. If learned

features were local but idiosyncratic, and thus activated at

random times across listeners for the same noise [2, 22, 23],

then the associated ERPs would be impossible to observe on

average, whereas ITPC would remain high. We devised a variant

of the noise-learning paradigm to test this hypothesis.

Behavioral Measures of Perceptual Learning: Diffuse
and Compact Conditions
For half of the experiment (Figure 1A, left), a standard

noise-learning paradigm was used [2, 5]. Participants were
29, November 2, 2015 ª2015 Elsevier Ltd All rights reserved 2823
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Figure 1. Experimental Procedure and

Behavioral Results

(A) Stimuli and experimental design. In the

‘‘diffuse’’ condition (left), participants had to

discriminate between no-repeat trials, made

of 1.5 s of running white-noise (N), and with-re-

peats trials, made by concatenating, without any

discontinuity, three identical 0.5-s-long snippets of

noise. For repeated noise trials (RN), a new snippet

of noise was drawn for each trial. For reference

repeated noise trials (RefRN), the exact same noise

snippet re-occurred not only within a trial but also

across trials (illustrated here with target snippet

T2). In the ‘‘compact’’ conditions, the task was the

same, but repeated snippets were shorter (0.2 s)

and concatenated, without any discontinuity, with

0.3-s running white-noise fillers. Compact trials

lasted 2.5 s and included five 0.5-s-long partially

repeating epochs (Supplemental Experimental

Procedures).

(B) Typical output of a peripheral auditory model

(spectro-temporal excitation pattern [24]; see

Supplemental Experimental Procedures for de-

tails) for repeated (RN/RefRN) and unrepeated (N)

stimuli. The compact condition was used for the

simulations. There are no obvious landmarks for

the repeated stimuli in the waveform (top), average

excitation pattern (right), nor spectro-temporal

excitation pattern (main panel).

(C) Behavioral performance, averaged over n = 42

blocks. Three measures were computed: sensi-

tivity d’; reaction times (RTs); and behavioral

efficacy combining d’ and RTs (Supplemental

Experimental Procedures). Error bars denote

SEM across blocks. Stars indicate the signifi-

cance level for the RefRN versus RN comparisons

(paired u test; ns: p > 0.05; *p < 0.05; **p < 0.01;

***p < 0.005). RTs were faster for RefRN in

the compact, but not diffuse, condition (paired u

test: p = 0.21). A better performance (higher d’

and behavioral efficacy; faster RTs) for RefRN

compared to RN summarizes the amount of

perceptual learning.
instructed to discriminate trials containing continuous white

noise (N) from trials made of the seamless concatenation of

three copies of a 0.5-s-long white-noise snippet (repeated

noise [RN]). Without participants’ knowledge, a third type of

trial was introduced: one particular instance of RN (reference

RN [RefRN]) re-occurred, identically, over 16 trials throughout

a block. A higher repetition-detection performance for RefRN

relative to RN indicates perceptual learning [2]. For the other

half of the experiment, a change was introduced in the

structure of trials containing repetitions: a shorter 0.2-s-long

white-noise snippet was repeated but seamlessly concate-

nated, between repetitions, to 0.3-s-long fresh noises (Fig-

ure 1A, right). Thus, the temporal window over which repetition

detection and perceptual learning could occur was restricted

to 0.2 s. This would induce less temporal variability in putative

local EEG markers. We use the terms ‘‘diffuse’’ for fully

repeating noise [2, 5] and ‘‘compact’’ for partially repeating

noise [25, 26].

Behavioral measures showed clear evidence of perceptual

learning in both conditions (Figure 1C). First, signal-detection
2824 Current Biology 25, 2823–2829, November 2, 2015 ª2015 Elsev
analysis [27] showed a better d’ sensitivity for RefRN compared

to RN. This difference between RefRN and RNwas absent at the

beginning of blocks, that is, before learning of RefRN could occur

(Figure S1A). Reaction times (RTs) were faster for RefRN than RN

in the diffuse condition, and a higher accuracy was associated

with faster responses for RefRN in both diffuse and compact

conditions (Figure S1B). This suggests that both d’ and RTs

indexed perceptual learning. We combined d’ and RTs in a

‘‘behavioral efficacy’’ index (BE) (Supplemental Experimental

Procedures). The compact condition led to lower BEs (Friedman

test; p < 0.001), showing that this condition was more difficult

overall. However, the amount of learning, as measured by the

BE difference between RefRN and RN, was the same across

conditions (paired u test; p = 0.46).

Electrophysiological Markers of Learning
EEG was recorded while participants performed the task,

and analyses were restricted to the sensors most responsive

to auditory stimuli (Supplemental Experimental Procedures).

Following [5], we investigated three possible neural markers of
ier Ltd All rights reserved



Figure 2. Electrophysiological Markers

Diffuse and compact conditions (experiment 1)

are presented on the left and right columns,

respectively.

(A) Time-frequency distribution of the increase

of inter-trial phase coherency (ITPC) for RefRN

compared to N trials (t values from uncorrected

paired t tests across 42 blocks). The transparency

mask shows clusters surviving a Monte-Carlo

permutation test (Monte-Carlo p value < 0.05).

Here and below results are averages for the ten

most-responsive auditory electrodes (Figure S3A).

(B) Average ITPC in the 0.5–5 Hz region of interest

for RefRN (orange), RN (blue), and N (gray). Hori-

zontal colored lines show significant clusters for

diffuse (RefRN versus N: [800, 1,400] ms; Monte-

Carlo p value < 0.005) and compact (RefRN versus

N: [800, 2,400] ms, Monte-Carlo p value < 0.0001;

RN versus N: [2,000, 2,700] ms, Monte-Carlo

p value < 0.0001) conditions. Insets show themean

ITPC further averaged over stimulus duration.

Stars indicate the significance level of paired

comparisons between conditions (paired t tests;

ns: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.005).

(C) Power response in the 0.5–5 Hz region of in-

terest, averaged across blocks. Insets show the

mean power further averaged over stimulus dura-

tion. No significant difference could be observed

between trial types.

(D) Evoked related potentials (ERPs) (top) and

difference waves (RefRN or RN minus N; bottom).

No statistical difference was observed between trial

types for the diffuse condition. For the compact

condition, averaging ERPs amplitude after repeated

snippets (inset) revealed larger negativities for

RefRN and RN compared to N (paired t tests; *p <

0.05). Difference waves also showed significant

clusters (Monte-Carlo p value < 0.05, with topogra-

phies of t values also plotted). Note that the first

cluster for the RefRN versus N comparisons start

right after the first target onset. Error bars on insets

and shaded areas around curves indicate SEM

computed across blocks.
learning: ITPC (Figures 2A and 2B); EEG power (Figure 2C); and

ERPs (Figure 2D).

For the diffuse condition (Figure 2, left; see legend for statisti-

cal tests), we observed higher ITPC for RefRNs in a [0.5, 5] Hz

range. When averaging ITPC in this frequency range, only RefRN

showed an increase compared to the N baseline. Further aver-

aging ITPC over the whole stimulus duration (Figure 2B, inset)

confirmed that the effect was restricted to RefRN. Applying the

same analyses to power responses did not reveal any significant

difference across conditions. Finally, we estimated ERPs time

locked to stimuli onsets. We did not observe any difference
Current Biology 25, 2823–2829, November 2, 2015
across stimulus types. So far, results for

ITPC, power, and ERPs fully replicate

the MEG findings of [5].

For the compact condition (Figure 2,

right), the same analyses were performed.

Again, there was an increase in ITPC for

RefRN compared to N. Averaging ITPC
over the low-frequency range revealed a significant cluster for

RefRN compared to N and here also for RN compared to N. As

the noise snippets for RN were different from one trial to the

next, this shows that across-trial phase patterns cannot be spe-

cific to a noise snippet. The power analysis did not reveal any dif-

ference across stimulus types. Finally, and crucially, there were

clear modulations of the ERPs. Averaging ERPs amplitude after

each repetition revealed consistent negative potentials for RefRN

and RN (Figure 2D, inset). Remarkably, within the RefRN trials,

ERPs were observed for each presentation of the repeated snip-

pet, including the very first one (before any within-trial repetition).
ª2015 Elsevier Ltd All rights reserved 2825



Figure 3. Correlation of Neural Markers to

Behavioral Performance for the Compact

Condition

(A) ERPs were averaged across repetition epochs

([�100, 500] ms window from target onset; second

to fourth within-trial target occurrences). Hori-

zontal lines indicate significant clusters when

comparing RefRN with N (orange; [128, 364] ms),

RN with N (blue; negative: [72, 328] ms; positive:

[388, 472] ms), and RefRN with RN (black; [244,

316] ms) trials (Monte-Carlo p values < 0.05).

Shaded areas indicate SEM across blocks. The

inset shows the topographical map of the differ-

ences between RefRN andN expressed as t values

(paired t tests on averaged ERP amplitude ex-

tracted over a [100, 400]-ms window; n = 42

blocks). Non-significant t values (p > 0.05/65;

Bonferroni correction) were set to white.

(B) Correlation of behavioral efficacy with ERP

amplitude (top), phase coherence (ITPC; middle),

and EEG power (bottom) for RefRN (orange) and

RN (blue) trials. Pearson’s correlation coefficients

(r) were computed for RefRN and RN conditions

separately and displayed on scatterplots along

their statistical significance level (ns: p > 0.05;

*p < 0.05; **p < 0.01; ***p < 0.005). Orange and

blue dashed lines show the linear fit estimated for

RefRN and RN conditions, respectively.

(C) Experimental conditions (RefRN versus N

[orange]; RN versus N [blue]; Supplemental

Experimental Procedures) were decoded, at the

single-trial level, using a logistic regression on

the ERPs displayed in (A). Gray area denotes the

chance level obtained through permutations of trial

types (n = 1,000). Decoding values above this gray

area are higher than 95% of random values.
Therefore, such ERPs cannot be markers of within-trial repetition

only.Wealso observed significant ERPs for RN trials but only after

several within-trial presentations of the repeated snippet.

In summary, ERPs were observed in response to a noise snip-

pet if and only if the same snippet had been heard before, within

(RN) or across (RefRN) trials. The appearance of ERPs was

extremely rapid, as they developed within five presentations of

a novel noise snippet in RN trials. Such time-locked ERPs

occurred without any discontinuities in sounds’ amplitude or

any other short-term statistics. To illustrate this point, we ran

the stimuli through a peripheral auditory model (Figure 1B). The

simulation showed that there were no obvious landmarks in

RN/RefRN, at least not of the kind known to produce auditory

ERPs before learning [3]. To stress that the ‘‘events’’ producing

the ERPs were related to past experience, we term such re-

sponses ‘‘memory-evoked potentials’’ (MEPs).

MEPs Are Sensory Correlates of Behavioral
Performance
To further characterize MEPs, we averaged responses time

locked to the RN snippets for the compact condition (Figure 3A).

Both RefRN and RN induced clear MEPs with a latency of about

100ms. TheMEPs’ topography was very similar to the N1 topog-

raphy (Figure S3A), but their broad, mostly negative waveform

differed from a standard N1-P2 complex [3]. However, such

topography and waveform are consistent with a superposition
2826 Current Biology 25, 2823–2829, November 2, 2015 ª2015 Elsev
of time-jittered N1-P2 complexes (see model below). The

MEPs were larger for RefRN compared to RN. Nonetheless,

after amplitude normalization, the waveforms and topographies

became identical (Figure S3C). This suggests a common origin:

for RN,MEPs could indicate the emergence of amnesic trace to-

ward the end of the trial, whereas for RefRN, the same mnesic

trace would be re-activated from the very first snippet presenta-

tion and then reinforced by subsequent presentations.

If this unified account were correct, MEPs should always

correlate with behavioral performance. This is exactly what

was found: amplitude correlated with BE for both RefRN and

RN (Figure 3B). We further tested whether MEPs could differen-

tiate between stimuli on a trial-by-trial basis, using a logistic

regression on the MEPs amplitude (Figure 3C). We obtained

significant decoding as early as 100 ms post-presentation, sup-

porting a sensory interpretation. The decoding accuracy was

modest, but note that all sounds in this analysis were statistically

exactly the same: a single epoch of white noise. Still, MEPs car-

ried information about past experience, on a trial-by-trial basis.

Learning Noise without Paying Attention
So far, listeners were instructed to detect noise repetitions, so at

least part of the MEPs could have been caused by attentional

modulation. We tested this hypothesis in a supplemental exper-

iment (Figure S2). Listeners were not asked to detect repetitions

but rather, had to perform a distracting auditory task (detection
ier Ltd All rights reserved



Figure 4. Model Simulations

(A) Illustration of the model’s architecture. Back-

ground EEG was first synthesized (gray curve;

Supplemental Experimental Procedures), and

evoked potentials were added at the onsets and

offsets of acoustic energy (stimulus-locked; dark

blue). If a noise snippet had been heard before, an

additional ERP was added (memory-locked; red),

with a random onset time. The onset time was then

fixed for subsequent presentations of the same

noise snippet. The illustration for the diffuse con-

dition (right) shows that, by construction, RefRNs

were associated with perfectly synchronous po-

tentials throughout a block, as they contained the

same noise snippets across trials, whereas an RN

trial contained only two potentials (after the first

repetition epoch of each trial) with time jitter across

trials. Forty-two blocks were simulated with a

signal-to-noise ratio matching the empirical data

set (see Supplemental Experimental Procedures

and Figure S4).

(B–D) Analyses of the simulated data; format as

Figure 2. Inset of (D) shows the target-locked

ERPs as in Figure 3A. Colored lines denote signif-

icant clusters for the RefRN versus RN (orange)

and RN versus N (blue) comparisons (Monte-Carlo

p values < 0.05; n = 42 simulated blocks). In

the insets, stars indicate the significance level

(paired t tests; ns: p > 0.05; *p < 0.05; **p < 0.01;

***p < 0.005).
of amplitude modulations) [5]. In addition, RN or RefRN se-

quences were embedded in 8 min of continuous running noise:

there was no amplitude-onset cue to signal that a new ‘‘learn-

able’’ sequence had begun, thus removing endogenous and

exogenous attentional cues. Still, clear MEPs were observed,

remarkably similar to those of the main experiment (Figure S3B).

A Simple Model of Memory-Evoked Responses
A possible interpretation for the MEPs is that they were triggered

by acoustic events within the noise, which only became percep-

tually salient after learning. We implemented this idea in a simple

quantitative model (Figure 4A). Whenever a snippet of noise had

been heard before, we injected an ERP in the EEG waveform,

with a canonical shape (N1-P2) [3] and random onset time for

each ‘‘listener’’ and noise. This was intended as an idealized

version of one-shot learning: whenever the same noise would

be heard again by the same listener, an ERP was invariably trig-
Current Biology 25, 2823–2829, November 2, 2015
gered and its onset time would remain

exactly the same. But a different noise

or listener would result in an ERP with a

different, random onset time. As a result,

for RN, the evoked activity was shifted

across trials and shifted across blocks,

whereas for RefRN, the evoked activity

was fixed across trials and shifted across

blocks.

We analyzed the simulated data (Sup-

plemental Experimental Procedures) in

the same way as the EEG recordings.

The model replicated all of the main find-
ings (Figures 4B–4D). In particular, no ERPs were observed in

the diffuse condition, as the memory-locked N1-P2 averaged

out across blocks, due to the 500-ms onset-time jitter. Time-

locked ERPs similar to MEPs were observed only for the

compact condition, as the 200-ms onset-time jitter was too short

for N1-P2 components to fully overlap and cancel out. The pecu-

liar shape of the MEPs itself was reproduced by the additive

model (Figure 4D, inset).

DISCUSSION

We used acoustic noise to probe the neural bases of auditory

perceptual learning. Our results outline a simple mechanistic ac-

count of how initially nondescript, random sounds may acquire

perceptual uniqueness. Through exposure, with or without

focused attention, rapid plasticity creates sensory selectivity to

subtle acoustic details within a specific noise pattern. Such
ª2015 Elsevier Ltd All rights reserved 2827



details are localized in time, idiosyncratic, and only become

salient after perceptual learning.

This account clarifies the puzzling issue of what is learned

within a noise. RN is introspectively reported as containing short

‘‘rasping, clanking’’ perceptual events [23, 28]. Behavioral data

already suggested that those events differed across listeners

for the same noise [2, 22, 23] and thus could not be unambigu-

ously traced back to acoustic landmarks. Our EEG data support

this idea. Noise does contain short-term variations, which could

be reflected by cortical activations [29, 30]. However, if evoked

potentials were due to a passive transmission of acoustic land-

marks, all repeated snippets should have been equally signaled.

Instead, we found that evoked potentials developed over time,

correlated closely with behavior, and were consistent with a

model of idiosyncratic perceptual learning.

TheseMEPswere interpreted as the superposition of standard

N1-P2 complexes. The N1-P2 complex has been associated to

perceptual changes within constant-amplitude stimuli [31], and

it can be modulated by repeated exposure [32, 33]. Here, we

demonstrated not only a modulation of N1-P2 on a much-faster

timescale but also the appearance of such an ERP where there

was none before learning. As the planum temporale is one of

the cortical sources of the N1-P2 complex [34], our results also

advocates for a role of this secondary auditory structure in rapid

plasticity and sensory memory. This is consistent with fMRI re-

sults using a noise-learning paradigm [6] or, more classically,

with mismatch-negativity studies [26, 35].

Computationally, the learning of discriminant patterns within

noise could be achieved through established plasticity mecha-

nisms such as spike-time-dependent plasticity (STDP). In

STDP models, repeated exposure to random afferent patterns

almost inevitably leads to pattern-specific selectivity at the

single-neuron [17] or small-network level [18]. Experimentally,

however, we recorded ERPs on scalp electrodes, which must

involve relatively broad neural networks. So, was the code local

or global? A possibility is that the scalp potentials were the

outcome of a cascade of neural events, initially triggered by a

sparse mnesic trace [36] and then amplified by perceptual

awareness [37]. Indeed, perceptual awareness of a target tone

embedded within a stochastic masker is associated with an

N1-like ERP [21]. So, even if our experimental measure was at

the network level, we argue that, altogether, the data and model

suggest a highly local neural code for experience-dependent

changes induced by the perceptual learning of noise.

Functionally, sharp neural selectivity to past sensory experi-

ences would help the auditory system distinguish previously

heard sounds from truly novel ones. More generally, it could

aid learning about frequently encountered natural sounds. In

this respect, the search for generic timbre dimensions useful

for the identification of sound sources has proven surprisingly

elusive [2, 38, 39]. The present results suggest that this may be

because source identification is shaped as much by idiosyn-

cratic experience as by acoustic properties.
EXPERIMENTAL PROCEDURES

A brief description of experimental procedures can be found in the Results

section. A complete description can be found in the Supplemental Experi-

mental Procedures. The experimental protocols were approved by the local
2828 Current Biology 25, 2823–2829, November 2, 2015 ª2015 Elsev
ethical committee (Conseil d’Evaluation Ethique pour les Recherches en

Santé, University Paris Descartes).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2015.09.027.
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35. Näätänen, R., Jacobsen, T., and Winkler, I. (2005). Memory-based or

afferent processes in mismatch negativity (MMN): a review of the evi-

dence. Psychophysiology 42, 25–32.

36. Hromádka, T., Deweese, M.R., and Zador, A.M. (2008). Sparse represen-

tation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16.

37. Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., and Sergent, C.

(2006). Conscious, preconscious, and subliminal processing: a testable

taxonomy. Trends Cogn. Sci. 10, 204–211.

38. Patil, K., Pressnitzer, D., Shamma, S., and Elhilali, M. (2012). Music in our

ears: the biological bases of musical timbre perception. PLoS Comput.

Biol. 8, e1002759.

39. Leaver, A.M., and Rauschecker, J.P. (2010). Cortical representation of

natural complex sounds: effects of acoustic features and auditory object

category. J. Neurosci. 30, 7604–7612.
29, November 2, 2015 ª2015 Elsevier Ltd All rights reserved 2829

http://refhub.elsevier.com/S0960-9822(15)01107-0/sref16
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref16
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref16
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref17
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref17
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref17
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref18
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref18
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref18
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref19
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref19
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref19
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref20
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref20
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref20
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref21
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref21
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref21
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref22
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref22
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref23
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref23
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref24
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref24
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref25
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref26
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref26
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref26
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref27
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref27
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref28
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref28
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref29
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref29
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref29
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref30
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref30
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref30
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref31
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref31
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref31
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref32
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref32
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref32
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref33
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref33
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref33
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref34
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref34
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref34
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref35
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref35
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref35
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref36
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref36
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref37
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref37
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref37
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref38
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref38
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref38
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref39
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref39
http://refhub.elsevier.com/S0960-9822(15)01107-0/sref39

	Perceptual Learning of Acoustic Noise Generates Memory-Evoked Potentials
	Results
	Behavioral Measures of Perceptual Learning: Diffuse and Compact Conditions
	Electrophysiological Markers of Learning
	MEPs Are Sensory Correlates of Behavioral Performance
	Learning Noise without Paying Attention
	A Simple Model of Memory-Evoked Responses

	Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References


