Discrete Applied Mathematics 20 (1988) 145-164 145
North-Holland

THE PERIOD OF THE FIBONACCI RANDOM NUMBER
GENERATOR

J.D. PARKER

Department of Computer Science, Boston College, 432 Fulton Hall, Chestnut Hill, MA 02167,
USA

Received 6 December 1983
Revised 6 March 1987

Smith, Green, and Klem introduced the Fibonacci RNG in [7]. A starting vector of k integers
is chosen, and new numbers are generated by the recurrence r, = r,_; + r,_; (mod M). For a
prime M and some choices of the parameter k, any non-zero initial vector v gives a sequence with
a period of M* — 1. However, in mosi cases, different initial values give rise to very different
periods. This behavior was noted by the authors, but left unexplained. In this paper we review
how sequences with short periods arise, and provide an algorithm that selects different starting
vectors that give a maximal period.

1. Introduction

The pseudo-random number generator (RNG) in widest use today is the multi-
plicative generator proposed by Lehmer in [13]:

r,=(@xr,_;+b) (modM),

known as the Linear Congruential Generator. The period depends upon the choice
of M, a, b, and the starting ‘seed’ r,, but it is never more than M. Although it has
many strong attributes, it exhibits n-space non-uniformity as discussed by Coveyou
and MacPherson [4], ard Marsaglia [15], making it unsuitable for some applications
which require the selection of random n-tuples.

This observation has sparked an interest in RNG’s with n-space uniformity. Cae
such RNG is the Tausworthe generator introduced in [19],

r,= I‘,,_j@r,,_k.

The Tausworthe RNG keeps a vector v of the k previous random numbers. Each
element of the vector is a string of bits, and the next number in the sequence is com-
puted with a bitwise exclusive-or. Since it avoids multiplication, the Tausworthe
RNG is faster than the Lehmer generator. The period of the generator is fixed by
the choice of parameters j and k, and can be as large as 2k _ 1. The period is not
a function of the word size, as the bits within a word have no interaction.

This paper discusses another fast generator introduced in the fifties, the ¥ ibonacci

0166-218X /88/33.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

146 J.D. Parker

RNG
Fn=Tp_1t T (modM), (l.l)

introduced by Smith, Green, and Klem [7]. For a prime M and some choices of the
parameter k, any non-zero initial vector v gives a unique sequence with a period of
M¥* — 1. This is much longer than the period of either of the random number
generators mentioned above. However, if M is composite, or for some choices of
degree k, different initial values give rise to distinct sequences with different periods.
This behavior was noted by the authors, but left unexplained.

Our purpose in this paper is twofold: first, we review how sequences with short
periods arise, and then we provide an algorithm that selects different starting values
that give a maximal period for any fixed choice of parameters.

In Section 2, we review related work. In Section 3, we give the original algorithm,
and discuss the differences in period observed by the authors. Section 4 gives an ex-
ample illustrating how short periods arise. We use linear algebra to study the max-
imal period of the generator in Section 5, and in Section 6 we study the effect that
factors of the characteristic polynomial have on the period. In Section 7 we discuss
the choice of parameters, and present our algorithm for selecting initial values. Sec-
tion 8 uses the run test to look at the ‘randomness’ of the sequence. We summarize
our conclusicns in Section 9.

2. Relation to previous work

Random number generators have always been important in experimental design,
computer simulations, and cryptography. Before 1927, scientists who needed ran-
dom numbers would produce them ‘by hand’, rolling dice or flipping coins. L.H.C.
Tippett [20] produced a table of random numbers from figures in census reports to
simplify this process. It was not long before people were questioning the ran-
domness of the numbers in Tippett’s tables (Kendall [10] and others), and better
means of producing numbers we sought. One technique was to design mechanical
or electrical devices to produce the random numbers. This was used by the RAND
Corporation to produce their table of a million digits.

The generation of random numbers was an early application of general purpose
computers. The publications in this area follow the same pattern set by Tippett’s
paper. A method is conceived and tested. It passes the investigators’ tests, and is
proposed for general use. Soon an alternate test is proposed that the generator fails
i0 pass, and the cycle begins anew. The inieresied reader may irace the rise and fail
of proposed generators, such as the mid-square method, in Sowey’s [16] biblio-
graphy on random numbers.

The Lehmer RNG was one of the first discussed, and it has aged relatively well.
It is a generator of degree 1: the current number depends only upon the previous
number. There have been doubts raised about its generation of n-tuples, [4], [15]

The period of the Fibonacci random number generator 147

and speculation that this problem is endemic with any generator of degree 1. The
concern is that when the random number generator is used to produce a sequence
of vectors with »n entries, the vectors will not be uniformly distributed in n-space.
For example, a generator of degree 1 cannot produce the same number twice in a
row without entering a loop of length 1, thus sequences with long periods must
avoid ihe diagonal in 2-space.

Knuth [11] described a technique for generating a random sequence wit’1 n-space
uniformity for all n. Essentially, he generates all teples in a prescribed order, star-
ting with the digits, and then systematically generating all tuples of length two, etc.
It is not practical for several reasons: the algorithm is not suitable for rapid genera-
tion of numboers, and the sequence exhibits too much regularity to be considered
random.

A candidate for a practica: generator with acceptable n-space uniformity is the
generalized Fibonacci random number generator, of degree k, first discussed in
print in Green, Smith, and Klem’s 1959 paper [7]. The authors mention an attribu-
tion of the method to A. van Wijngaarden, and cite previous studies by Taussky
and Todd [18] and Duparc, Lekkerkerker, and Peremans [6], of the speciai case
when k = 2. This case has always been a good example of a bad generator: see for
example Knuth [12] or Bratley, Fox, and Schrage {1]. We must pick a value for &
that is bigger than 2 to obtain decent sequences. The generator has suffered from
the sins of this special case: Carrol and McLelland [3] are among the few that admit
using the generator.

As well as altering the degree, we may vary the choice of recurrence relation. The
interested reader will find that our results and algorithms apply to general linear
recurrence relations of the form

r,=ayr,_y+tayr,_»+ --apr,_, (modM).

For example, if we pick a recurrence similar to the Tausworthe generator, we obtain
a family of additive congruential generators of the form:

In=r,_j+r,_; (modM).

We «till have a fast generator, but we gain flexibility in selecting the characteristic
polynomial. Dieter [5] suggests yet another variant:

n= ’n—l+arn—2 (mOdp)9

with a prime modulus p. This generator is slower, as it requires a multiplication,
and it has a shorter period since the degree is small, but it only needs to store iwo
previous values, and for the proper choice of modulus and constant a, it produces
well-behaved sequences.

Green et al. address the is:ue of the randomness of the sequence rather than its
period. They show empiricaily that the numbers generated are uniformly distribut-
ed, have no significant serial correlation, and pass the run test and the poker test
if the degree K is at least 16. They recommend ‘decimation’, or discarding elements

148 J.D. Parker

of the sequence, to assure better empirical results. They direct the reader interested
in the period to an excellent paper by Zierler [21]. This citation has persistently ac-
companied discussion of this generator, despite a lack of relevance. Zierler discusses
the case of the field GF(p“®), while we are confronted with the ring Z,.. If M con-
tains a power of a prime, several of Zierler’s results do not generalize. In Section
4 we give a counter-example to a ‘theorem’ cited in one source hased nnaon this con-
fusion.

In this paper, we review criteria for predicting the period of the RNG, given any
choice of parameters. We base our derivation of these well-known results upon
classic work of Hall [8]. We then present an original technique for selecting initial
values that give sequences with maximal periods.

The Fibonacci generators bear a strong family resemblance to the Tausworthe
RNG. For exampie, Sedgewick [17] introduces additive congruential methods after
a discussion of linear feedback registers, mechanical devices used in cryptographic
encryption machines and the modei for the Tausworthe RNG. To calculate the max-
imal period, we may view the Tausworthe RNG as a special case of the general linear
recurrence relations with a modulus of 2. Similar issues are relevant to the two
generators: an irreducible characteristic polynomial and a proper choice of initial
values leads to an optimal period. However, our discussion differs from the classical
treatment of the Tausworthe generator in the following four ways.

(1) In constructing a Tausworthe generator, it is customary to choose parameters
so that the characteristic polynomial is irreducible, or better yet, primitive. In the
Tausworthe generator with a primitive characteristic polynomial, any choice of a
non-trivial initial vector gives the same period, 2* — 1. In this paper, we consider
polynomials which factor. Factoring creates different classes of sequences, with
potentially differcnt periods.

{2) The presence of zero-divisors of the ring Zpye, if @ > 1, is a second cause of
short periods. In the Tausworthe generators, all calculations are dene over the field
Z,, so there are never zero-divisors.

(3) Given a primitive characteristic polynomial and non-zero initial values, the
Tausworthe generator produces a2 sequence of maximal period. However, sorie se-
quences have poor distribution. For exainple, let the word size be 3, and apply
the Tausworthe generator to the wunit vector (r,ry...,ry) = (0,0,...,1) =
(000,000, ...,001). We generate a sequence in which the most significant bits of every
number produced are zero, since cach bit position is autonomous. To obtain a
uniform distribution, it is necessary that the initial vector is linearly independent,
as shown by Lewis and Payne [14], and applied by Bright and Enison [2] to cryp-
tography. The test proposed in [14] discards the unit vector. However, the Fibonacci
random number generator uses addition, and carries propagate from the low order
bits to the high. The Fibonacci recurrence applied to the unit vector yields a se-
quence with an accepiable distribution. We have a different concern in selecting our
initial vector: if the characteristic polynomial factors, the wrong choice of iritial
vector leads to less than optimal periods.

The period of the Fibonacci randoin number generator 149

(4) Lewis and Payne [14] suggest taking the determinant of a & X k binary matrix
whose columns are the binary representations of the & initial values, as a test of the
distribution of a sequence. We observe that the determinant of a k X k integer matrix
(6.1) whose entries are the initial 2k — 1 random numbers is a test of ilie period of
the sequence. These two tests differ in more than their object: the unit vector passes
our test and fails theirs.

3. The generator

In the generalized Fibonacci generator introduced by Green, Smith, and Klem [7],
the user picks an initial vector v = (ry, 75, ..., 1) by calling the procedure random-
init. The procedure uses a fixed vector, or a vecior picked at ‘random’ by the system
clock or another generator. Successive terms in the sequence are generated using
procedure random given below. Since we only use addition to compute the pseudo-
random numbers, the generator is relatively fast.

const
modulus = 2%;
degree = k;
type
vector = array [0--degree— 1] of integer;
index = 0--degree;
var
seed: integer; (*global variable for Lehmer RNG *)
v: vector; (*Last k random numbers *)
rand-index: index; (*Index to most recent random number *)

function Lehmer (max: integer): integer;
(*Use a Lehmer random number generator to alter global seed *)
(*Return a number in the range 0--max —1#)
begin
seed : = (seed * multiplier + increment) mod modulus;
Lehmer : = truiic ((seed/modulus) * max);
end;

procedure random-init (var v: vector; var j: integer);
(*Set up the vector v*)
var i: integer;
begin
seed : = clock mod modulus; (* Set seed to the system clock *)
for i := 1 to degree do
v[i] := Lehmer (modulus);

150 J.D. Parker

rand-index : = 0; (*init global index i*)
end; (*random-init *)

function random: integer;
(*Compute the next random number *)

var i: integer;

begin
i := rand-index;
rand-index := (rand-index + 1) mod degree;
v[rand-index] : = (v[rand-index] + v[i]) mod modulus;
random := v[rand-index]

end;

We are concerned in this paper wiith the period of the generator. The sequence
(r) = ry,ry, ;... is said to have period P if P is the sma'iest positive integer such
that r,, , p = r,, for all n. Green, Smith and Klem studied generators with a modulus
M = 2% equal to a power of two. As we will see in Section 5, these generators have
a maximal period of (2¥ - 1)(22~!) at best. For the right initial values, the period is
usually quite large. Unlike the Tausworthe generator, the period increases with the
word size a, and unlike the Lehmer generator, all non-zero k-tuples appear in some
sequence. Thus we may encounter runs of the same number, 7, , ; =r;, 5 = -+ =
ri + j» if j < k. This will never happen with a non-trivial Lehmer RNG.

But an increase in the word size or in the degree does not always lengthen the
period of the Fibonacci RNG, and the same generator wili give sequences with dif-
ferent periods, depending upon the starting value. For example, the authors note
that when the degree is 15, the largest sequence has a period of (2'°-1)2*~ 1),
while a d=gree of 16 gives a maximal period of (28— 1)(2*~!). In fact, the generator
of degree 16 and period 2* can produce sequences with a period as short as 85. The
authors express the period of their generator as a function of the degree k and the
modulus M, while noting that it also depends upon the choice of an initial vector
v, and state that ‘‘for some [choices of v] the period is less by a factor of 2, or, rare-
ly, by a factor of 4 or 8, or more. The conditions under which this recuction occurs
are not fully understood. (The problem is exceedingly complex analytically, and the
occurrences are too rare to study empirically.)’’

Though we do not have a closed form expression for the period of the generator
as 4 function of the degree and the modulus, explaining how the period is reduced
is quite simple. First we review briefly why some initial vectors produce shorter se-
quences.' Then we give an algorithm that will generate a large number of ‘random’
initial vectors that give sequences of maximal length.

! For example, the difference between degrees 15 and 16 is that x'—x'4—1 is primitive, while
AOxB =B X7+ x4+ 3+ 2+ DO+ 3+ X2+ 1),

The period of the Fibonacci random number generator 151

4. Examples

To give the reader a taste of the varied causes of short periods, and to provide
a fund of examples for later use, we consider an extended example. Let k = 3. p =
3, and M = p (and later p?), giving the relation

Fpe3=rp,:+r, (modM). 4.1

Any initial vector of length k might be used as a starting seed. Since M* — 1 = 26,
there are 26 non-zero vectors of length 3. If we pick a initial vector and continue

to apply (4.1), we obtain a sequence of integers which will eventually repeat. There
are 4 distinci sequences:

Table 1

Sequence Period
w=00111201,... 8 4.2)
) =0,0,22210,2,... 8 4.3)
O=1212,... 2 4.4)
(2)=0,1,2,2,0,2,1,1,... 8 4.5)

Associated with any linear recurrence relation is a characteristic polynomial. The
characteristic polynomial of (4.1) is

) =x-x2-1=(x+1)(x2+x+2) (mod3).

(We define the relation = between polynomials in Section 6.) The reducibility of
this polynomial creates sequences that satisfy a relation of lower degree than k =
3. The sequences are (»), which satisfies

Irps1+r,=0 (mod3)
with characteristic polynomial (x+ 1), and (z), which satisfies
T T +2r,, =0 (mod3)

with characteristic polynomial x* + x + 2.
4.1. Increasing the modulus

If we increase the modulus to M = 32, then the period of the sequence (w)
triples.
w)=03,0111,23,46041,1,56,7,3,071,1,80,1,...

This phenomenon is quite general. If the sequence containing the unit vector
(0,9, ..., 1) has period P over Z,, then it will usually have period Pp over Z,:, and
period Pp® over Z,+1. See Corollary 5 for a precise statement.

152 J.D. Pgiler

Table 2

Sequence Period

2(») =363, ... 2 4.6
0) =151784.2,... 6 @7

(}’") = 1y2;1y2a4’5a772’735a735: 1’834;594’89498,7s2:1,8’-" 24 (4-8)

But some odd things happen to the period of the sequence (). Three ‘generaliza-
tions’ are shown above. Note that (') = (»”) = (») (mod 3).

If the sequence (v) has a period P over Z,, then p®(v) is a sequence of period P
in Zy«+1. The period of the sequence (v) over Z,.+1 is more problematic. We see
above that it may be longer than p® P, unlike the u..it sequence above.

5. The vector space Z3

In general, our modulus M will factor as a product of powers of primes,
M:pf!pgz...pfl.

The period of the sequence, mod M, is the least common multiple (Icm), of the
periods, mod p{. Thus, without loss of generality, we will consider M = p?%, and
return to the general case in Section 8.

The behavior of the Fibonacci RNG depends only upon the previous & items in
the sequence. There are M* possible vectors of length &, each an element of the
vector space V¥ = Z§. In general, we may view a sequence (r) as represented by
a sequence of vectors

defy.. k
vi=(ri!ri+b""ri+k-l)e V%,

and the RNG as a linear transformation T: V¥— V¥ defined by the k x k compa-
nion matrix

~ 3

oo
O e
-0
[}

L =

— 0 »
oo -
oo -
.

with action

[]
S e
_—O
(=]

J

. o
ot

J

o

o
¥

.ot
o

e O -

oo -
o c
P
=
T ..
P
=~

-1 ry r+ry ket

The period of the Fibonacci rardom awmber generator 153

We define the orbit of a vector v to be the set of vectors {v;} = {T'v,ie Z}.
Since 7 is non-singular, the orbits form equivalence classes in the vector space V¥,
and the zero vector z = (0,0,...,0) forms a sequence with a single element. The
period of the sequence represented by v is simply the size of the orbit of v.

This gives an easy upper bound on the period of a sequence.

Lemma 1.The largest period of the Fibonacci random number generator of degree
k, modulo M, is less than or equal to M*—1.

Proof. The orbit must lie in Z,’f,, and cannot include the origin. [

Theorem 2. Let P be the order of the companion matrix T, mod M, and let P’ be
the period of the unit sequence (w), mod M. Then P = P'.

Proof. (We use the special properties of (1.1). See Hall {8] for a proof of the general
case.) Since T” = I (mod M), we have wp, ; = T”w; = w,. Thus P’ | P. Assume that
P > P'. Then for all i, T”'w; = w;, but T"" # I. Then T must alter some vector
in V*. However, the standard basis vectors are terms in the unit sequence (w) given
by Wp, Wp_1, Wp_2,..., Wp_ 42, W, (see, for example, sequence (4.2)). Since T%
fixes the standard basis, 77 = I, and P = P’ by the minimality of P. [

Corollary 3. The period of any sequence (r) divides the period P of the unit se-
quence.

Proof. We have seen that 77 = I (mod M), so T°r = r (mod M). O

Theorem 4. If the linear transformation T has period P over Z,, and a longer
period over Z,:, then the period of T over Z,: is Pp®~'.

Proof. Since TP = I (mod p), we may decompose T as the sum T* = I+ pN. By
the binomial theorem, TF”=(I+pN)?=I+p*N=I (mod p?), so the period of
T over Z,: must divide Pp. But this period is greater than P by assumption, and p
is prime, so the period must be exactly Pp. [l

The same reasoning shows that 777" ‘=1 (mod p%). Now we must show that
the period is not shorter than Pp®~'. Since the period must divide Pp®~!, and it
contains P as a factor, we may assume without loss that the period is Pp®~2. The
period of T increases as M goes from p to p? if and only if the matrix N does not
contain a factor of p. By the decomposition, TP" *=(I+pN)*" *=I+p®~'N
(mod p*). If N does not contain a factor of p, then p®~ !N is not the identity. This
shows that the period of T is exactly Pp®~' over Z .

If N does contain a factor, N = pN’, then T* = I+ p*N' = I (mod p*), and the
period does not increase as we move from Z, to Z,:. Consider the largest power

154 J.D. Parker

of p that divides N. If p?| N but p®*! [N, then the period of T over Z,«+s will be
Pp®, by a third application of the binomial theorem.

Corollary 5. If the unit sequence has period P over Z,, and a longer period over
Z,:, then it has a period Pp®~' over Z.

Proof. The matrix 7 and the unit sequence have the same period by Theorem 2. [

We note in passing that the word unit in the statement of Corollary 5 is crucial.
In Jansson [9), it is incorrectly stated that the period of any vector ve V¥ increases
by at most p when M increases by p. The sequence (4.8) above provides a counter-
example. Neither of the proofs provided by Jansson can be patched, as they rely
on Zierler’s results [21] for the field GF(p®), rather than the ring Z,..

The corollary above allows us to compute the period of the unit sequence over
any power of the prime p. If the period over Z, and the period over Z,: differ,
then we know the period over Z,.. If the periods are the same, we need to check
the period of the sequence mod p3 p* ... until the period changes.

Returning to the original generator, with a modulus of M = 2%, it is easy to see
how sequences that are ‘a factor of 2, or, rarely, by a factor of 4 or 8, or more’
less than the unit sequence can arise. The period of the unit sequence will increase
with the exponent « if the unit sequence (w) is longer over Z, than it is over Z,. If
each term of the original vector is divisible by 2, then the sequence will be at least
twice as short as the unit sequence. If the original vector is divisible by 4, the se-
quence will be at least 4 times as short, and so on. Naturally, the odds that a vector
contains a factor of 2 decrease as ¢ increases.

This is not the only cause of short periods. As our example (4.4) showed, if the
characteristic polynomial factors, we may have short sequences, even if the original
vector has no common factor. We discuss factorization in the next section.

6. Ring siructure

We use Hall’s [8] conveations in discussing the ring structure of V*. If (+) and
(s) are sequences of integers mod Z,, that satisfy (1.1), then we definc addition,
scalar multiplication, and the shift operator X by:

(F+S)=ri+8,r,+8)r3+53...,
t(r) = trytrytry, ... (where te Z,,),
X(r)=r2,r3,r4,....

The shift operator has the same effect on vectors in V* as multiplication by the
matrix 7. Clearly sequences that satisfy (1.1) or elcments of the vector space V* are
closed under all three operations. These operations allow us to identify the set of
all sequences satisfying (1.1) with a polynomial ring of operators R (x), and then to

The period of the Fibonacci random number generator 155

identify the ring R(x) with the vector space VX. We define an isomorphism
1:R(x)~V* by 1(1) = w = (0,0,...,1) and

1@, x"+ - +ayx+ay) = a, X"w+ ---a; Xw+ gyw.

This identifies ¥* with the polynomial ring R(x) = F[x]/f(x), where f(x) is the
characteristic polynomial of our recurrence relation, and F = Z,,. Two polynom-
ials g{x) and &(x) are equivalent in R(x), wriiten g(x) = h(x), if we may find poly-
nomials g(x) and u#(x) such that g(x) = A(x) + f(¥)g(x) + Mu(x).

Theorem 6. The unit sequence generates all other sequences satisfying (1.1), using
addition, scalar product, and the shift operator.

Proof. (By example) Let k = 3 and M = 3, so that we have the relation r,, 3 =
rn,.2+r, (mod 3). To produce the sequence generated by the initial vector (1,2, 1),
we first obtain r; = 1. Take 1(x?) = X?w = (1, 1,1). We add i1(x) = Xw to get the
desired r,,

X2w+Xw=(1,1,1+(0,1,1)=(1,22),
and add 2w to get r; = 1, giving
12 +x+2) =X+ X+2)w=(1,1,1)+(0,1,1)+(0,0,2) = (1,2, 1).

Note that the sequence represented by the nolynomial (x2+x+2) had a character-
istic polynomial (x+ 1) and that (x*4+x+2)(x+1) = f(x). O

An application of Theorem 6 gives another proof ¢f Corollary 3, that the period
of any sequence divides the period of the unit sequence (w).

If M is prime, then F[x] is a field. If f(x) is irreducible in F[x], then f(x) generates
a prime ideal, F[x]/f(x) is a field, and the orbits of our generator are well under-
stood. Each {non-zero) orbit has the same size, and any non-zero initial vector will
give maximal period. If the characteristic polynomial f(x) is primitive over Z,,
there is a single (non-zero) orbit of size M* — 1. A polynomial of degree k over Z,
is said to be primitive if all its roots have order p¥. Primitive polynomials are ir-
reducible, but the reverse is not true. An example is f{x}) = x*—x®— 1 (mod 2). The
polynomial is irreducible over Z;, but is is not primitive, as the unit sequence
0,0,0,0,0,0,0,0,1... has length 73. Rather than one large orbit of length 2°—1=
511, we have 7 orbits of size 73.

If f(x) factors over F[x], then R(x) is not a field and we may have orbits of dif-
ferent sizes, as we saw in our example. If M is not prime, then Z,, is not a field,
and we may again have different periods, as exampies of the form p(v) demonstrate.

Consider the period of a (non-unit) sequence (r). Using the isomorphism above,
we associate a sequence (r) with a polynomial r(x) e R(x). The sequence (r) re-
presented by the polynomial r(x) has period P if P is the least integer such that

156 J.D. Parker

xPreo) = r(x), or (x" = r(x) = f(x)q(x) + Mu(x). If f(x) factors as f(x) = s(x)#(x),
then the sequences that correspond to s(x)#(x) and #(x) will satisfy relations of lower
degree, and may have smaller periods.

Theorem 7. If the moduius is a prime p, and the sequence (r) has a period P’ over

APY S CPL N . S

Z, which is shorter than the period P of the unii sequence {(w), ihen r{x) satisfies
a relation of degree lower than ihe degree k of the characieristic polynomial f{x).

W8 YL LN hoo marind D thas D e tha crmallact Sntasan anieh thad £ | 76P 1y
rrovi, 11 ‘ ¥V} 1ldad pc UG r, ikl r > ur ARGLIUOL 1RILG, 1 DULEL LIlAl fA) ! WA —1ij.
O ol ek L smmeimed I wxrm smnemrs wrwite £anl Txafs) . L\ red) 4 sreafsd T sl o) amdd
Since r(x) has period P’, we may write (X' — 1)71{X) = JX)GiX) + puix). ii r{Xj ana
L) nsee smoalmdleraler snmtseen thhnee sf) searend Arurida ~Afw) Iz ranssana fantarioatian Aras
J{X) are reiatively prime, inchn 7iX) must Giviae gXj, Oy unique raciorizaiion over
thha fiald 7 vl QA mwfv) o= s2fvloflv) and lvPl; 1N\ = flvVeofv) snmtradinting tha mini_
e 11810 £, K. 00 X) = MRS Ay, ainu a 1) = J XSk, CONaQiiiig uid niini
mality Af D Thue fiv) and »(v) muct chara a2 sammman fantnr cav v and fly) =
manty O1 17, 10US J Ay alit 7(X) IIIUSt 5ialv a COMinUn 1atvl, say Gijy, auG j\wj =
Al of) hic imnlisc that »(vValyv) =) Thnco r{y) caticfioc a relatinr nf dearae lace
“‘J‘"‘ﬂ’. R KAED .llly“v‘, SARGARL ¥ \A’U‘J"’ T e A AU F PV] JRALANA AWM M A WALZLANSAR WA ““e‘“w ANWAIT
than

SARWEA

of lower degree.

If a sequence (v) satisfies a relation of degree less than k, then there is a linear
dependence between the vectors v, Tv, T2y, T3v,.... In our examples (4.5) was
restricted to a two-dimensionai subspace, and (4.4) lay on a line.

In fact, the implication can be reversed: if j consecutive vectors Uy, Uy 4 1 «++s Uy j-1
lie in a subspace of dimension j—1, the remaining vectors v; must also, by the
linearity of 7. This simple observation was first made by Kronecker, and gives us
an elegant, if expensive, way to check for low order relations.

Given the sequence (r), define the function

| n - TR ¢ i
NOEdet| 2 B0 T ©.1)
! oo Tesr vt T2i-i !

Clearly, if (r) is divisible by p, then N(r) = 0 (mod p). Assume that (r) is not divisible
by p: then the sequence (r) satisfies a relation of degree less than k if and only if
N{n=0.

This completes our characterization of sequences with short periods. In the next
section, we show how to avoid such sequences.

7. How to maximize the period

Whanw Avandleen oo Tl ccmnn? cmeea do . o LB mdar ssrs wvassed el ol
wicn Cicating a rioon 1 ranaom numocr generator, w€ must 5€Iect inc
mindnlise tha damenan amd tha Seiilnl wramdas Y8RP o 08 ot . sl
RIVUUIUY, LIV ULy, allu LI Hiual vOLlol. wE CONnSIact €acin in turn.

The period of the Fibonacci random nuinber generator 157

7.1. Choice of modulus M

Random number generators often use a modulus M = 2% where a is the length
of a machine register. This gives a large modulus, to allow long periods, and allows
a simple way to reduce the random number r; (mod M). If we have r; expressed as
a result plus overflow, we produce r; (mod M) by discarding the overflow. As
Knuth [12] points out so forcefully, we should not turn to a modulus of 2? out of
sloth, when a modulus of 27 + 1 is as convenient to work with, and much more
‘random’ in the least significant bits. As an example, we use a modulus of 27— 1.
Since the Fibonacci generator adds integers, the sum can always be held in one
register plus an overflow bit. To produce r;, we simple add the overflow bit back
into the register.

Corollary 5 shows that the choice of a power of a prime for a modulus can lead
to smaller periods. A new prime p can lengthen the period by a factor of p*¥—1,
while each additional power of the prime p contributes at most one factor of p to
lengthen the period. Consider two examples: first let M = 2'¢ and then let M =
216 1. If k = 3, then the period, mod 2 of (w) is 7, and the period of (w) mod 4 is larger,
so the period of (w) over Z,,is 7 x 2" = 229,376 by Corollary 5. However, 26— 1 =
3% 5% 17 x257. If we compute the length of the unit sequence mod each prime, we
find that the period of the sequence (w) mod 2'6_1 is lem(8, 31,288, 66307) =
591,988,896, three orders of magnitude larger. As we increase the degree &, the
calculations become harder to make, but the magnitude of the difference increases.

if a power of two must be used, a simple modification will remove one cause of
short periods. We pick the first k— 1 integers of v using a Lehmer RNG, and then
pick an odd integer for the last place. This assures us that p [v, but does not prevent
v from satisfing a relation of low order. However, if the characteristic polynomial
is irreducible, this simple expedient will guarentee a maximal period.

7.2. Choice of degree k

Green, Smith and Klem [7] suggest that k be at least 16, but they are concerned
over the amount of memory that this will use. In this time of cheap memory, the
user will wish to pick k = 16.

If it is known that the pseudo-random numbers are to be used modulo a particular
prime factor of M, it is wise to be sure that the sequence behaves well with respect
to this prime, even at the expense of other primes. We may wish to pick & so that
the characteristic polynomial, f(x), is irreducible, or primitive, mod several of the
primes in the factorization of M.

Another approach is to follow numerous suggestions, and use a two-term additive
congruential generator that has a well behaved characteristic polynomial.

7.3. Choice of initial vector v

Assume that we have selected M and k. To pick an initial vector v with the max-

158 J.D. Parker

imal period, it is sufficient, though not necessary, that p;] v for each prime factor
p; of M and that (v) satisfies no relation of degree less than k.

One strategy would be to pick a vector v using the system clock and another
pseudo-random generator, and calculate the k X k& determinant N(r) to check both
conditions. Since k& will be large, this is an unattractive technique for a generator
designed to eleminate multiplications. We turn to an alternate method of picking
‘random’ vectors, each of which will satisfy the conditions above.

We assume that there are ¢ distinct prime factors, and that £ = ¢. The algorithm
can be modified quite easily to deal with the general situation. We define a set S
of k vectors in the unit sequence, and pick a distinct vector v; based on some ele-
ment of S for each prime factor p; of M. We then build a vector v = v; (mod p}").
This can be done in O(k + ¢) time and space, using Garner’s constructive proof of
the Chinese Remainder Theorem (see Knuth [12]). We compute, when designing the
generator, constants U; so that

U;=90; (modpf),
or U; = 1 (mod p*), and U; = 0 (mod p{¥) if j # i. Then we let
v=Y Uu; (modM).

In the algorithm below, we let S = {(1,0,...,0),(0, 1, ...,0),...,(0,0, ..., 1)}, k vectors
in the unit sequence®, For each prime p;, we pick an element s; € S, a random unit
u; € Z,, and let v; = u;s;. It is easy to see that the sequence generated by v; has
maximal le.:3th, mod pfi. This allows us

k!
(k—1)! !sl-ilsr(pi‘l)

distinct initial vectors, ample for most applications. In our case, with £ = 16, and
M = 2151, this allows 1.4 x 10° different initial vectors.

Our choice yields a vector with k—¢ 0’s, and thus the first crop of numbers will
contain several duplicate numbers. The ability to produce duplicates is one of the
strengths of this generator, but it is unpleasant to encounter them so soon. To avoid
this, we run the generator k times to prime the pump.

If M contains a square p?, we can modify v by adding a vector of the form
tp;U;s; where t € Z,, and s; € S. This does not alter the period, but increases the
supply of initial vectors.

It may be preferable to use a vector v; that satisfies a relation of lower degree
over Z,, if the charz2teristic polynomial has a primitive factor of large degree.
Primitive polynomials have a better distribution of digits over Z,. (Compare the
unit sequence (w) to the sequence (z) in Table 1: sequence (z) satisfies the primitive
polynomial x?+ x+2.) We simply define another set S’ to be used to pick v;, con-

2 This is the only place that our algorithm uses properties unique to the Fibonacci generator. For
general additive generators, we could use the first few terms of the appropriate unit sequence.

The period of the Fibonacci random number generator 159

taining vectors s that satisfy the primitive polynomial.

We present a program fragment in Pascal that implements our random number
generator, with a choice of M = 27— 1. We assume that a file params exists which
contains the prime factors of M, as well as the constants U;. We have written the
generator in a high-level language for clarity: in practice, we would code this in
machine language or micro code. Since standard Pascal does not provide a random
number generator, we assume an implementation of some random number gener-
ator: in this example, we have used a Lehmer RNG. Since we cannot trap the
overflow condition in Pascal, we assume further a function mult that multiplies in-
tegers in Pascai. This is needed by the function Lehmer, and is also used by random-
init.

const
modulus = 2%
degree = k;
type
index = 0--degree;
vector = array [0--degree] of integer;

var
seed: integer; (*Global variable for Lehmeir RNG
v; (*Last k random numbers *)
D; (*Prime factors of modulus *)
U: vector; (+Uli] = J;; {mod p;)*)
rand-index: index; (*#Index into vector v#)
params: text; (=File with parameters *)

function random: integer;
(*Compute the next random number #)

var i: integer;

begin
i := rand-index;
rand-index := (rand-index + 1) mod k;
v[rand-index] : = (v[rand-index] + v[i]) mod modulus;
random := v[rand-index];

end;

function mult (p, q: integer): integer;
(*Multiply without overflow *)

function Lehmer (max: integer): integer;
(+Use a Lehmer random number generator to alter global seed *)
(*Return a number in the range 0--max — 1)

160 J.D. Parker

begin
seed := (mult (seed, multiplier) + increment) mod modulus;
Lehmer : = trunc ((seed/modulus) * inax);

end;

procedure random-init (var v: vector; var j: integer);
(*Set up the vector v, as proposed in [7] *)

var
S: set of 0--degree
pick; (*index of non-zero entry of v;*)
i (»Loop var %)
num-factors; (*Number of prime factors of m)
temp: integer; (*Temp variable *)
begin
readin (params, num-factors); (*Read the number of prime

factors x)
for i := 1 to num-factors do
readin (params, p[i], U[i]); (*Read prime factors and

constants)
seed : = clock mod modulus; (*Set seed to the system clock =)
S := [0--degree—1]; (*Set of vectors *)
for i : = to degree de (*Assume degree > num-factors *)

vli] = 0;
for i := 1 to num-factors deo
begin (*compute v = v;*)
pick := Lehmer (degree); (*Return number in range
0--degree — 1)
while not (pick in S) do (*Find new s;#)
pick := (pick + 1) mod degree;
S := § - [pick];
(*Ui =§; X U,-X unit)
vlpick] : = mult(U]i), Lehmer(p[i] — 1) + 1) mod modulus;
end;
for i := 1 to degree do
temp := random; (*Spin the wheel / times *)
end; (*random-init *)

8. Empirical tests for randomness

Green et al. [7] apply the frequency test, the ‘poker’ test, tests for serial correla-
tions, and the run test to the Fibonacci RNG. To give the reader a feeling for the
strengths and weaknesses of the generator, we will present a comparison of the

The period of the Fibonacci random number generator 161

3-space uniformity of the Lehmer RNG and the Fibonacci RNG, and look at the
performance of the Fibonacci RNG on the run test.

8.1. Distribution te¢sts

To demonstrate the 7i-space non-uniformity of the Lehmer generator, we used the
Lehmer and the Fibonacci RNGs to generate vectors in 3-space, and then evaluated
the distribution using a standard x? (chi-square) test. In each test, we generated sets
of 30,000 numbers. We scaled the numbers to lie within the range 0--9 by division,
to use the most significant bits of the integers generated. We then took 10,000 triples
of these decimal digits, and tabulated the frequency of each triple. We tested the
resulting distribution with a x? test with 999 degrees of freedom, and compare with
the expected value of 999. This test does not show the Lehmer generator to any great
advantage.

We ran 25 such test of the Fibonacci RNG: none were significant at the 5% level:
the extreme values were 912.2 and 1057.0. We also ran 25 trials of the Lehmer RNG:
the smallest value was 71,792.4, two orders of magnitude larger than the expected
value. We can conclude that the Lehmer RNG is not n-space uniform, ard that ‘e
Fibonacci RNG may be, for n < k.

8.2. Run tests

Of all the standard empirical tests, the run test gives the Fibonacci generator the
greatest difficulty. The run test counts the frequency of ‘runs’ cf different lengths.
A run up (down) is a sequence of ascending (descending) numbers. The generator
of degree 2 produces too many long runs up, and too few long runs down. We have
applied the run test to our generator, ard we present some typical test results in the
following figures.

Our tests consisted of the following steps: a degree was chosen, the RNG initializ-
ed, and 10,000 random numbers were generated. In counting runs, we discard the
number that ends a run, tc avoid interdependence between the number of runs of
different lengths. We kept track of the number of runs up (down) of length 1
through 5, and lumped the number of runs of length 6 or greater into one count.
These counts were tabulated, and compared to the expected distribution using a X
test with five degrees of freedom Each set of 10,000 numbers gives us two date
points in the later figures: the x* values for runs up and runs down.

We list the degree of the generator on the x-axis, and plot the results of the x*
test on the y-axis. First we display (see Fig. 1) the results of the ordinary Fibonacci
generator with small degrees and no decimation. The results are two orders of
magnitude higher than the expected value.

The results improve as we increase the degree. In order to view the distribution
better, we next present (see Fig.2) the results of 25 tests up and down for even
degree from 10 to 24. (Odd degrees produced similar results.) These values are plot-
ted as points in the figures, with the points representing the ascending runs position-

162 7.D. Parker

1000

800 -

€00 -

400 -

samwmwm s s

200 +

Chi square of runs up

0 T T
3 4 5
Degree

D - owe
~
[+

Fig. 1. Fibonacci generator without decimation.

ed the right of the points representing descending runs. A standard table of the x>
distribution with five degrees of freedom was used to mark the y-axis in the figures.

In Fig. 3, we plot the results of the generator modified to include decimation.
Every other number is discarded. As may be seen, there is an improvement when
the degree is large, but the most dramatic improvement is for small degrees.

9. Conclusion

The generalized Fibonacci random number generator is a fast random number
generator which may be used to produce sequences with a very large period. The
generator may be n-space uniform, if » is less than the degree k. We have presented
an algorithm that assures a long period for the generator, while allowing many dif-

30
-
§ 20-
8
P T 1% '
(-]]
g " -) . .
E 10"- 5% e .f LA M
3' =5 ': | 3 i .: e '
- - 25% P D S T U R
o . c g H1 o - HE
e - 50% TR PO A L |
o = 0 . .li e .L'.' : .:
0 10 20
Degree

Fig. 2. Fibonacci generator without decimatior.

The period of the Fibonacci random number generator 163

30
L~
§ 20+
-]
E F 1°/° .
° . oL .
[.t . o) . . i .o
g o 5% [, - Pt
g osopii B g R on bt
= Eedd I I L
S '-50%i§ Hoi g : IR
= LI PR D F A T F O - L Y
L 95%.- ‘! oL gp lodp oer b Lo gr R
0 - (d v . T - l. T A
0 10 20

Degree

Fig. 3. Fibonacci generator with decimation.

ferent initial values. A long period does not guarantee randomness, but we have
shown that a modest increase in the degree of the generator, coupled with decima-
tion, provides greatly improved performance on the run test.

We need not remind the reader that caution is important in the use of any
pseudo-random number generator. Empirical testing can discover non-random-
ness, but cannot prove randomness. Before recommending the adoption of the
Fibonacci RNG, we will need to better understand and certify the behavior of tuples
(FisTivrs--Tiyj-1) € V7.

In closing, we would like to thank the valiant efforts of the referee, whose com-
ments and questions greatly improved the presentation.

References

[1] P. Bratley, B.L. Fox and L.E. Schrage, A Guide to Simulation (Springer, New York, 1983).

[2] H.S. Bright and R.L. Enison, Quasi-random number sequencss, Computing Surveys 11 (4) (1979)
357-370.

[3] J.M. Carrol, and P.M. McLelland, Fast infinite-key privacy transformation for resource-sharing
systems, Proc. 1970 AFIPS Fall Jt. Computer Conf., Vol. 37 (AFIPS Press, Arlington, VA)
223-230.

[4] R.R. Coveyou and R.D. MacPherson, Fourier analysis of uniform random number generators,
J.ACM 14 (1) (Jan. 1967) 100-119.

[5] U. Dieter, Linear congruential method, in: Applications of Number Theory to Numerical Analysis
(Academic Press, New York, 1972).

[6] H.J.A. Duparc, C.G. Lekkerkerker and W. Peremans, Reduced sequences of integers and pseudo-
random numbers, Math. Centrum, Amsterdam, Report ZW1953-002, 1953.

[7]1 B.F. Green, J.E.K. Smith and L. Kiem, Empirical tests of an additive random number generator,

J. ACM 6 (1959) 527-537.

164 J.D. Parker

[8] M. Hall, An isomorphism between linear recurring sequences and algebraic rings, AMS Trans. 44
{1938) 195-218.
{S] B. Jansson, Random Number Generators (Victor Pettersons Bokindustri Aktiebolag, Stockholm,

1966).

[10] M.G. Kendall and B. Babington Smith, Randomness and random sampling numbers, J.R.S.S. (A)
101 (1938) 167-172.

[11] D.E. Knuth, Construction of a random sequence, BIT 5 (1965) 246-250.

[12} D.E. Knuth, Art of Computer Programming — Vol. 2: Seminumerical Algorithms (Addison-
Wesley, Reading, MA, 1969).

[13] D.H. Lehmer, Mathematical methods in large-scale computing units, Proc. 2nd Symposium on
Large Scale Digital Calculating Machinery {Harvard Univ. Press, 1949) 141-146, MR 13 # 146.

[14] T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithm,
J. ACM 20 (3) (1973) 456—468.

[15] G. Marsaglia, Random numbers fall mainly on the planes, Proc. Nat. Acad. Sci. 61 (1) (Sept. 1968)
25-28.

[16] E.R. Sowey, A chronoglogical and classified bibliograpy in random number generation and testing,
Int. Stat. Rev. 40 (3) (1972) 355-37i.

[17] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1983).

(18] O. Tausky and J. Todd, Generation of random numbers on computers, in: H.A. Meyer, ed., Sym-
posium on Monte Carlo Methods (Wiley, New York, 1956) 323—-337.

[19] R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comput.
19 (1965) 201-209.

[20] L.H.C. Tippett, Random sampling numbers, 1927. Reprinted in 1952, Tracts for Computers,
no. 15, (Cambridge Univ. Press, Cambridge).

[21] N. Zierler, Lincar recurring sequences, SIAM J. 7 (1959) 31--48.

