
Discrete Applied Mathematics 20 (1988) 145-164
North-Holland

145

J.D. PARKER
Department of Computer Science, Boston College, 432 Fulton Hall, Chestnut Hill, MA 02167,
USA

Received 6 December 1983
Revised 6 March 1987

Smith, Green, and Klem introduced the Fibonacci RNG in 171. A starting vector of k integers
is chosen, and new numbers are generated by the recurrence r, = r,_ l + r,, _ k (mod M). For a
prime M and some choices of the parameter k, any non-zero initial vector u gives a sequence with
a period of Mk - 1. However, in most cases, different initial values give rise to very different
periods. This behavior was noted by the authors, but left unexplained. In this paper we review
how sequences with short periods arise, and provide an algorithm that selects different starting
vectors that give a maximal period.

1. Introdustion

The pseudo-random number generator (RNG) in widest use today is the multi-
plicative generator proposed by Lehmer in [131:

rp(axr,_, + 6) (mod _I!H),

known as the Linear Congruential Generator. The period depends upon the choice
of M, a, b, and the starting ‘seed’ rl, but it is never more than I@. Although it has
many strong attributes, it exhibits n-space non-uniformity as discussed by Coveyou
and MacPherson [4], and Marsaglia [151 p making it unsuitable for some applications
which require the selection of random n-tuples.

This observation has sparked an interest in RNG’s with n-space uniformity. Gne
such RNG is the Tausworthe generator introduced in [Is],

The Tausworthe RNG keeps a vector u of the k previous random numbers. Each
element of the vector is a string of bits, and the next number in the sequence is com-
puted with a bitwise exclusive-or. Since it avoids multiplication, the Tausworthe
RNG is faster than the Lehmer generator. The period of the generator is fixed by
the choice of parameters j and k, and can be as large as 2k - 1. The period is not
a function of the word size, as the bits within a word have no interaction.

This paper discusses another fast generator introduced in the fifties, the Fibonacci

0166-218X~‘88!$3,50 0 1988, Elsevier Science Publishers B.V. (North-Holland)

J. D. Parker

RNG

r”=r,_l+r,_k (modM), (l-1)

introduced by Smith, Green, and Klem [7]. For a prime M and some choices of the
parameter k, any non-zero initial vector u gives a unique sequence with a period of
Mk - I. This is much longer than the period of either of the random number
generators mentioned above. However, if M is composite, or for some choices of
degree k, different initial values give rise to distinct sequences with different periods.
This behavior was noted by the authors, but left unexplained.

Our purpose in this paper is twofold: first, we review how sequences with short
periods &se, and then we provide an algorithm that selects different starting values
that give a maximal period for any fixed choice of parameters.

In Section 2, we review related work. In Section 3, we give the original algorithm,
and discuss the differences in period observed by the authors. Section 4 gives an ex-
ample illustrating how short periods arise. We use linear algebra to study the max-
imal period of the generator in Section 5, and in Section 6 we study the effect that
factors of the characteristic polynomial have on the period. In Section 7 we discuss
the choice of parameters, and present our algorithm for selecting initial values. Sec-
tion 8 uses the run test to look at the ‘randomness’ of the sequence. We summarize
our conclusions in Section 9.

2. Relation to previous work

Random number generators have always been important in experimental design,
computer simulations, and cryptography. Before 1927, scientists who needed ran-
dom numbers would produce them ‘by hand’, rolling dice or flipping coins. L.H.C.
Tippett [20] produced a table of random numbers from figures in census reports to
simplify this process. It was not long before people were questioning the ran-
domness of the numbers in Tippett’s tables (Kendall [lo] and others), and better
means of producing numbers we sought. One technique was to design mechanical
or electrical devices to produce the random numbers. This was used by the RAND
Corporation to produce their table of a million digits.

The generation of random numbers was an early application of general purpose
computers, The pub!ications in this area follow the same pattern set by Tippett’s
paper. A method is conceived and tested. It passes the investigators’ tests, and is
proposed for general use. Soon an alternate test is proposed that the generator fails
to pass, and the cycle b egins anew. ‘The inierested reader may trace the rise and fall
of proposed generators, suck as the mid-square method, in Sowey’s [16] biblio-
graphy on random numbers.

The Lehmer RNG was one of the first discussed, and it has aged relatively well.
It is a. generator of degree 1: the current number depends only upon the previous
number. There have been doubts raised about its generation of n-tuples, [4], [151

The period of the Fibonacci random number generator 147

and speculation that this problem is endemic with any generator of degree 1. The
concern is that when the random number generator is used to produce a sequence
of vectors with n entries, the vectors will not be uniformly distributed in n-space.
For example, a generator of degree I cannot produce the same number twice in a
row without entering a loop of length I, thus sequences with long periods must
avoid ihe diagonal in 2-space.

Knuth [1 l] described a technique for generating a random sequence witli n-space
uniformity for all n. Essentially, he generates all tuples in a prescribed order, star-
ting with the digits, and then systematically generating all tuples of length two, etc.
It is not practical for several reasons: the algorithm is not suitable for rapid genera-
tion of numbers, and the sequence exhibits too much regularity to be considered
random.
A candidate for a practic2i generator with acceptable n-space uniformity is the

generalized Fibonacci random number generator, of degree k, first discussed in
print in Green, Smith, and Klem’s 1959 paper [7]. The authors mention an attribu-
tion of the method to A. van Wijngaarden, and cite previous studies by Taussky
and Todd [181 and Duparc, Lekkerkerker, and Peremans [6] 9 of the special case
when k = 2. This case has always been a good example of a “oad generator: see for
example Knuth [121 or Bratley, Fox, and Schrage 11). We must pick a value for k
that is bigger than 2 to obtain decent sequences+ The generator has suffered from
the sins of this special case: Carrol and McLelland [3] are among the few that admit
using the generator.
As well as altering the degree, we may vary the choice of recurrence relation. The

interested reader will find that our results and algorithms apply to general linear
recurrence relations of the form

rn “alrn_l+a2rn_2+ l ‘* a&& (mod M).

For example, if we pick a recurrence similar to the Tausworthe generator, we obtain
a family of additive congruential generators of the form:

rn E rn_j+r”-k (mod MI.

WP ctill have a fast generator, but we gain flexibility in selecting the characteristic
polynomial. Dieter [5] suggests yet another variant:

r, = rn- 1 +arn-2 (modp),

with a prime modulus p. This generator 3s slower, as it requires a multiplication,
and it has a shorter period since the degree is smaii, but it only needs to store two
previous values, and for the proper choice of modulus and constant Q, it produces
well-behaved sequences.

Green et al. address the is.ue of the randomness of the sequence rather than its
period. They show empirically that the numbers generated are uniformly distribut-
ed, have no significant serial correlation, and pass the run test and the poker test
if the degree k is at least 16. They recommend ‘decimation’, or discarding elements

J.D. Parker

of the sequence, to assure better empirical results. They direct the reader interested
in the period to an excellent paper by Zierler [21]. This citation has persistently ac-
companied discussion of this generator, despite a lack of relevance. Zierler discusses
the case of the field GF(pa), while we are confronted with the ring 2’“. If M con-
tains a power of a prime, several of Zierler’s results do not generalize. In Section
4 we give a counter-example to a ‘theorem’ cited in one source &SK! I_;EC~ t).rk EM- S- --- ----- ----

fusion.
In this paper, we review criteria for predicting the period of the RNG, given any

choice of parameters. We base our derivation of these well-known results upon
classic work of Hall [S]. We then present an original technique for selecting initial
values that give sequences with maximal periods.

The Fibonacci generators bear a strong family resemblance to the Tausworthe
RNG. For example, Sedgewick [I7] introduces additive congruential methods after
a discussion of linear feedback registers, mechanical devices used in cryptographic
encryption machines and the model for the Tausworthe RNG. To calculate the max-
imal period, we may view the Tausworthe RNG as a special case of the general linear
recurrence relations with a modulus of 2. Similar issues are relevant to the two
generators: an irreducible characteristic polynomial and a proper choice of initial
values leads to an optimal period. However, our discussion differs from the classical
treatment of the Tausworthe generator in the following four ways.

(1) In constructing a Tausworthe generator, it is customary to choose parameters
so that the characteristic polynomial is irreducible, or better yet, primitive. In the
Tausworthe generator with a primitive characteristic polynomial, any choice of a
non-trivial initial vector gives the same period, 2k - 1. In this paper, we consider
polynomials which factor. Factoring creates different classes of sequences, with
potentially different periods.

(2) The presence of zero-divisors of the ring Z,,“, if a! > 1 i is 2 second cause of
short periods. In the Tausworthe generators, all calculations are done over the field
22, so there are never zero-divisors.

(3) Given a primitive characteristic polynomial and non-zero initial values, the
Tausworthe generator produces a sequence of maximal period. However, some se-
quences have poor distribution. For exalnple, let the word size be 3, and apply
the Tausworthe generator to the unit vector (rr, r2, . . . ,Q) = (O,O, . . . , 1) =
(OoomQ l *=, 001). We generate a sequence in which the most significant bits of every
number produced are zero, since each bit position is autonomous. To obtain a
uniform distribution, it is necessary that the initial vector is linearly independent,
as shown by Lewis and Payne [14], and applied by Bright and Enison [2] to cryp-
tography. The test proposed in [141 discards the unit vector. However, the Fibonacci
random number generator uses addition, and carries propagate from the low order
bits to the high. The Fibonacci recurrence applied to the unit vector yields a se-
quence with an acceptable distribution. We have a different concern in selecting our
initial vector: if the characteristic polynomial factors, the wrong choice of initial
vector leads to less than optimal periods.

The period of the Fibonacci random number generator 149

(4) Lewis and Payne [141 suggest taking the determinant of a k x k binary matrix
whose columns are the binary representations of the k initial values, as a test of the
distribution of a sequence. We observe that the determinant of a k x k integer matrix
(6.1) whose entries are the initial 2k - 1 random numbers is a test of ;he period of
the sequence. These two tests differ in more than their object: the unit vector passes
our test and fails theirs.

3. The generator

In the generalized Pibonacci generator introduced by Green, Smith, and Hem [7],
the user picks an initial vector u = (rr, azp . . . , rk) by calling the procedure random-
Init. The procedure uses a fixed vector, or a vector picked at ‘random’ by the system
clock or another generator. Successive terms in the sequence are generated using
procedure random given below. Since we only use addition to compute the pseudo-
random numbers, the generator is relatively fast.

const
modulus = 2’;
degree = k;

type
vector = array [0 l l degree - I] of integer;
index = 0.. degree;

var
seed: integer; (*global variable for Lehmer RN6 *)
u: vector; (*Last k random numbers *)
rand-index: index; (*Index to most recent random number *)

function Lehmer (max: integer): integer;
(*Use a Lehmer random number generator to alter global seed *)
(*Return a number in the range O==max- 1 *)

begin
seed : = (seed * multiplier + increment) mod modulus;
Lehmer : = trunc ((seed/modulus) * max);

end;

procedure random-init (var O: vector; var j: integer);
(*Set up the vector u *)

var i: integer;
begin

seed : = (* Set seed to the system clock *)
for i : =

u[i) : = Lehmer (modulus);

J. D. Porker

ran&index : = 0;
(* random-init *)

(*init global index i*)

function random: integer;
(*Compute the next random number *)

var i: integer;
begin

i I= rand-index;
rand-index : = (rand-index + 1) mod degree;
u[rand-index] : = (U[rand-index] + v[i]) mod modulus;
random : = u[rand-index]

end;

We are concerned in this paper with the period of the generator. The sequence

(r) = QJ2J3, l
is said te have period P if P is the smallest positive integer such

thatr,,+p= r, for all n. Green, Smith and Klem studied generators with a modulus
M = 2a equal to a power of two. As we will see in Section 5, these generators have
a maximal period of (2 ’ - I)(2*- ’ j at best. For the right initial values, the period is
usually quite large. Unlike the Tausworthe generator, the period increases with the
word size CT, and unlike the Lehmer generator, all non-zero k-tuples appear in some
sequence. Thus we may encounter runs of the same number, ri + 1 = ri + 2 = -0. =
r- , + i, If j < k. This will never happen with a non-trivial Lehmer RNG.

But an increase in the word size or in the degree does not always lengthen the
period of the Fibonacci RNG, and the same generator wiii give sequences with dif-
ferent periods, depending upon the starting value. For example, the authors note
that when the degree is 15, the largest sequence has a period of (2” - 1)(2a- *),
while a d agree of 16 gives a maximal period of (2* - 1)(2”-9. In fact, the generator
of degree 16 and period 2@ can produce sequences with a period as short as 85. The
authors express the period of their generator as a function of the degree k and the
modulus M, while noting that it also depends upon the choice of an initial vector
u, and state that “for some [choices of v] the period is less by a factor of 2, or, rare-
ly, by a factor of 4 or 8, or more. The conditions under which this reduction occurs
are not fully understood. (The problem is exceedingly complex analytically, and the
occurrences are too rare to study empirically.)”

Though we do not have a closed form expression for the period of the generator
as J function of the degree and the modulus, explaining how the period is reduced
is quite simple. First we review briefly why some initial vectors produce shorter se-
quences.’ Then we give an algorithm that will generate a large number of ‘random’
initial vectors that give sequences of maximal length.

’ For example, the difference between degrees IS and 16 is that x’~-x’~- 1 is primitive, while
..I6 A -x’5- 1~(x8+x7+x5+x4+x3+x2+ 1)(x8+x5+x3+x2+ 1).

The period of the Fibonacci random number generator 151

4. Examples

To give the reader a taste of the varied causes of short periods, and to provide
a fund of examples for Prrr mm-d CLLGl ~a&, we consider an extended example. Let k = 3, p =
3, and M = p (and later $ j, giving the relation

rn+3 E rn+Z + rn (mod M). (4-U

Any initial vector of length k might be used as a starting seed. Since Mk - 1 = 26,
there are 26 non-zero vectors of length 3. If we pick a initial vector
to apply (4. l), we obtain a sequence of integers which will eventually
are 4 distinct sequences:

and continue
repeat. There

Table 1

Sequence Period

(w)=0,0,1,1,1,~0,1,... 8 (4.2)
(uj = 0,0,555 1,029 l ** 8 (4.3)
(Y) = 42,L%- 2 (4.4)
(a) =O,I,2,ZOJJ,l,*~= 8 (4Jj

Associated with any linear recurrence relation is a characteristic polynomial. The
characteristic polynomial of (4.1) is

f(1 x XL=;2 = - 1 =(x+ 1)(x2+x+2) (mod3).

(We define the relation = between polynomials in Section 6.) The reducibility of
this polynomial creates sequences that satisfy a relation of lower degree than k =
3. The sequences are (yj, which satisfies

rn+l +m =O (mod3)

with characteristic polynomial (x+ l), and (z), which satisfies

rn+2+rn+r+2rnE0 (mod3)

with characteristic polynomial x2 + x + 2.

4.1. Increasing the msduhs

If we increase the modulus to M = 32, then the period of the sequence (wj
triples.

(wj=~,0,1,I,I,2,3,4,6~0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,...

This phenomenon is quite general. If the sequence containing the unit vector

(0 Q 9 - , . . . ,I) has period P over ZP, then it will usually have period over ZPz, and

period Pp” over &a+ I. See Corollary 5 for a precise statement.

Table 2

Sequence Period

p(y) = 3,6,3, **i 2 (4.6)
(y’) = l&7,8,4,2,... 6 (p.7)
(y”) = I,& 1,2,4,5,7,2,7 9 5 t 7 t 5 9 1 9 8 9 4 9 5 9 4,8,4,8,7,2,1,8 ,... 24 (4.8)

But some odd things happen to the period of the sequence (y). Three ‘generaliza-
tions’ are shown above. Note that (y’) 3 (y”) = (y) (mod 3).

If the sequence (u) has a period P over Z”, then p”(o) is a sequence of period P
in ++I. The period of the sequence (u) over ZIPa+ is more problematic. We see
above that it may be longer than pup, unlike the u;;it sequence above.

5. The vector space Zb

In general, our modulus M will factor as a product of powers of primes,

The period of the sequence,, mod M, is the least common multiple (lcm), of the
periods, mod JI?. Thus, without loss of generality, we will consider M = pa, and
return to the general case in Section 8.

The behavior of the Fibonacci RNG depends only upon the previous k items in
the sequence. There are Mk possible vectors of length k, each an element of the
vector space Vk = Z& In general, we may view a sequence (u) as represented by
a sequence of vectors

tJidAf(ris ri + 1 t l **,l;‘+k-I)E vk,
and the RNG as a linear transformation T: Vk-, Vk defined by the kx k compa-
nion matrix

T=

with action

L

rut =

0
0

;
1 I

r1

r2
: .

rk-4

c rk I = r2

r3
: .

rk

_ tj i- rA 1 = r2

r3
.
:

rk

_fk+f I = 02.

The period of the Fibonacci rmdow mmtber generator 153

We define the orbit of a vector o to be the set of vectors {vi> = { T’v, id 2).
Since T is non-singular, the orbits form equivalence classes in the vector space Vk,
and the zero vector z = (O,O, . . . , 0) forms a sequence with a single element. The
period of the sequence represented by v is simply the size of the orbit of v.

This gives an easy upper bound on the period of a sequence.

T.smr~rs 1 -The largest period of the Fibonacci random number generator of degree -w______- -- - I _ _

k, modulo M, is less than or equal to Mk - 1.

Proof. The orbit must lie in Z&, and cannot include the origin. 0

Theorem 2. Let P be the order of the companion matrix T, mod M, and let P’ be
the period of the unit sequence (w), mod M. Then P = P’.

Proof. (We use the special properties of (1.1). See Hall [S] for a proof of the general
case.) Since TP = I (modM), we have Wp+i = TPWi s Wie Thus P’ 1 P. Assume that
P > P’. Then for all i, TP’ Wi = Wig but TP’ + I. Then TP’ must alter some vector
in Vk. However, the standard basis vectors are terms in the unit sequence (w) given
by wp, wp-1,wp-2, l .-, wp_k+2, w1 (see, for example, sequence (4.2)). Since TP’
fixes the standard basis, TP’ = I? and P = P’ by the minimality of P. Cl

Corollary 3. The period of any sequence (r) divides the period P of the unit se-
quence.

Proof. We have seen that TP = I (mod M), so TPr = r (mod M). 0

Theorem 4. If the linear transformation T has period P over Zp, and a longer
period over Z&, then the period of T over Zpg is Ppa- ‘.

Proof. Since TP = I (modp), we may decompose T’ as the sum TP = I+pN. By
the binomial theorem, Tpr = (I+pN) P=l+p2Nd (modp2), so the period of
T over Zp2 must divide Ppl But this period is greater than P by assumption, and p
is prime, so the period must be exactly Pp. c3

The same reasoning shows that TPPu ‘- = I (mod pa). Now we must show that
the period is not shorter than Ppa- ‘. Since the period must divide Ppa- I, and it
contains P as a factor, we may assume without loss that the period is PpaS2. The
period of T increases as M goes from p to p2 if and only if the matrix N does not
contain a factor of p. By the decomposition, TpPa ’ = (I+pN)P” ‘E I+pa?U
(modpQ). If N does not contain a factor of p, then pa-IN is not the identity.
shows that the period of T is exactly Ppa- ’ over Zpa.

If N does contain a factor, N = pN’, then TP = I+p2N’ = I (modp’), and the
period does not increase as we move from Zp to Z&Z. Consider the largest

154 J. D. Parker

of p that divides N. If pb 1 N but p b+l ,/ N, then the period of T over Zpa+b will be
Ppa, by a third application of the binomial theorem.

Corollary 5. If the unit sequence has period P over Zp’ and a longer period over
Z+ then ib has a period Pp”-’ over Zp”.

Prsof, The matrix Tand the unit sequence have the same period by Theorem 2. 0

We note in passing that the word unit in the statement of Corollary 5 is crucial.
In Jansson 191, it is incorrectly stated that the period of any vector v E Vk increases
by at most p when M increases by p. The sequence (4.8) above provides a counter-
examdle. Neither of the proofs provided by Jansson can be patched, as they rely
on Zierler’s results [21] for the field GF(pa), rather than the ring Zpa.

The corollary above allows us to compute the period of the unit sequence over
any power of the prime p. If the period over Zp and the period over ZPz differ,
then we know the period over ZPa. If the periods are the same, we need to check
the period of the sequence mod p3,p4, . . . until the period changes.

Returning to the original generator, with a modulus of M = 2a, it is easy to see
how sequences that are ‘a factor of 2, or, rarely, by a factor of 4 or 8, or more’
less than the unit sequence can arise. The period of the unit sequence will increase
with the exponent a! if the unit sequence (w) is longer over Z4 than it is over Z2. If
each term of the original vector is divisible by 2, then the sequence will be at least
twice as short as the unit sequence. If the original vector is divisible by 4, the se-
quence will be at least 4 times as short, and so on. Naturally, the odds that a vector
contains a factor of 2’ decrease as c increases.

This is not the only cause of short periods. As our example (4.4) showed, if the
characteristic polynomiaJ factors, we may have short sequen@es, even if the original
vector has no common factor. We discuss factorization in the next section.

6. Wing straeture

We use Hall’s [8] conventions in discussing the ring structure of V”. If (t) and
(s) are sequences of integers mod Z,,., that satisfy (1. I), then we define addition,
scalar multiplication, and the shift operator X by:

(t+s) = tl +sl,t2+s2,t3+s3,

W) = trl, tt2, tr3, . . . (where t E ZM),

X(t) = t2y t3, t4,

The shift operator has the same effect on vectors in Vk as multiplication by the
matrix T. Clearly sequences that satisfy (1.1) or clcments of the vector space Vk are
closed under all three operations. I’hese operations allow us to identify the set of
all sequences satisfying (1.1) with a polynomial ring of operators R(x), and then to

The period of the Fibonacci random number generator 155

identify the ring R(x) with the vector space Vk. We define an isomorphism
l:R(x)+Vk by r(1) = w = (O,O,..., 1) and

i(a,x”+ l -- +a,x+aO) = &ZnXnW+ l alXw-f-aOw.

This identifies Vk with the polynomial ring R(x) = F[x]/f(x), where f(x) is the
characteristic polynomial of our recurrence relation, and F = ZM. Two polynom-
ials g(x) and Jr(x) are equivalent in R(x), written g(x) = a(x)+ if we may find poly-
nomials q(x) and u(x) such that g(x) = h(x) +f(y)q(x) +Mu(x).

Theorem 6. The unit sequence generates all other
addition, scalar product, and the shift operator.

sequences satisfying (1. l), using

Proof. (By example) Let k = 3 and M = 3, so that we have the relation r,,+3 =
rn+2 + r, (mod 3). To produce the sequence generated by the initial vector (1,2, l),
we first obtain rl = 1. Take r(x2) = X2w = (1, 1,l). We add I(X) = Xw to get the
desired r2,

x2w+xw = (l,l, l)+(O, 1,l) = (1,&2),

and add 2w to get r3 = 1, giving

r(x2+x+2) = (X2+X+2)w = (l,l,l)+(O, 1,1)+(0,0,2) = (1J 1).

Note that the sequence represented by the polynomial (x2 +x+ 2) had a character-
istic polynomial (x + 1) and that (x2 +x + 2)(x+ 1) = f(x). Cl

An application of Theorem 6 gives another proof of Corollary 3, that the period
of any sequence divides the period of the unit sequence (w).

If M is prime, then F[x] is a field. If f (x) is irreducible in F[x], then f (x) generates
a prime ideal, F[x]/f(x) is a field, and the orbits of our generator are well under-
stood. Each (non-zero) orbit has the same size, and any non-zero initial vector will
give maximal period. If the characteristic polynomial f(x) is primitive over ZM,
there is a single (non-zero) orbit of size Mk - 1. A polynomial of degree k over Zp
is said to be primitive if all its roots have order pk. Primitive polynomials are ir-
reducible, but the reverse is not true. An example is j(x) = x9 -x8 - 1 (mod 2). The
polynomial is irreducible over Z3, but is is not primitive, as the unit sequence
O,O,O, O,O,O, 0, O9 l... has length 73. Rather than one large orbit of length 29 - 1 =
511, we have 7 orbits of size 73.

If f (x) factors over F[x], then R(x) is not a field and we may have orbits of dif-
ferent sizes, as we saw in our example. If M is not prime, then ZM is not a field,
and we may again have different periods, as examples of the form p(o) demonstrate.

Consider the period of a (non-unit) sequence (r). Using the isomorphism above,
we associate a sequence (r) with a polynomiai r(x) E R(x). The sequence (r) re-
presented by the polynomial r(x) has period P if P is the least integer sue

156

xp r(x)

J.D. Parker

= r(x), or (x”- I)r(x) =f(x)~(x)+~~(x). Iff(x) factors asf(x) = s(x)t(x),
thin the sequences that correspond to so and r(x) will satisfy reiations of Iower
degree, and may have smaller periods.

Proof, If (w) has period P, then P is the smaljlest integer such that f(x) 1 (xf - I).
Since t(x) has period P’, we may write (x p’- I)r(x) = f(x)~(x)+~~(x). If r(x) and
f(x) are reWiveIy prime, then r(x) must divide q(x), by unique factorization over
the fieId Z”[x]. So q(x) = r(x)s(x), and (x”- I) = f(x)s(x), contradicting the mini-
mality of P. Thus f(x) and r(x) must share a common factor, say d(x), and f(x) =
d(x)e(x). This imphes that r(X)e(x) = 0. Thus r(x) satisfies a relation of degree less
than k,

Unique factorization over the field 2’ is cruciall. The result is not true over Z#,O,
as the example F(W) shows. The converse of this result is also not true: satisfying
a relation of Iowcr degree does not force a shorter period. In our example, the unit
sequence (4.2) has the same period as the sequence (4.3, which satisfies a relation
of lower degree.

ff a sequence (0) satisfies a relation of degree less than k, then there is a Iinear
depgnden~e between the vectors of Te9 T’u, T3u, *.. . In our examples (4.5) was
restricted to a two~dimensiona~ subspace, and (4.4) Iay on a tine.

In fact, the imp~i~ation can be reversed: ifj consecutive vectors un, un + t, . l e , t~~+~__~

lie in a subspace of dimension j- I, the remaining vectors u; must aiso, by the
hnearity of ‘1”. This simpIe observation was first made by Kronecker, and gives us
an eIegant, if expensive, way to check for low order reIations.

Given the sequence (I”), define the function

(6. I)

Clearly, if (r) is divisible by p, then N(r) = 0 (mod@. Assume that (r) is not divisible
by p: then the sequence (r) satisfies a relation of degree less than k if and only if
~(~) = 0.

This completes our characterization of sequences with short periods. In the next
section, we shcaw how to avoid such sequences.

When creating a Fibona~~i random number generator, we must seferrct the
modulus, the degree, and the initiaf vector. We consider each in turn.

The period of the Fibonacci random number generator 157

7.1. Choice of modulus AL4

Random number generators often use a modulus M = 2”, where a is the length
of a machine register. This gives a large modulus, to allow long periods, and allows
a simple way to reduce the random number ri (mod M). If we have ri expressed as
a result plus overflow, we produce ri (mod M) by discarding the overflow. As
Knuth [12] points out so forcefully, we should not turn to a modulus of 2” out of
sloth, when a modulus of 2a t 1 is as convenient to work with, and much more
‘random’ in the least significant bits. As an example, we use a modulus of 2’- 1.
Since the Fibonacci generator adds integers, the sum can always be held in one
register plus an overflow bit. To produce ri, we simple add the overflow bit back
into the register.

Corollary 5 shows that the cho.,, ire of a power of a prime for a modulus can lead
to smaller periods. A new prime p can lengthen the period by a factor of pk - 1,
while each additional power of the prime p contributes at most one factor of p to
lengthen the period. Consider two examples: first let M = 2t6 and then let M =
2i6 - 1. If k = 3, then the period, mod 2 of(w) is 7, and the period of (w) mod 4 is larger,
so the period of (w) over ZM is 7 x 215 = 229,376 by Corollary 5. However, 216- 1 =
3 x 5 x 17 x 257. If we compute the length of the unit sequence mod each prime, we
find that the period of the sequence (w) mod 2j6- 1 is lcm(8,31,288,66307) =
591,988,896, three orders of magnitude larger. As we increase the degree k, the
calculations become harder to make, but the magnitude of the difference increases.

If a power of two must be used, a simple modification will remove one cause of
short periods. We pick the first k- 1 integers of v using a Lehmer RNG, and then
pick an odd integer for the last place. This assures us that ph v, but does not prevent
v from satisfing a relation of low order. However, if the characteristic polynomial
is irreducible, this simple expedient will guarentee a maximal period.

7.2. Choice of degree k

Green, Smith and Klem [7] suggest that k be at least 16, but they are concerned
over the amount of memory that this will use. In this time of cheap memory, the
user will wish to pick k 2 16.

If it is known that the pseudo-random numbers are to be used modulo a particular
prime factor of M, it is wise to be sure that the sequence behaves well with respect
to this prime, even at the expense of other primes. We may wish to pick k so that
the characteristic polynomial, f(x), is irreducible, or primitive, mod several of the
primes in the factorization of M.

Another approach is to follow numerous suggestions, and use a two-term additive
congruential generator that has a well behaved characteristic polynomial.

7.3. Choice of initial vector v

Assume that we have selected M and k. To pick an initial vector v with the max-

imal period, it is sufficient, though not necessary, that pi 1 v for each prime factor
pi of M and that (v) satisfies no relation of degree less than k.

One strategy would be to pick a vector v using the system clock and another
pseudo-random generator, and calculate the k x k determinant N(r) to check both
conditions. Since k will be large, this is an unattractive technique for a generator
designed to eleminate multiplications. We turn to an alternate method of picking
‘random’ vectors, each of which will satisfy the conditions above.

We assume that there are t distinct prime factors, and that k 1 t. The algorithm
can be modified quite easily to deal with the general situation. We define a set S
of k vectors in the unit sequence, and pick a distinct vector vi based on some ele-
ment of S for each prime factor pi of M. We then build a vector v 5 ui (mod&).
This can be done in O(rEr+ t) time and space, using Garner’s constructive proof of
the Chinese remainder Theorem (see Mnuth [12]). We compute, when designing the
generator, constants U;: so that

q. = ~5~ (modpy),

or Ui = 1 (modp?), and Q = 0 (mod p?) if j f: i. Then we let

v =: C &Vi (modM).

In thealgorithm below, we let S = {(I,O,~~.,O),(O,I ,..., 0) ,... JO,0 ,... t I)},kvectors
in the unit sequence? For each prime pi, we pick an element si E S, a random unit
Ui E Z& and let vi = UiSje It is easy to see that the sequence generated by vi has
maximal Iehrzth, mod&Q. This allows us

distinct initial vectors, ample for most applications. In our case, with k = 16, and
M = 216- 1, this allows 1.4 x 10’ different initial vectors.

Our choice yields a vector with k- t O’s, and thus the first crop of numbers will
contain several duplicate numbers. The ability to produce duplicates is one of the
strengths of this generator, but it is unpleasant to encounter them so soon. To avoid
this, we run the generator k times to prime the pump.

If M contains a square pi;, we can modify v by adding a vector of the form
~~i~~Si where t E Zp,, and si E S. This does not alter the period, but increases the
supply of initial vectors.

It may be preferable to use a vector Vj that satisfies a relation of lower degree
over Zpj, if the C&T+=+ ‘,. - ..,tic polynomial has a primitive factor of large degree.
Primitive polynomials have a better distribution of digits over ZP. (Compare the
unit sequence (w) to the sequence (z) in Table 1: sequence (z) satisfies the primitive
polynomial x2+x+ 2.) We simply define another set S’ to be used to pick Vj, con-

2 This is the only place that our algorithm uses properties unique to the Fibonacci generators For
general additive generators, we could use the first few terms of the appropriate unit sequence,

The period of the Fibonacci random number generator 159

taining vectors s that satisfy the primitive polynomial.
We present a program fragment in Pascal that implements our random number

generator, with a choice of A4 = 2a - 1. We assume that a file params exists which
contains the prime factors of A4, as we!1 as the constants Ui. We have written the
generator in a high-level language for clarity: in practice, we would code this in
machine language or micro code. Since standard Pascal does not provide a random
number generator, we assume an implementation of some random number gener-
ator: in this example, we have used a Lehmer RNG. Since we cannot trap the
overflow condition in Pascal, we assume further a function mult that multiplies in-
tegers in Pascal. This is needed by the function Lehmer, and is also used by random-
i?li,t.

const
modulus = 25
degree = k;

type
index = °ree;
vector = array [O=* degree] of integer;

va2
seed: integer; (*Global variable for Lehmer RNG *)
0; (*Last k random numbers *)

Pi (*Prime factors of modulus *)
U: vector; (*W[i] s 8Q (mod pi)*)
rand-index: index; (*Index into vector u *)
params: text; (*File with parameters *)

function random: integer;
(*Compute the next random number*)

var i: integer;
begin

i := rand-index;
rand-index : = (rand-index + 1) mod k;
u[rand-index] : = (u[rand-index] + u[i]) HW
random : = u [rand-index] ;

end;

function mult (p, q: integer): integer;
(*Multiply without overflow *)

function Lehmer (max: integer): integer;
(*Use a Lehmer random number generator to alter global seed *)
(*Return a number in the range &nrax - I*)

160 JB. Parker

begin
seed : = (mult (seed, mu!tiplier) + increment) mod modulus;
Lehmer : = trunc ((seed/modulus) * max);

end;

procedure random-init (var v: vector; var j: integer);
(*Set up the vector v, as proposed in [7] *)

var
S: set of O==degree
pick; (*index of non-zero entry of vi*)
. . 1, (*Loop var*)
num-factors; (*Number of prime factors of m *)
temp: integer; (*Temp variable *)

begin
readln (params, num-factors);

for i : = 1 to num-factors do
readln (params, p [i], U [i]);

seed : = clock mod modulus;
S:= [O*=degree - 11;

(*Read the number of prime
factors *)

(*Read prime factors and
constants *)

(*Set seed to the system clock *)
(*Set of vectors *)

for

for

for

end;

i := to degree do (*Assume degree > num-factors *)
v[i] = 0;

i := 1 to num-factors do
begin (*compute v = vi*)

pick : = Lehmer (degree); (*Return number in range
O==degree - 1 *)

while not (pick in S) do (*Find n.ew Si*)
pick : = (pick + 1) mod degree;

S : = S - [pick];
(*Vi=Si X UiXUnit*)

v[pick] : = mult(U[i j, Lehmer(p[i] - 1) + 1) mod modulus;
end;
i := 1 to degree do
temp : = random; (*Spin the wheel k times*)
(* random-init *)

mpirical tests for randomness

Green et al. 17) apply the frequency test, the ‘poker’ test, tests for serial correla-
tions, and the run test to the Fibonacci RNG. To give the reader a feeling for the
strengths and weaknesses of the generator, we will present a comparison of the

The period of the Fibonacci random number generator 161

3-space uniformity of the Lehmer RNG and the Fibonacci RNG, and look at the
performance of the Fibonacci RNG on the run test.

8. I. Distribu tim tests

To demonstrate the ii-space non-uniformity of the Lehmer generator, we used the
Lehmer and the Fibonacci RNGs to generate vectors in 3-space, and then evaluated
the distribution using a standard x2 (chi-square) test. In each test, we generated sets
of 30,000 numbers. We scaled the numbers to lie within the range 0*=9 by division,
to use the most significant bits of the integers generated. We then took 10,000 triples
of these decimal digits, and tabulated the frequency of each triple. We tested the
resulting distribution with a x2 test with 999 degrees of freedom, and compare with
the expected value of 999. This test does not show the Lehmer generator to any great
advantage.

We ran 25 such test of the Fibonacci RNG: none were significant at the 5% level:
the extreme values were 912.2 and 1057.0. We also ran 25 trials of the Lehmer RNG:
the smallest value was 71,792.4, two orders of magnitude larger than the expected
value. We can conclude that the Lehmer RNG is not n-space uniform, and that the
Fibonacci RNG may be, for n < k.

8.2. Hun tests

Of all the standard empirical tests, the run test gives the Fibonacci generator the
greatest difficulty. The run test counts the frequency of ‘runs’ of different lengths.
A run up (down) is a sequence of ascending (descending) numbers. The generator
of degree 2 produces too many long runs up, and too few long runs down. We have
applied the run test to our generator, and we present some typical test results in the
following figures.

Our tests consisted of the following steps: a degree was chosen, the RNG initializ-
ed, and 10,000 random numbers were generated. In counting runs, we discard the
number that ends a run, to avoid interdependence between the number of runs of
different lengths. We kept track of the number of runs up (down) of length 1
through 5, and lumped the number of runs of length 6 or greater into one count.
These counts were tabulated, and compared to the expected distribution using a x2
test with five degrees of freedom. Each set of 10,000 numbers gives us two data
points in the later figures: the x2 values for runs up and runs down.

WC list the degree of the generator on the x-axis, and plot the results of the x2
test on the y-axis. First we display (see Fig. 1) the results of the ordinary Fibonaeci
generator with small degrees and no decimation. The results are two orders of
magnitude higher than the expected value.

The results improve as we increase the degree. In order to view the distribution
better, we next present (see Fig. 2) the results of 25 tests up and down for even
degree from 10 to 24. (Odd degrees produced similar results.) These values are plot-
ted as points in the figures, with the points representing the ascending runs position-

162

800

0
3 4 5 6 7 8

Degree

Fig. I. Fibonacci generator without decimation.

ed the right of the points representing descending runs. A standard table of the x2
distribution with five degrees of freedom was used to mark they-axis in the figures.

In Fig. 3, we plot the results of the generator modified to include decimation.
Every other number is discarded. As may be seen, there is an improvement when
the degree is large, but the most dramatic improvement is for small degrees.

9. Conclusion

The generalized Fibonacci random number generator is a fast random number
generator which may be used to produce sequences with a very large period. The
generator may be n-space uniform, if n is less than the degree k. We have presented
an algorithm that assures a lung period for the generator, while allowing many dif-

30&J--- -

1
. .

20
4

.

I .

Fig. 2. Fjbona~ci generator without decimation.

The period of the Fibonacci random number gmerator 163

3oT-----

10

Degree

Fig. 3. Fibonacci generator with decimation.

ferent initial values. A long period does not guarantee randomness, but we have
shown that a modest increase in the degree of the generator, coupled with decima-
tion, provides greatly improved performance on the run test.

We need not remind the reader that caution is important in the use of any
pseudo-random number generator. Empirical testing can discover non-random-
ness, but cannot prove randomness. Before recommending the adoption of the
Fibonacci RNG, we will need to better understand and certify the behavior of tuples
(Ti, ri+ 1, l **ri+j_ *) E Vi*

In closing, we would like to thank the valiant efforts of the referee, whose com-
ments and questions greatly improved the presentation.

References

111
121

131

141

PI

161

VI

P. Bratley, B.L. Fox and L.E. Schrage, A Guide to Simulation (Springer, New York, 1983).
H.S. Bright and R.L. Enison, Quasi-random number sequences, Computing Surveys 11 (4) (1979)
357-370.
J.M. Carrol, and P.M. McLelland, Fast infinite-key privacy transformation for resource-sharing
systems, Proc. 1970 AFIPS Fall Jt. Computer Conf., Vol. 37 (AFIPS Press, Arlington, VA)
223-230.
R.R. Coveyou and R.D. MacPherson, Fourier analysis of uniform random number generators,
J. ACM 14 (1) (Jan. 1967) 100-119.
U. Dieter, Linear congruential method, in: Applications of humber Theory to Numerical Analysis
(Academic Press, New York, 1972).
H.J.A. Duparc, C.G. Lekkerkerker and W. Peremans, Reduced sequences of integers and pseudo-
random numbers, Math. Centrum, Amsterdam, Report ZW1953-002, 1953.
B.F. Green, J.E.K. Smith and L. Kiem, Empirical tests of an additive random number generator,
J. ACM 6 (1959) 527-537.

164 J. D. Parker

[8] M. Hall, An isomorphism between linear recurring sequences and algebraic rings, AMS Trans. 44
(1938) 1196-Slf?,

f9~ B. Jansson, Random Number Generators (Victor Pettersons Bokindustri Aktieboiag, Stockholm,

1966).
[iO] M.G. Kendall and B. Babington Smith, Randomness and random sampling numbers, J.R.S.S. (A)

101 (1938) 167-172.
[I l] D.E. Knuth, Construction of a random sequence, BIT 5 (1965) 246-250.
ft2f DE. Knuth, Art of Computer Programming - Vol. 2: Seminumerica~ Algo~thms (Addi~n-

Wesley, Reading, MA, 1%9).
fl3] D.H. Lehmer, Mathematical methods in large-scale computing units, Proc. 2nd Sym~sium on

Large Scale Digital Calculating Machinery (Harvard Univ. Press, 1949) 141-146, MR 13 # 146.
ji4] T.G. Lewis and W.H. Payne, Genera&d feedback shift register pseudorandom number algorithm,

J. ACM 20 (3) (0973) 456-468.
[IS] G. Marsaglia, Random numbers fail mainly on the pianes, Proc. Nat. Acad. Sci. 61 (1) (Sept. 1968)

25-28.
f 163 E.R. Sowey, A chronoglogical and classified bibliograpy in random number generation and testing,

Int. Stat. Rev. 40 (3) (1972) 355-371.
1171 R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1983).
[18] 0. Tausky and J. Todd, Generation of random numbers on computers, in: H.A. Meyer, ed., Sym-

posium on Monte Carlo Methods (Wiley, New York, 19563 323-337.
1191 R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comput.

19 (1%5) 201-2u9.
[20] L.H.C. Tippett, Random sampling numbers, 1927. Reprinted in 1952, Tracts for Computers,

no. 15, (Cambridge Univ. Press, Cambridge).
1213 N. Zierler, Em--- ttii recurring sequences, SLAM J. 7 (1959) 31-48.

