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a b s t r a c t

We consider a deconvolution model for 3D periodic flows. We show the existence of a
global attractor for the model.
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1. Introduction

This note is concerned with the deconvolution model of order N introduced in [6] (model (2.7)) for 3D periodic flows.
This model takes inspiration from the class of the so called α-models (see [2,4] and references therein) and also from the
class of ADMmodels (see in [7]). We are interested in the question of the existence of a global attractor for this model.
The question of attractors has already been considered for the alpha model (see [1]) corresponding to the case N = 0.

We prove in this work the existence of an attractor for each N (see Theorem 3.1).
In order to make this work self-contained, we describe carefully how the deconvolution model is constructed. Next, we

recall basic notions for the attractors, notions that can be found in the book of Temam (see [8]). Finallyweprove the existence
of the attractor. The question of its dimension is under examination.

2. The deconvolution model

2.1. Function spaces

For s ∈ R, let us define the space function

Hs =

{
w =

∑
k

ŵeik·x, ∇ ·w = 0, ŵ(0) = 0,
∑
k
|k|2s|ŵ(k, t)|2 <∞

}
. (2.1)

We define the Hs norms by

‖w‖2s =
∑
k
|k|2s|ŵ(k, t)|2, (2.2)
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where of course ‖w‖20 = ‖w‖
2. It can be shown that when s is an integer, ‖w‖2s = ‖∇

sw‖2 (see [3]).
We denote by PL the Helmholtz–Leray orthogonal projection of (L2)3 onto H0 and by A the Stokes operator defined by

A = −PL4 on D(A) = H0 ∩ (H2)3. We note that in the space-periodic case, Aw = −4w for allw ∈ D(A).
The operator A−1 is a self-adjoint positive definite compact operator from Hs onto Hs, for s = 1 and s = 2 (see [5]). We

denote as λ1 the smallest eigenvalue of A.
We introduce the trilinear form b, defined by

b(u, v,w) =
∑
i,j

∫
Ω

ui∂ivjwjdx. (2.3)

wherever the integrals make sense. Note that b(u,w,w) = 0 when ∇ · u = 0.

2.2. The filter and the deconvolution process

Letw ∈ H0 andw ∈ H1 be the unique solution to the following Stokes problem with periodic boundary conditions:

− δ24w+w+∇r = w in R3, ∇ ·w = 0,
∫
Ω

w = 0. (2.4)

We denote the filtering operation by G, so w = Gw. Writing w(x, t) =
∑

k ŵ(k, t)e
−ik·x, it is easily seen that ∇r = 0 and

w(x, t) =
∑

k
ŵ(k,t)
1+δ2|k|2 e

−ik·x. Then writing w = G(w), we see that in the corresponding spaces of the type Hs, the transfer
function of G, denoted by Ĝ, is the function Ĝ(k) = 1

1+δ2|k|2 , and we also can write on the Hs type spaces

− δ24w+w = w in R3, ∇ ·w = 0,
∫
Ω

w = 0. (2.5)

The procedure of deconvolution by the Van Citter approximation is described in [6]. This yields the operator DNw =∑N
n=0(I − G)

nw.

Definition 2.1. The truncation operator HN : Hs → Hs is defined by HNw := DNw = (DN ◦ G)w. �

Note that for any s > 0 we have the following properties (see [6]):

‖HNw‖s 6 ‖w‖s , ‖HNw‖s+2 6 C(δ,N) ‖w‖s . (2.6)

2.3. The model

Let u0 ∈ H0, f ∈ H−1. For δ > 0, let the averaging be defined by (2.4). The problem that we consider is the following: for
a fixed T > 0, find (w, q)where

w ∈ L2([0, T ],H1) ∩ L∞([0, T ],H0), ∂tw ∈ L2([0, T ],H−1)
q ∈ L2([0, T ], L2per,0),
∂tw+ (HN(w) · ∇)w− ν4w+∇q = HN(f) inD ′([0, T ] × R3),
w(x, 0) = HN(u0) = w0.

(2.7)

where L2per,0 denotes the scalar fields in L
2
loc(R

3), 2π-periodic with zero mean value. We prove in [6] the following result.

Theorem 2.1. Problem (2.7) admits a unique solution (w, q), w ∈ L∞([0, T ],H1) ∩ L2([0, T ],H2), and the following energy
equality holds:

1
2
‖w(t)‖2 + ν

∫ t

0

∫
Ω

|∇w|2dxdt ′ =
1
2
‖HN(u0)‖2 +

∫ t

0

∫
Ω

HN(f).w dxdt ′. � (2.8)
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3. Main result

3.1. Recalling basic notions for attractors

We denote by w(t, ·) = S(t)(w0) the (unique) solution of system (2.7) at time t . We recall the definitions of a global
attractor and an absorbing set (see in [8]).

Definition 3.1. We say thatA ⊂ H0 is a global attractor for the dynamical system (2.7) if and only if
(P1)A is compact in the space H0,
(P2) ∀ t ∈ R, S(t)(A) ⊂ A,
(P3) for every bounded subset B ⊂ H0, ρ(S(t)(B),A) goes to zero when t goes to infinity, where ρ(S(t)(B),A) =

supv∈B infu∈A ‖u− v‖. �

Definition 3.2. 1. A set A ⊂ H0 is an absorbing set if and only if for every bounded subset B ⊂ H0 there exists t1 > 0 such
that for all t ≥ t1 one has S(t)(B) ⊂ A.
2. We say that the semi-group S(t) is uniformly compact if and only if for every bounded subset B ⊂ H0 there exists

t2 = t2(B) such that
⋃
t≥t2
S(t)(B) is compact.

3. We denote by ω(A) the set ω(A) =
⋂
s≥0
⋃
t≥s S(t)(A). �

Proposition 3.1. Assume that there exists an absorbing bounded set A and that the semi-group S(t) is uniformly compact; then
A = ω(A) is the global attractor for the dynamical system defined by S(t).

See the proof in [8].

3.2. Existence of a global attractor

We are now in a position to state and prove the main result of this note.

Theorem 3.1. The system (2.7) has a global attractor. �

Proof. Thanks to Proposition 3.1, it remains to prove that system (2.7) has an absorbing set and that S(t) is uniformly
compact, in the sense of Definition 3.2. Both results are derived from basic estimates that we detail in the following.
Absorbing set in H0: We take the inner product of the first equation of system (2.7) withw to obtain

1
2
d
dt
‖w‖2 + b(HN(w),w,w)+ ν‖w‖21 = (HN(f),w). (3.1)

Observing that b(HN(w),w,w) = 0 due to ∇ · HN(w) = 0, applying the Young inequality and the Poincare’ inequality

‖w‖ 6 λ
−
1
2

1 ‖w‖1, and using (2.6), we are left with

d
dt
‖w‖2 + νλ1‖w‖2 6

1
νλ1
‖f‖2 . (3.2)

So, noting ρ0 = 1
νλ1
‖f‖ and applying the Gronwall lemma, we obtain

‖w‖2 6 ‖w0‖2 e−νλ1t + ρ20 (1− e
−νλ1t). (3.3)

Consideringw0 included in a ball B(0, R) and choosing ρ ′0 > ρ0, the previous inequality implies that, for t > T0,

‖w(t)‖2 < ρ ′0
2
, with T0 =

1
νλ1
ln

R2

ρ ′0
2
− ρ02

. (3.4)

Since each bounded set of H0 is included in a ball B(0, R), one deduces that B(0, ρ ′0) is an absorbing set in H0.
Moreover, as an alternative to (3.2) we may obtain

d
dt
‖w‖2 + ν‖w‖21 6

1
νλ1
‖f‖2 . (3.5)

Integrating between t and t + r , we observe that, for u0 ∈ B(0, R), ρ ′0 > ρ0 and t > T0

(
with T0 = 1

νλ1
ln R2

ρ′0
2
−ρ02

)
,

∫ t+r

t
‖w(s)‖21 ds 6

r
ν2λ1
‖f‖2 +

ρ ′0
2

ν
. (3.6)
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Absorbing set in H1: We take now the inner product of the first equation of system (2.7) with Aw to obtain

1
2
d
dt
‖w‖21 + b(HN(w),w, Aw)+ ν‖Aw‖

2
= (HN(f), Aw), (3.7)

leading to

1
2
d
dt
‖w‖21 ++ν‖Aw‖

2 6
1
ν
‖HN(f)‖2 +

ν

4
‖Aw‖2 + |b(HN(w),w, Aw)|, (3.8)

The trilinear form b satisfies the following inequality (see [6]):

|b(u, v,w)| 6 c ′ ‖u‖1/4 ‖u‖3/41 ‖v‖
1/4
1 ‖Av‖

3/4
‖w‖ . (3.9)

Therefore, one has

|b(HN(w),w, Aw)| 6 c ′ ‖HN(w)‖1/4 ‖HN(w)‖
3/4
1 ‖w‖

1/4
1 ‖Aw‖

7/4 . (3.10)

Using (2.6) we have ‖HN(w)‖1 6 ‖HN(w)‖2 6 C(δ,N) ‖w‖ and using (2.6),

|b(HN(w),w, Aw)| 6 C ′(δ,N) ‖w‖ ‖w‖
1/4
1 ‖Aw‖

7/4 . (3.11)

By the Young inequality we obtain

|b(HN(w),w, Aw)| 6
ν

4
‖Aw‖2 +

C1(δ,N)
2
‖w‖8 ‖w‖21 , (3.12)

and thus

d
dt
‖w‖21 + ν‖Aw‖

2 6
2
ν
‖HN(f)‖2 + C1(δ,N) ‖w‖8 ‖w‖21 (3.13)

We now use a Gronwall type proposition (see the proof in [8]): �

Proposition 3.2. Assume that y, g and h are positive, locally integrable functions on ]t0,+∞[, and that for t > t0,

dy
dt
6 gy+ h,

∫ t+r

t
y(s)ds 6 k1,

∫ t+r

t
g(s)ds,6 k2,

∫ t+r

t
h(s)ds 6 k3,

where r, k1, k2, k3 are four positive constants; then

y(t + r) 6
(
k1
r
+ k3

)
ek2 , ∀t > t0. �

We can now finish the proof. Thanks to (3.4) and (3.6), using this lemma with y = ‖w‖21 , g = C1(δ,N) ‖w‖
8 and

h = 2
ν
‖HN(f)‖2, we obtain

‖w(t)‖21 6
(
k1
r
+ k3

)
ek2 , ∀t > T0 + r, (3.14)

with k1 = r
ν2λ1
‖f‖2 + 1

ν
ρ ′0
2, k2 = C1(δ,N)ρ ′0

8, k3 = 2r
ν
‖f‖2.

Thus, after a time T1 = T1 (‖w0‖ , ‖f‖ , ν), w is included in a ball of radius R = R (‖f‖ , ν, δ,N). One deduces that there
exists an absorbing set in H1.
Let B be a bounded set in H1. Estimate (3.14) implies that

⋃
t≥T0+r

S(t)B is a bounded set in H1 which is compactly
imbedded in H0, so S(t) is uniformly compact. Estimate (3.14) also implies the existence of an absorbing bounded set since
k1, k2 and k3 are independent ofw0. Thanks to (3.1), this achieves the proof of the theorem. �
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