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Oligosaccharide and Glycoprotein Microarrays
as Tools in HIV Glycobiology:
Glycan-Dependent gp120/Protein Interactions

brane. This sequence of events actuates internalization
of HIV by the host cell.

The high spatial density of gp120 on the virion surface
makes it the primary target of the humoral immune re-
sponse to HIV [2, 3]. Accordingly, most vaccine design
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ETH Hönggerberg/HCI F 315 “self” or nonimmunogenic, thereby preventing a rigor-

ous antibody response. A notable exception to this im-Wolfgang-Pauli-Strasse 10
CH-8093 Zürich munological tolerance of high-mannose oligosaccha-

rides is the human monoclonal antibody 2G12, which isSwitzerland
capable of binding Man�1-2Man-presenting oligosac-
charide clusters with nanomolar affinity [6, 7].

Besides immunological means of decreasing viralSummary
spread, small molecule inhibitors and HIV binding pro-
teins are being explored as prophylactic measures toDefining HIV envelope glycoprotein interactions with

host factors or binding partners advances our under- prevent HIV entry [8, 9]. High-throughput screens of
natural products derived from Cyanobacteria havestanding of the infectious process and provides a basis

for the design of vaccines and agents that interfere yielded a number of promising anti-HIV agents capable
of inhibiting viral entry into host cells. One of thesewith HIV entry. Here we employ carbohydrate and gly-

coprotein microarrays to analyze glycan-dependent compounds, cyanovirin-N, an 11 kDa protein, achieves
its antiviral activity by binding the high-mannose oligo-gp120-protein interactions. In concert with new linking

chemistries and synthetic methods, the carbohydrate saccharides present on HIV gp120 [10, 11]. This interac-
tion is thought to prevent gp120’s receptor binding do-arrays combine the advantages of microarray technol-

ogy with the flexibility and precision afforded by or- mains from interacting with their targets; alternatively,
conformational changes in the glycoprotein subsequentganic synthesis. With these microarrays, we individu-

ally and competitively determined the binding profiles to CVN binding may render these binding domains func-
tionally inactive. As most cell-surface and secreted gly-of five gp120 binding proteins, established the carbo-

hydrate structural requirements for these interactions, coproteins undergo processing in the Golgi, extensively
modifying N-linked oligosaccharides, CVN is likely toand identified a potential strategy for HIV vaccine de-

velopment. target virus-associated oligosaccharide but not endoge-
nous glycoprotein. This has been demonstrated by
in vivo prophylaxis studies with CVN that have not shownIntroduction
any adverse effects upon host physiology [12].

While the density of carbohydrate present on gp120The HIV-1 envelope glycoproteins gp120 and gp41 are
important molecular targets for developing therapies prevents efficient generation of potent, neutralizing anti-

bodies, these same oligosaccharides may be viewed asaimed at decreasing patients’ viral loads and for prophy-
laxis in preventing viral transmission. gp120 noncova- targets for a new class of anti-HIV agents. Thus, a de-

tailed analysis of HIV-glycans will help define the immu-lently associates with gp41 which resides in the external
nology of HIV as well as guide efforts toward prophy-viral membrane. This heterodimer further associates to
laxis. Tools that easily identify additional biologicallyform a functional trimer (for review of the HIV infectious
relevant carbohydrate/protein interactions will aid theseprocess, see [1] and [2]). These trimers initiate viral entry
investigations. We and others have recently developedby interactions with CD4 molecules and members of the
high-density carbohydrate microarrays for the high-chemokine receptor family (primarily CCR5 and CXCR4)
throughput analysis of carbohydrate-protein interac-present on T lymphocytes, macrophages, dendritic
tions [14, 15]. (For a review of different carbohydratecells, and brain microglia. Binding of CD4 induces con-
arrays described to date, see [13].) These miniaturizedformational changes in gp120 that reveal a chemokine
assays substantially decrease the amount of carbohy-receptor binding domain. Subsequent gp120-chemo-
drate required for immobilization, in addition to the vol-kine receptor interactions unmask gp41 and enable the
ume and quantity of analyte to be studied. Furthermore,exposed fusion peptide to insert into the host cell mem-
fluorescence-based detection allows multiple binding
events to be analyzed simultaneously. Here, we exploit*Correspondence: seeberger@org.chem.ethz.ch
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teins. Coincubation of each protein with (Man)9(GlcNAc)2

successfully inhibited the respective interactions with
gp120 (data not shown) in accordance with the known
specificities of these proteins. Coincubation of these
same carbohydrate structures did not affect CD4 bind-
ing to gp120 (data not shown). All five proteins were
also shown to interact with gp41. These interactions
were inhibited by coincubation with (Man)9(GlcNAc)2 ex-
cept in the case of CD4. While recognition of the high-
mannose oligosaccharides on gp41 [18] has been de-
scribed for CVN [19] and scytovirin [17], this is the first
demonstration of gp41 binding by DC-SIGN and 2G12.
The physiological relevance of the observed g41 binding
by DC-SIGN requires further study as it has not yet been
determined if gp41 is exposed upon DC-SIGN-gp120
interactions. It also remains to be determined whether
interactions between 2G12 and exposed gp41 can effec-
tively inhibit viral entry. Pending further experimentation,
speculation on the biological significance of these find-
ings would be premature.

In order to determine if any of the aforementioned
glycan-dependent gp120 binding proteins could inhibit
CD4-gp120 interactions, we took advantage of our fluo-
rescence-based detection system to conduct a series of
sequential incubations with fluorophore-labeled binding
partners. In these experiments, soluble CD4 was incu-
bated with the glycoprotein microarray followed by one
of the potential inhibitors. Thereafter, CD4 was detected

Figure 1. Analyzing Glycoprotein Binding Individually and Competi-
with a fluorophore-labeled anti-CD4 monoclonal anti-tively
body (independent control incubation with anti-CD4 re-(A) Glycoprotein microarrays (including deglycosylated gp120, p120)
vealed little to no nonspecific binding; data not shown).were incubated with fluorophore-labeled proteins, and binding
Alternatively, soluble CD4 was added to the arrays onlyevents were detected with a DNA-microarray scanner.

(B) A glycoprotein array (plus p120) incubated with CD4 (25 �g/ml) after preincubation with potential inhibitors. In agree-
and then coumarin-CV-N (25 �g/ml) analyzed for displacement of ment with previous studies, we observed that CD4
CD4 binding by CV-N. bound gp120 pretreated with CVN, indicating that CVN

does not block or disrupt the CD4 binding site on gp120
[20]. Remarkably, however, we observed that CVN com-

the glycan-dependent binding interactions of four gp120 pletely displaced bound CD4 from gp120 pretreated
binding proteins: the dendritic cell lectin DC-SIGN [16], with soluble CD4 (Figure 1B). CD4 bound to nonglycosy-
the antibody 2G12, cyanovirin-N, and a recently identi- lated gp120 (p120) was not disrupted by incubation with
fied anti-HIV protein, scytovirin [17]. We also investigate CVN, indicating the glycan-dependent nature of CVN’s
the nonglycan-dependent interactions of CD4 with mode of action. Previous mechanistic explanations for
gp120 in the presence of these potential inhibitors. CVN’s potent inhibitory properties postulated that CVN

may form aggregates on the virion surface that prevent
Results and Discussion membrane-bound receptors from interacting with their

respective gp120 binding domains [20]. Our findings
Initially, we sought to determine if the glycan binding suggest a new mechanism in which treatment of cell-
profiles of the above proteins are dependent on the associated (i.e., CD4-bound) gp120 with CVN induces
polypeptide backbone to which the high-mannose oligo- conformational changes in gp120 that disrupt existing
saccharides are appended. To evaluate the role of the gp120-CD4 interactions. As our experiments were con-
polypeptide backbone, microarrays bearing natural and ducted with soluble CD4 and immobilized gp120, addi-
modified glycoproteins as well as neoglycoproteins tional inhibition experiments with cell-associated CD4
were fabricated by reacting amine-modified glass slides and whole virion are needed to support this new mech-
with ethylene-glycol disuccinimide to form a hydrophilic, anism.
amine-reactive surface. Proteins were arrayed at high Neoglycoproteins were employed to study the peptide
density on these functionalized surfaces with a contact- context in which glycans are presented. Ovalbumin, a
printing robot and incubated overnight in a humidity glycoprotein bearing both hybrid and complex-type oli-
chamber. The slides were subsequently quenched in a gosaccharides, is not bound by any of the proteins. In
solution of bovine serum albumin to inactivate remaining contrast, ovalbumin modified with high-mannose oligo-
succinimidyl groups. Each slide was incubated with one saccharide 1 (ova-1) via a nonnatural linkage is bound
fluorophore-labeled protein, washed, and scanned to by DC-SIGN, CVN, scytovirin, and, to a lesser extent,
establish binding (Figure 1A). 2G12. This observation suggests that carbohydrate rec-

ognition by these proteins is largely insensitive to theAs anticipated, gp120 is bound by each of the pro-
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Figure 2. High-Mannose Oligosaccharide 1 and Synthetic Substructures Utilized in This Study

Stereochemistry as indicated at reducing end. The branched outer-trimannoside unique to high-mannose oligosaccharides is highlighted in
blue. Reducing-end stereochemistry accurately represented by –R.

underlying polypeptide chain, supporting the notion that antibody binding at spots corresponding to oligosac-
charides 1, 2, 4, and 5, but not to the branched trimanno-the density of the displayed carbohydrate determines

binding [21]. side 3 or mannose 6 (Figure 3A). The only structural
motif in common for oligosaccharides 4 and 5 is theThe observed binding of 2G12 to ova-1 prompted

us to investigate whether 2G12 would bind arrays of Man�1-2Man linkage, suggesting that this glycosidic
linkage alone is necessary for recognition by 2G12.oligosaccharides. Epitope mapping studies with 2G12

have shown that it binds a conserved group of N-linked Based on the observation that incubation of gp120 with
a �1-2 mannosidase greatly diminished 2G12 binding,high-mannose oligosaccharides present on gp120,

making it an effective neutralizing antibody against a previous studies [6, 22] concluded that 2G12 recognizes
the Man�1-2Man linkages present in 1. A single microar-number of primary HIV isolates [6]. If 2G12 could bind

high-mannose oligosaccharides in the absence of a ray allowed for rapid confirmation of this structural re-
quirement for 2G12 recognition based on the diversitypeptide backbone, a vaccine composed of clusters of

these oligosaccharides might generate a 2G12-like re- of glycosidic linkages attained by chemical synthesis.
In addition, the microarray enabled direct verificationsponse to gp120 glycans.

2G12-carbohydrate interactions were evaluated with of 2G12 binding to carbohydrates in the absence of a
polypeptide backbone.microarrays of 1 and five other synthetic substructures

related to 1 (Figure 2). By printing the synthetic oligosac- We used our microarrays to study the carbohydrate
recognition profile of the cyanobacterial protein, scyto-charides across a wide range of concentrations, it is

possible to establish the saturation point for observed virin [17]. Scytovirin is a 9.7 kDa protein isolated from
aqueous extracts of the cyanobacterium Scytonema va-binding by a fluorescently-labeled protein (E.W.A. and

D.M.R., unpublished results). At this concentration, a rium. The protein binds gp120, gp160, and gp41 and has
potent anticytopathic activity against primary isolates ofcarbohydrate binding profile can be made for a given

protein by comparing the integrated fluorescence be- HIV-1. Initial studies demonstrated that scytovirin binds
HIV gp120 through a carbohydrate-dependent mecha-tween the spots of different immobilized oligosaccha-

ride. Incubation of 2G12 with the microarray revealed nism that is blocked by soluble (Man)9(GlcNAc)2, and
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Figure 3. Analysis of High-Mannose Binding Proteins with Carbohydrate Microarrays Reveals Structural Requirements for Binding

(A) 2G12, (B) Scytovirin, (C) CVN, (D) DC-SIGN. Each protein was incubated with microarrays bearing carbohydrates 1–7 and analyzed as
described (Experimental Procedures).

(Man)8(GlcNAc)2, but not (Man)7(GlcNAc)2. However, prepared with structures 1–7 and incubated with scyto-
virin, CVN, and 2G12. None of these proteins boundstructural determination has not established which spe-

cific mannose residues are missing from the truncated oligosaccharide 7 (Figures 3B and 3A), confirming the
specificity of 2G12 and CVN for Man�1-2Man linkedhigh-mannan (Man)7(GlcNAc)2.

Analysis of scytovirin’s carbohydrate binding profile saccharides and the necessity of this linkage for recog-
nition of the D3 arm by scytovirin. This mechanism ofwith our microarrays revealed that of all the structures

present, scytovirin bound only 1 and 5 (Figure 3B). This high-mannose oligosaccharide recognition by scytovirin
has not been described for any other high-mannosefinding suggests that the terminal �1-2 mannose linkage

is necessary for recognition of the underlying �1-6 tri- binding protein. On-going NMR and crystallographic
studies should elucidate how scytovirin’s tertiary struc-mannoside moiety unique to the D3 arm. If the Man�1-

6Man linkages alone were sufficient for scytovirin bind- ture dictates specific interactions with the D3 arm.
The dendritic cell lectin DC-SIGN was the last gp120ing, oligosaccharides 2 and 3 also should have been

bound. Likewise, if Man�1-2Man glycosidic linkages binding protein we chose to analyze. This 44 kDa C-type
lectin is expressed by dermal dendritic cells (DCs) inalone were sufficient for recognition by scytovirin, struc-

tures 2 and 4 would have been bound. These results mucosal tissue, by interstitial DCs, and on DCs in the
lymph nodes [24]. While initially shown to be a CD4-suggest that recognition of high-mannose oligosaccha-

rides by scytovirin occurs by a markedly different mech- independent receptor for gp120, recently its role in HIV
pathology became clear. DC-SIGN binds gp120 in aanism than that observed for both 2G12 and CVN. Both

2G12 and CVN bind terminal Man�1-2Man independent carbohydrate-dependent manner via the glycoprotein’s
high-mannose oligosaccharides [24, 25]. This interac-of the underlying linkages found in the D1, D2, and D3

arms (Figures 3A and 3C). tion promotes internalization of virus by the DC to a
nonlysosomal compartment, where HIV appears to beTo confirm the role of the terminal Man�1-2Man glyco-

sidic linkage in binding of the D3 arm by scytovirin, we protected from degradation and remains infectious for
several days [26]. Finally, DC-CD4� T cell interactiontook advantage of our linear synthetic strategy [23] to

prepare 7, a truncated derivative of the D3 arm lacking leads to productive infection of the recipient lym-
phocyte.the terminal Man�1-2Man linkage. Microarrays were
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Some studies of DC-SIGN’s carbohydrate binding Furthermore, our study of 2G12 has definitively demon-
strated that 2G12 can bind high-density arrays ofprofile, including X-ray analysis, suggested that DC-

SIGN specifically recognizes the branched outer triman- Man�1-2Man-containing oligosaccharides in the ab-
sence of a polypeptide backbone. We feel this findingnoside motif of high-mannose oligosaccharides (Figure

2) [25, 27]. However, this lectin is also capable of high- and the synthetic derivatives of 1 employed in the analy-
sis of 2G12 will prove particularly important in aidingaffinity interactions with branched fucosylated struc-

tures, such as the Lewis blood group determinants [28]. the design of carbohydrate-based vaccines aimed at
eliciting a 2G12-like response.We used our arrays to further analyze DC-SIGN-car-

bohydrate interactions and determine the importance
of branched glycosidic linkages for carbohydrate recog- Significance
nition. Incubation of the labeled extracellular domain of
DC-SIGN with carbohydrate arrays bearing structures Utilizing chemistries that permit the precise immo-
1–7 revealed that all structures were bound by DC-SIGN bilization of synthetically defined oligosaccharide
(Figure 3D). The integrated fluorescence signals from structures, this study continues the expansion of mi-
each structure suggests that DC-SIGN binds these car- croarray technology into the burgeoning field of gly-
bohydrates in the following order: 1 � 4 � 5 � 6 � 2 � cobiology. In an effort to go beyond proof-of-concept-
3 � 7. The observation that 3 is bound with less affinity type applications, we demonstrate the potential of
than any of the other branched oligosaccharides is likely carbohydrate microarray analysis by probing the car-
due to the stereochemistry at the reducing end. As noted bohydrate affinity and structural requirements of four
in the crystal structure of DC-SIGN, a �-linkage at the well-known and relevant gp120 binding proteins, and
anomeric carbon of the central mannose residue would the novel HIV-inactivating protein scytovirin. The total
cause substituents at this center to clash with Phe325 synthesis of several unique structural constituents of
[25]. This structural constraint is relieved in 1 and 2 high-mannose oligosaccharides enabled a microar-
where the core mannose of the branched outer triman- ray-based profiling of the binding requirements of
noside moiety (Figure 2) (Man�1-6[Man�1-3]Man) is in these proteins. By including synthetic neoglycopro-
the �-anomeric conformation. teins in the microarrays, additional information was

DC-SIGN’s binding of unbranched oligosaccharides gleaned regarding the importance of the underlying
must be explained by additional protein-carbohydrate peptide context in which glycans are presented to their
interactions. All C-type lectins studied to date bind car- binding partners. The successful application of carbo-
bohydrates through contacts promoted via calcium hydrate microarrays to real world problems in glycobi-
chelation by the 3� and 4� hydroxyl groups of the nonre- ology will be further enhanced as additional linkage
ducing terminal carbohydrate residue [29]. If the un- chemistries provide a wider range of glycans available
branched oligosaccharides 4, 5, and 7 were bound by for study in the microarray format. This will enable
DC-SIGN in this manner, it would be expected that these large-scale screening of interactions where complex
structures plus monosaccharide 6 would be bound with carbohydrates are thought to play a role, akin to the
similar affinities. However, the observed fluorescence whole-proteome screening assays envisaged for pro-
intensities (Figure 3D) indicate that other contacts be- tein microarrays.
tween DC-SIGN’s carbohydrate recognition domain and

Experimental Proceduresoligosaccharides 4, 5, and 7 must occur and account
for the higher affinities observed here.

Preparation of Oligosaccharides 1–7
The inhibition of viral entry is a promising avenue for Sulfhydryl-containing ethylene glycol derivatized oligosaccharides

combating HIV infection [9, 30, 31]. Identifying proteins 1–7 (Figure 2) were prepared by methods analogous to those de-
and small molecules that interfere with HIV host entry scribed in the literature [15, 23]. Structural confirmation was

achieved with NMR, ESI mass spectrometry, and MALDI-TOF massis vital to this pursuit. The glycans of HIV have long been
spectrometry.studied for their involvement in the infectious process,

their antigenicity, and their ability to neutralize the hu-
Maleimide-Functionalization of Amine-Coated (GAPS) Slidesmoral response. It is postulated that an evolving glycan-
and Carbohydrate Microarray Fabrication

shield aids HIV’s evasion of the immune response [32]. Sulfhydryl-reactive slides were prepared in batches of two GAPS
Therefore, the study of agents that bind these glycans, slides (Corning) incubated overnight at room temperature in 45 ml
irrespective of their placement on the polypeptide back- anhydrous N,N-dimethylformamide (DMF, Aldrich), 10 mg succini-

midyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC,bone, can facilitate circumvention of HIV’s evasion
Pierce Endogen) and 880 �l N,N-diisopropylethylamine (Aldrich).mechanisms. Here, we demonstrated the use of carbo-
Slides were washed with 3 volumes methyl alcohol, dried under ahydrate and glycoprotein microarrays for the study of
stream of nitrogen, and stored in a dessicator prior to printing. Thiol-

gp120 binding proteins, and defined the carbohydrate containing oligosaccharides 1–7 were incubated at room tempera-
structural requirements sufficient for binding. ture with 1 equivalent tris-(carboxyethyl)phosphine hydrochloride

Using our microarray platform we have defined the (TCEP, Pierce Endogen) in 1� PBS for 1 hr. The structures were
printed at concentrations ranging from 0.1 mM to 2 mM on malei-binding profile of a novel HIV-inactivating protein, scy-
mide-derivatized GAPS slides using a MicroGrid TAS array printertovirin, and identified a new mechanism of recognition
(30% humidity, 120 �m spots with 300 �m spacing). Printed slidesof high-mannose oligosaccharides. Our study of DC-
were incubated 12 hr in a humidity chamber, washed 2 times withSIGN has elaborated its carbohydrate binding profile to
distilled H2O, and then incubated for 1 hr in 1 mM 2-(2-(2-mercapto-

include unbranched oligosaccharide structures. Analy- ethoxy)ethoxy)ethanol in PBS (50 ml) to quench reactive maleimide
ses of CVN and 2G12 have confirmed the necessity groups. Slides were rinsed with distilled H2O (3 � 50 ml), 95% ethanol

(3 � 50 ml), and stored in a dessicator prior to use.of Man�1-2Man linkages for carbohydrate recognition.
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