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SUMMARY

The balance and distribution of epithelial cell types is
required to maintain tissue homeostasis. A hallmark
of airway diseases is epithelial remodeling, leading
to increased goblet cell numbers and an overproduc-
tion of mucus. In the conducting airway, basal cells
act as progenitors for both secretory and ciliated
cells. To identify mechanisms regulating basal cell
fate, we developed a screenable 3D culture system
of airway epithelial morphogenesis. We performed a
high-throughput screen using a collection of sec-
reted proteins and identified inflammatory cytokines
that specifically biased basal cell differentiation to-
ward a goblet cell fate, culminating in enhanced
mucus production. We also demonstrate a specific
requirement for Notch2 in cytokine-induced goblet
cell metaplasia in vitro and in vivo. We conclude
that inhibition of Notch2 prevents goblet cell meta-
plasia induced by a broad range of stimuli and pro-
pose Notch2 neutralization as a therapeutic strategy
for preventing goblet cell metaplasia in airway
diseases.

INTRODUCTION

The lung epithelium has evolved to serve a number of functions,

ranging from gas exchange in the alveolus to the regulation of

mucus clearance in the larger conducting airways. The heteroge-

neous mix of epithelial cell types enables these functions at the

different levels of the airway. For example, mucin-producing

and secreting goblet cells provide a mucus gel that the multicili-

ated cells propel in a cephalad direction out of the airways,

whereas surfactant-producing type 2 pneumocytes maintain

alveolar patency with type 1 pneumocytes enabling gas ex-

change (Rackley and Stripp, 2012). A greater understanding of
C

the pathways that regulate the function of the epithelium as

well as those which define repair and remodeling in both health

and disease will be integral to our identification of therapeutic

targets to treat respiratory diseases such as severe asthma,

cystic fibrosis, and chronic obstructive pulmonary disease

(COPD).

A key feature common tomany airway diseases is epithelial re-

modeling, leading to an increase in the number of goblet cells

and an overproduction of mucus, called ‘‘goblet cell metaplasia’’

(gcm) (Fahy and Dickey, 2010). An inability to clear the increased

mucus can lead to airflow obstruction, mucostasis, and ulti-

mately death (Hogg et al., 2004; Kuyper et al., 2003; Lange

et al., 1998). Whereas an increase in several cytokines and

growth factors has been associated with airway diseases such

as asthma (Finkelman et al., 2010), only interleukin (IL)-13, and

the closely related cytokine IL-4, acting through a shared recep-

tor, have been shown to directly affect the airway epithelium to

increase goblet cell formation (Atherton et al., 2003; Dabbagh

et al., 1999; Grünig et al., 1998; Kuperman et al., 2002; Laoukili

et al., 2001; Munitz et al., 2008). IL-13 is a key marker of the

‘‘Th2-high’’ asthma phenotype, which is seen in approximately

50% of patients with asthma (Woodruff et al., 2009). A recent

clinical trial with anti-IL-13 antibodies has demonstrated im-

proved airflow in patients with asthma, and this improvement

wasmore pronounced in patients with increased levels of perios-

tin, a downstream target of IL-13 (Corren et al., 2011). The factors

that drive gcm in asthmatics with a ‘‘Th2-low’’ phenotype, as well

as patients with COPD and cystic fibrosis (CF), are less well

defined.

In the present study, we describe the analysis of a method for

the 3D culture of primary human airway basal cells (broncho-

spheres). Developing bronchospheres respond to IL-13 with an

increase in the expression of markers of goblet cells and a

decline in ciliated cell number. We conducted a high-throughput

screen for secreted factors that influence bronchosphere devel-

opment and found a number of proteins that can bias basal cell

differentiation toward a goblet cell fate, thereby altering the

composition of the airway epithelium to produce the goblet cell
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Figure 1. Human Airway Basal Cells Form ‘‘Bronchospheres’’ in 3D Culture

(A) Human airway basal cells were grown overnight in chambered slides and stained for integrin a6 (ITGA6, green), p63 (orange), nerve growth factor receptor

(NGFR) (red), andDNA (blue). Note that all of the cells are positive for the airway basal cell markers ITGA6, p63, and NGFR. The DIC image is shown on the left, and

the overlay is on the right. The scale bar represents 10 mm.

(B) Phase contrast image of day 14 bronchospheres. The scale bar represents 100 mm.

(C) Quantitative PCR analysis of goblet (MUC5AC, MUC5B, and FOXA3), ciliated (FOXJ1 and DNAI2), and basal cell markers (p63 and ITGA6) expressed by

airway basal cells grown on plastic or after 14 days of growth in 3D into bronchospheres. Shown is the average ± SEM of at least four independent donors.

(D) Day 14 bronchospheres were fixed and stained for DNA (blue) and markers of basal cells (p63, red), ciliated cells (acetylated a-tubulin, orange), and goblet

cells (MUC5AC, green). The scale bar represents 50 mm.
metaplasia described in many respiratory diseases. Finally, we

demonstrate that Notch2 is absolutely required for goblet cell

metaplasia in vitro and in vivo. We propose that Notch2 repre-

sents a novel therapeutic target for the prevention of goblet

cell metaplasia in human respiratory diseases such as asthma,

COPD, and CF.

RESULTS

Human Airway Basal Cells Form ‘‘Bronchospheres’’
in 3D Culture
Prior to plating primary human airway basal cells in Matrigel in

3D, we confirmed that they expressed the basal cell markers

p63, nerve growth factor receptor (NGFR), and ITGA6 (Figure 1A).

Immediately after seeding p63+NGFR+ITGA6+ basal cells in Ma-

trigel, the cells aggregated to form balls of cells that continued to

proliferate (Movie S1). Lumen formation initiated between days 8
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and 10 in 3D (Movie S2; Figure S1D), and by day 14, the majority

of structures contained a central lumen (Figure 1B). Immuno-

staining revealed p63+ cells basal to the cells lining the interior

of the cyst, consistent with a pseudostratified structure. In con-

trast, cells lining the central lumen were invariably negative for

Ki67 staining (data not shown). Ciliated cells, detected by acet-

ylated a-tubulin staining, were identified lining the central lumen

(Figure 1D). Furthermore, prior to fixation, the rapid beating of

these cilia could be observed under bright-field conditions

(Movies S3 and S4). In addition to ciliated cells, MUC5AC+ goblet

cells were also identified lining the central lumen (Figure 1D).

MUC5AC+ material was also seen inside of the central lumen

consistent with secretion of mucins by the epithelium in addition

to their storage (Figure 1D). A comparison of the expression of

cell-specific markers by quantitative PCR (qPCR) further high-

lighted the differentiation of the basal cells into a mucociliary

epithelium, with the appearance of markers of ciliated (FOXJ1



and DNAI2) and goblet cells (MUC5AC, MUC5B, and FOXA3;

Figures 1C and S1A–S1C).

With the knowledge that bronchospheres were composed of

at least three cell types, basal, ciliated, and goblet, we asked

whether this heterogeneity was a consequence of mixed popu-

lations of precommitted basal cells forming a bronchosphere

or whether the basal cells were indeed multipotent, as has

been described in themurine trachea (Rock et al., 2009). A clonal

seeding threshold was established to be%75 cells/well of a 384-

well plate using a labeled cell-mixing approach (Figure S1E). At

this seeding density, bronchospheres formed with an approxi-

mately 40% clonal efficiency. Bronchospheres were observed

to be composed of basal, goblet, and ciliated cells, confirming

the multipotent nature of p63+NGFR+ITGA6+ basal cells (Fig-

ure S1F). This provides an example of a 3D system that contains

the human conducting airway progenitor, the airway basal cell,

as well as the twomajor differentiated cell types that it generates,

goblet and ciliated cells, recapitulating the cellular complexity of

the conducting airway.

IL-13 Induces a Mucus Hypersecretory Phenotype in
Bronchospheres
We next asked whether bronchospheres could respond to

established inducers of airway epithelial remodeling. IL-13 has

been shown to be a key mediator of asthmatic phenotypes

(Wills-Karp, 2004), and several groups have demonstrated that

IL-13 acts directly on the epithelium to drive a goblet cell meta-

plasia phenotype (Atherton et al., 2003; Kuperman et al., 2002;

Laoukili et al., 2001). Treatment of developing bronchospheres

with IL-13, between days 2 and 14 after seeding, resulted in an

increase in the expression of markers of goblet cells, whereas

ciliated cell marker expression declined (Figure S2A). The induc-

tion of the remodeled phenotype was concentration dependent,

with the highest concentrations impairing differentiation, consis-

tent with previous observations using air-liquid interface (ALI) hu-

man bronchial epithelial (HBE) cultures (Atherton et al., 2003).

The enhanced expression of goblet cell markers was difficult

to observe and quantify by immunofluorescence in broncho-

spheres, largely due to the accumulation of secreted mucins in

the central lumen during culture. However, the loss of ciliated

cell marker expression was confirmed by a lack of acetylated

a-tubulin-positive structures in the IL-13-treated broncho-

spheres (Figures S2B and S2C).

Inflammatory Cytokines Alter Basal Cell Fates
Several inflammatory cytokines and growth factors have been

reported to increase the expression of MUC5AC in airway

epithelial cells (Chen et al., 2003; Fujisawa et al., 2009; Gray

et al., 2004; Kim et al., 2002). However, only IL-13, and the

closely related cytokine IL-4, acting through a shared receptor,

have been shown to act directly on the epithelium to drive a

goblet cell metaplasia phenotype, resulting in increased

numbers of goblet cells and fewer ciliated cells (Atherton et al.,

2003; Dabbagh et al., 1999; Grünig et al., 1998; Kuperman

et al., 2002; Laoukili et al., 2001; Munitz et al., 2008). Goblet

cell metaplasia is a hallmark of several airway diseases, including

asthma and COPD (Fahy and Dickey, 2010), andwhether soluble

factors other than IL-13 act directly on the epithelium to drive this
C

phenotype is not known. To identify novel factors that regulate

airway basal cell fate leading to a goblet cell metaplasia pheno-

type, we screened a collection of 4,876 secreted, recombinant

human proteins, representing 2,366 unique gene products

(Gonzalez et al., 2010) in the bronchosphere assay using cell-

type-specific expression markers as endpoints (Figure 2A).

Approximately 9% of the recombinant proteins (420/4,876), rep-

resenting 328 unique gene products, modulated expression of

one or more of the cell-type-specific markers by 2-fold or greater

(Table S1). The 420 recombinant proteins that affected the assay

could be classified into three groups: (1) one or more cell-type-

specific markers decreased by 2-fold or greater without a

concomitant increase in another marker (323/420); (2) one or

more markers of a particular cell type increased by 2-fold or

greater without a concomitant decrease of another marker (27/

420); and (3) one or more markers of one cell type increased

by 2-fold or greater with a concomitant decrease in markers of

one or two cell types (70/420; Table S1; Figure 2B).

The effect of the third group of proteins could be further

divided into two types of alterations in basal-cell-fate decision.

The first was treatments that resulted in an increase in a basal

cell marker and a decrease in one or more markers of ciliated

cells and/or goblet cells, consistent with inhibition of differen-

tiation. Interestingly, these proteins were almost exclusively

members of the epidermal growth factor (EGF) family of ligands

(14/15; Figure 2B). The second type of effect was an increase

in one or more of the goblet cell markers and a decrease in

one ormore ciliated or basal cell markers. More than half of these

proteins were inflammatory cytokines (33/54), suggesting that,

similar to IL-13, many inflammatory cytokines can bias the differ-

entiation of basal cells away from a ciliated cell fate and toward a

goblet cell.

IL-17A Treatment Biases Basal Cell Differentiation
toward a Goblet Cell
IL-17A is a cytokine that is secreted by Th17 cells and has been

proposed to play a role in severe asthma (Chesné et al., 2014).

IL-17A has been shown to stimulate mucin gene expression in

cultured airway epithelial cells (Chen et al., 2003) and enhance

airway smooth muscle contraction in vivo (Kudo et al., 2012).

Whether IL-17A can act directly on airway epithelial cells to alter

the composition of the epithelium and result in goblet cell meta-

plasia is not known. The results from our screen (Figure 2B) and

subsequent validation using a broader range of IL-17A concen-

trations (Figures 3A–3C) indicated that, in addition to increasing

MUC5AC levels, IL-17A treatment resulted in increased levels of

multiple markers of goblet cells (MUC5B and FOXA3), while in-

hibiting the expression of markers of ciliated cells (FOXJ1 and

DNAI2). These results suggest that IL-17A treatment can bias

the differentiation of the airway basal cell toward a goblet cell

at the expense of a ciliated cell, a phenotype similar to the goblet

cell metaplasia seen in many airway diseases.

To test this hypothesis, we utilized ALI cultures, seeding

airway basal cells onto transwell filters, treating the cultures

with IL-17A from day 7 (day 0 at ALI), prior to the initiation of

differentiation, and analyzing the resulting phenotype at day 21

(day 14 at ALI). Whereas cultures grown under control condi-

tions contained a mixture of goblet and ciliated cells at day 21,
ell Reports 10, 239–252, January 13, 2015 ª2015 The Authors 241



Figure 2. A Screen of the Mammalian ‘‘Secretome’’ Identifies

Multiple Mediators of Goblet Cell Metaplasia In Vitro

(A) Molecular signature assay to monitor the relative abundance of goblet,

ciliated, and basal cells in vitro. Each data point is the median signal from an

individual well of a 384-well plate. Note that IL-13 treatment results in an in-

crease in the expression of goblet cell markers and a decrease in the

expression of ciliated cell markers, without affecting basal cell markers.
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IL-17A-treated cultures had a profound expansion of the goblet

cell population, together with a dramatic reduction in the number

of ciliated cells (Figures 3D and 3E). Together, our data indicate

that IL-17A is sufficient to bias basal cell fate toward a goblet cell

and away from a ciliated cell, resulting in a phenotype that is

similar to the goblet cell metaplasia seen in many airway

diseases.

Notch2 Is Required for Cytokine-Driven Effects on Basal
Cell Fate Specification In Vitro
The Notch-signaling pathway plays a key role in the determina-

tion of cell fate in multiple tissues throughout development (For-

tini, 2009). To determine the role of Notch in human airway basal

cell fate, we first analyzed the expression of Notch receptors

in (1) basal cells prior to plating in Matrigel, (2) fully formed

(day 14) bronchospheres, and (3) fluorescence-activated-cell-

sorting-purified ITGA6+ basal and ITGA6� luminal cells from

day 21 ALI cultures (Figure S3). qPCR analysis of genes that

are specifically expressed in basal cells (p63 and ITGA6), goblet

cells (MUC5AC, MUC5B, and FOXA3), and ciliated cells (FOXJ1

and DNAI2) confirmed that the ITGA6+ and ITGA6� populations

were enriched for basal cells and differentiated cells, respec-

tively (Figure S3). We found that airway basal cells, either prior

to plating in Matrigel or purified from day 21 ALI cultures as

well as bronchospheres and luminal cells from day 21 ALI

cultures, express Notch1, Notch2, and Notch3, but not Notch4

(Figure S3). To determine which of the Notch receptors is

required for human airway goblet cell formation, we treated

developing 3D bronchosphere cultures with Notch1-, Notch2-,

or Notch3-receptor-specific blocking antibodies (Li et al.,

2008; Wu et al., 2010). We first verified the selectivity of each

antibody using Notch-receptor-specific reporter gene assays

(Figure S4) and that each antibody inhibited the expression of

one or more endogenous Notch target genes in 3D broncho-

spheres (Bray and Bernard, 2010; Figure S4). All three antibodies

inhibited expression of the Notch target gene NRARP (Lamar

et al., 2001), whereas anti-Notch2 antibodies also inhibited

expression of HEY1 and HES5. Anti-Notch3 antibodies also in-

hibited HES5 expression, albeit to a lesser degree than anti-N2.

EachNotch-receptor-specific antibody had a distinct effect on

3D bronchospheres (Figures 4A–4C). Anti-Notch1 treatment led

to increased levels of multiple markers of basal cells (p63 and

ITGA6), without affecting the expression of goblet or ciliated

cell markers. Anti-Notch2 antibodies strongly inhibited the

expression of all three goblet cell markers (MUC5AC, MUC5B,

and FOXA3), while simultaneously increasing expression of

multiple ciliated cell markers (FOXJ1 and DNAI2) and one of

the two basal cell markers examined (p63), although to a lesser
(B) Primary screen results from human airway basal cells grown in 3D in the

presence of the indicated proteins and analyzed for expression levels of the

indicated goblet, ciliated, and basal cell markers. Shown is a heatmap of

treatments that induced an increase of one or moremarkers of one cell type by

2-fold or greater, with a concomitant decrease in markers of one or both of the

other cell types by 2-fold or greater. Each data point is the signal intensity

relative to the median signal of the plate. Note that the treatments induce an

increase in a basal cell marker while decreasing goblet and/or ciliated markers

or an increase in one or both goblet cell markers while decreasing ciliated and/

or basal cell markers.



degree than anti-Notch1. Anti-Notch3 antibodies had a modest

inhibitory effect on two of the three goblet cell markers

(MUC5B and FOXA3), while slightly increasing the expression

of the basal cell marker ITGA6 at higher concentrations, without

affecting the expression of ciliated cell markers. Together, these

data indicate that Notch2, and not Notch1 or Notch3, is required

for the basal-cell-fate decision to become a goblet versus a cili-

ated cell.

We next asked whether blocking Notch2 or Notch3 could pre-

vent goblet cell metaplasia, a hallmark of several airway diseases

including asthma, CF, and COPD. Notch2 antibodies inhibited

IL-13-driven goblet cell metaplasia in vitro, as measured by

cell-type-specific gene expression in 3D bronchospheres (Fig-

ure 4D) and immunostaining with cell-type-specific markers in

ALI cultures (Figure 4G), whereas Notch3 inhibition had no effect

(Figure S5). Moreover, blocking Notch2, but not Notch3, partially

restored ciliated cells (Figures 4E, 4G, and S5) without affecting

basal cells (Figures 4F and S5), indicating that the effect of IL-13

on basal cell fate requires Notch2 activity. Interestingly, IL-13

treatment had no effect on the expression of the Notch target

gene NRARP (Figure S5), suggesting that Notch signaling is

not increased downstream of IL-13 and that Notch2 plays a

permissive, rather than an instructive role, in cytokine-driven

goblet cell metaplasia. We also found that Notch2 antibodies

at least partially inhibited the alteration in basal-cell-fate decision

downstream of a variety of inflammatory cytokines that we iden-

tified as driving goblet cell formation in our secretomics screen

(Figure 2B), as measured by qPCR for cell-type-specific markers

in bronchospheres (Figure 5) and immunostaining formucins and

acetylated alpha-tubulin in ALI cultures (Figure S6), indicating

that Notch2 signaling is generally required for goblet cell

metaplasia.

Inhibition of Notch2 Prevents Goblet Cell
Metaplasia In Vivo
To examine the effect of Notch2 inhibition on goblet cell meta-

plasia in vivo, we administered IL-13 intranasally into mice,

which induced a goblet cell phenotype (Figures 6B and 6C), as

previously reported (Wills-Karp et al., 1998), with or without

coadministration of anti-Notch2 antibodies. Expression levels

of the Notch target gene Nrarp were not modulated in animals

treated with IL-13 and were significantly reduced in animals

treated with the anti-Notch2 antibody, as measured by quantita-

tive RT-PCR analysis of RNA from whole-lung tissue (Figure 6F),

indicating that IL-13 does not directly activate Notch signaling

and verifying the inhibitory activity of anti-Notch2 antibodies

in vivo. Periodic acid-Schiff (PAS) staining of lung sections

revealed that coadministration of anti-Notch2 antibodies com-

pletely blocked IL-13-driven goblet cell metaplasia (Figures 6B

and 6C). In addition, the number of Foxj1+-ciliated cells was

dramatically increased in animals treated with the anti-Notch2

antibody (Figures 6D and 6E). We verified these observations us-

ing quantitative RT-PCR analysis of RNA from whole-lung tissue

(Figures 6G–6I). We found that coadministration of anti-Notch2

antibodies together with IL-13 suppressed the expression

of multiple goblet-cell-specific genes (Muc5ac, Muc5b, and

Foxa3), while dramatically increasing the levels of multiple cili-

ated-cell-specific genes (Foxj1 and Dnai2), relative to animals
C

treated with IL-13 alone. Anti-Notch2 antibody administration

also had a slight but significant increase in the basal-cell-specific

genes Trp63 and Itga6. Together, these data indicate that

Notch2 is required for IL-13-driven goblet cell metaplasia

in vitro and in vivo.

We next examined the effects of anti-Notch2 administration in

a model of allergic asthma, where mice are chronically exposed

to house dust mite (HDM) to induce many of the clinical symp-

toms seen in humans, including goblet cell metaplasia (Johnson

et al., 2004). Similar to the effects seen on IL-13-induced goblet

cell metaplasia, anti-Notch2 antibodies profoundly reduced the

amount of mucus induced by HDM administration, as measured

by the relative area of PAS staining (Figures S7A and S7B), while

dramatically increasing the number of Foxj1+-ciliated cells (Fig-

ures S7C and S7D).

Finally, we examined whether anti-Notch2 administration

could revert an established goblet cell metaplasia phenotype.

The experimental design is schematically depicted in Figure 7A.

We induced a goblet cell metaplasia phenotype by intranasal

administration of IL-13 for 3 days prior to initiating anti-Notch2

antibody treatments. IL-13 administration, with or without

anti-Notch2 antibody, was continued for an additional 6 days.

The animals were then analyzed 1 day after the final treatment.

Reduced expression of the Notch target gene Nrarp in the anti-

Notch2-antibody-treated animals, as measured by qPCR anal-

ysis of RNA from whole-lung tissue, confirmed Notch pathway

inhibition (Figure 7F). PAS staining of lung sections, to measure

mucus production (Figure 7B), and quantitative RT-PCR analysis

of the expression levels of the goblet-cell-specific genes Mu-

c5ac, Muc5b, and Foxa3 in RNA from whole-lung tissue (Fig-

ure 7G) confirmed that the goblet cell metaplasia phenotype

had occurred after 3 days of IL-13 administration and that this

phenotype was completely reversed after treatment with the

anti-Notch2 antibody (Figures 7B, 7C, and 7G).

DISCUSSION

Goblet cell metaplasia is a hallmark of several airway diseases,

such as asthma, CF, and COPD. The inability to clear the result-

ing increase in mucus production can ultimately result in muco-

stasis and death (Hogg et al., 2004; Kuyper et al., 2003; Lange

et al., 1998). Several secreted proteins have been demonstrated

to increase mucin expression or secretion in tracheal or airway

epithelial cells in culture (Adler et al., 1995; Chen et al., 2003; Fu-

jisawa et al., 2009; Gray et al., 2004; Kettle et al., 2010; Levine

et al., 1995; Vermeer et al., 2003); however, only IL-13 and the

closely related cytokine IL-4, acting through a shared receptor,

have been demonstrated to act directly on the airway epithelium

to increase the number of goblet cells in vitro and in vivo by

altering airway epithelial cell fate (Atherton et al., 2003; Dabbagh

et al., 1999; Grünig et al., 1998; Kuperman et al., 2002; Laoukili

et al., 2001; Munitz et al., 2008).

In this study, we utilized a 3D culture model of airway epithelial

morphogenesis. 3D culture models utilizing cell lines derived

from several epithelial tissues, including kidney (MDCK), in-

testine (Caco-2), and mammary gland (MCF-10A), have been

previously described (Debnath et al., 2003; Elia and Lippincott-

Schwartz, 2009; Jaffe et al., 2008). Recently, Rock et al. (2009)
ell Reports 10, 239–252, January 13, 2015 ª2015 The Authors 243



Figure 3. IL-17A Biases Basal Cell Fate toward a Goblet Cell and away from a Ciliated Cell

(A–C) Human airway basal cells were grown in 3D to produce bronchospheres, in the presence of increasing concentrations of IL-17A, and analyzed for

expression levels of the indicated goblet cell markers (A), ciliated cell markers (B), and basal cell markers (C). Shown is the mean fold change ± SEM relative to

control from three independent experiments (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. One-way ANOVA and Dunnett’s multiple comparison test.

(legend continued on next page)

244 Cell Reports 10, 239–252, January 13, 2015 ª2015 The Authors



described the formation of ‘‘tracheospheres’’ from either Krt5+

murine basal cells or ITGA6+NGFR+ human basal cells in 3DMa-

trigel-based culture. Tracheospheres contained a central lumen

surrounded by ciliated cells but lacked detectable MUC5AC+

secretory cells (Rock et al., 2009). Wu et al. (2010) also reported

the formation of polarized 3D structures in Matrigel that were

derived from surface epithelial HBE cells (Wu et al., 2011). These

structures that were cultured on four chamber slides were

termed ‘‘glandular acinar’’ cells based upon the expression of

MUC5B and the lack of ciliated cells (Wu et al., 2011). Whereas

each of these systems recapitulates some aspects of the archi-

tecture of the conducting airway, neither captures the full diver-

sity of cell types found in this region of the respiratory tract. In

particular, there are no reported 3D culture systems that contain

an airway progenitor cell, mucus-producing secretory cells, and

ciliated cells. The bronchospheres described in this study derive

frommultipotent p63+NGFR+ITGA6+ airway basal cell, a progen-

itor cell for the human conducting epithelium, and recapitulate

key elements of the conducting airway epithelium, including a

pseudostratified epithelium containing basal cell progenitors,

mucus-secreting goblet cells, and ciliated cells, surrounding a

single central lumen.

We scaled the 3D bronchosphere system to a 384-well plate

format to allow for much higher throughput screening and ana-

lyses when compared with the widely used ALI cultures of pri-

mary epithelia (Gray et al., 1996). We used this system to screen

a library of secreted proteins (Gonzalez et al., 2010) and found a

number of factors that modulated basal cell fate, as judged by

a decrease in one or more cell-type-specific markers with a

concomitant increase in one or more markers of another cell

type. One group of treatments drove an increase in a basal cell

marker and a decrease in one or more markers of ciliated cells

and/or goblet cells, consistent with inhibition of differentiation.

Interestingly, these proteins were almost exclusively members

of the epidermal growth factor family of ligands. A recent study

found that EGF receptor is expressed by human airway basal

cells, and is activated by smoke-induced EGF expression in cili-

ated cells to prevent basal cell differentiation into ciliated and

goblet cells and drive a squamous metaplasia phenotype (Shay-

khiev et al., 2013). Our data suggest that other EGF ligands may

have a similar activity and could play a role in driving squamous

metaplasia in other settings.

The second type of effect that we observed on basal cell fate

was an increase in one or more of the goblet cell markers and a

decrease in one or more ciliated or basal cell markers. More than

half of the proteins that biased cell fate toward a goblet cell were

inflammatory cytokines. This has several implications for the

treatment of airway diseases. First, it provides a rationale for

the development of cytokine-specific therapies and stratifying
(D) Human airway basal cells were grown on filters at air-liquid interface with or w

row) and IL-17A-treated (bottom row) filters stained for MUC5AC (orange), MUC

Quantification of the total staining area for each marker is shown to the right. Show

experiments, each performed in duplicate. *p < 0.01; **p < 0.001. Paired, two-ta

(E) Representative confocal sections of control (top) and IL-17A-treated (bottom) fi

and DNA (blue). The scale bar represents 10 mm. Quantification of the number

was performed with four independent regions of each filter from the experiment

IL-17A-treated filters, respectively. Shown is the percentage of cells stained for

C

patients based on either levels of a particular cytokine or a

biomarker indicating activation of a pathway downstream of a

particular cytokine. The increased response in asthma patients

with higher levels of periostin in recent clinical trials with anti-

IL-13 antibodies supports this idea (Corren et al., 2011). Second,

it suggests that treatments designed to inhibit the production or

secretion of mucus from goblet cells may not be sufficient,

because they may not restore the appropriate numbers of cili-

ated cells required for adequate mucociliary clearance. Finally,

although the factors we found to influence basal cell fate activate

distinct signaling pathways, their similar effect on a cellular pro-

cess, biasing progenitor cell fate toward a goblet cell and away

from a ciliated cell, suggested that theremay be a common drug-

gable node that would have therapeutic benefit for patients with

a wide range of underlying causes.

Notch signaling is an evolutionarily conserved pathway that

regulates many cell-fate decisions during development (Fortini,

2009). Mammalian cells contain four Notch receptors (Notch 1–

Notch 4), which are activated by membrane-bound ligands,

members of the Delta and Jagged family, on neighboring cells.

Notch activation leads to a series of cleavage events, culmi-

nating in the generation of the Notch intracellular domain

(NICD), which translocates to the nucleus, where it interacts

with a transcription factor complex to regulate gene expression.

The role of Notch signaling in regulating cell-fate decisions dur-

ing development and repair has been studied in many contexts,

including in mucociliary tissues (Deblandre et al., 1999; Guseh

et al., 2009; Morimoto et al., 2010, 2012; Rock et al., 2011;

Tsao et al., 2009). In the epidermis of the Xenopus embryo, acti-

vation of Notch suppresses the ciliated cell fate, whereas inhibi-

tion of Notch signaling results in an overproduction of ciliated

cells (Deblandre et al., 1999). In the developing mouse airway,

expression of the NICD results in an overproduction of secretory

cells at the expense of ciliated cells (Guseh et al., 2009), whereas

deletion of Pofut1, an O-fucosyltransferase required for Notch-

ligand interactions (Stahl et al., 2008), or Rbpjk, a core nuclear

effector of Notch signaling (Fortini, 2009), results in an increase

in the number of ciliated cells and a near absence of secretory

cells (Tsao et al., 2009). A recent study using Notch-receptor-

specific knockouts suggested that Notch2 is the critical Notch

receptor regulating secretory versus ciliated cell fate in the

mouse developing airway (Morimoto et al., 2012).

We found that Notch2 acts as a common node downstream of

IL-13, as well as the mediators of goblet cell metaplasia identi-

fied in this study. Antibodies that specifically inhibit Notch2,

but not other Notch receptor family members Notch1 and

Notch3, inhibit IL-13-driven goblet cell metaplasia in vitro, and

administration of anti-Notch2 antibodies prevented IL-13 as

well as allergen-driven goblet cell metaplasia in vivo. Moreover,
ithout IL-17A (10 ng/ml). Shown are representative tiled images of control (top

5B (green), and acetylated a-tubulin (red). The scale bar represents 500 mm.

n is the average fold change ± SEM relative to control from three independent

iled Student’s t test.

lters stained for MUC5AC (red), MUC5B (green), acetylated a-tubulin (orange),

of cells staining positive for each marker is shown to the right. Quantification

s shown in (D). A total of more than 700 cells were counted from control and

each marker.
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Figure 4. Notch2 Inhibition Alters Cell Fate away from a Goblet Cell and toward a Ciliated Cell

(A–C) Human airway basal cells were grown in 3D to produce bronchospheres, in the presence of vehicle control; IgG (10 mg/ml); or increasing concentrations

(mg/ml) of inhibitory antibodies specific for Notch1 (a-N1), Notch2 (a-N2), or Notch3 (a-N3), and analyzed for the expression levels of the indicated goblet cell

(legend continued on next page)
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Notch2 antibodies prevented the changes in basal cell fate

driven by multiple cytokines in our 3D bronchosphere system

and in ALI cultures, including cytokines that are increased in pa-

tients with asthma, COPD, or both, which have been proposed to

play a role in these diseases (Barnes, 2008). Finally, we found

that administration of anti-Notch2 antibodies reversed a pre-es-

tablished goblet cell metaplasia phenotype in vivo. Collectively,

our data support the use of Notch2-specific inhibitors in the

treatment of airway diseases with goblet cell metaplasia, regard-

less of the disease stimulus.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Primary antibodies used in this studywereMUC5AC (clone 45M1; Thermo Sci-

entific), acetylated a-tubulin (clone 6-11B-1; Sigma-Aldrich), mouse anti-p63

(clone 4A4; Santa Cruz Biotechnology), rabbit anti-p63 (Abcam), ITGA6 (Go

H3; Abcam), NGFR (Abcam), Ki-67 (Invitrogen), and FOXJ1 (HPA005714;

Sigma). Alexa 488, Alexa Fluor 568, and Alexa Fluor 633 secondary antibodies,

Alexa Fluor 647 and rhodamine-conjugated phalloidin, Oregon Green 488 car-

boxylic acid diacetate (carboxy-DFFDA), and ProLong gold antifade with DAPI

were obtained from Invitrogen.

Tissue Culture

Human airway basal cells (sold as ‘‘normal human bronchial/tracheal epithe-

lial cells’’) and culture media were obtained from Lonza. All cells purchased

from Lonza were from normal donors, ranging in age from 3 to 60 years old.

Air-liquid interface cultures using passage 2 (P2) cells were performed as

previously described (Danahay et al., 2002). At this passage, these cells

retain the ability to differentiate into a mucociliary epithelium at ALI, whereas

at higher passages (>4), the cells lose this ability (Araya et al., 2007; Gray

et al., 1996). For 3D culturing of airway basal cells, P1 cells were trypsinized

and resuspended (30,000 cells/ml) in HBE differentiation media containing

5%-growth-factor-reduced Matrigel (BD Biosciences). Twenty microliters

of suspension was plated in each well of a 384-well plate (Greiner) precoated

with 10 ml of a 25% solution of Matrigel (BD Biosciences) in HBE differenti-

ation media. Wells were fed or treated at day 2 and day 8 of culture by add-

ing 30 ml of differentiation media containing the appropriate treatment.

3D cultures were analyzed at the time points indicated. For the cell-mixing

experiments to determine the seeding density for deriving clonal broncho-

spheres, airway basal cells were labeled with carboxy-DFFDA and mixed

with unlabeled HBE cells at a 1:1 ratio prior to plating in 3D in 384-well

plates.

For screening studies of 3D bronchosphere cultures, P1 cells and 384-well

plates were prepared and treated in duplicate with a collection of 4,876

secreted, recombinant human proteins representing the predicted human ‘‘se-

cretome’’ (Gonzalez et al., 2010), essentially as described above. To automate

the process, a Wellmate (Thermo Scientific) microplate dispenser was used to

plate cells and a Biomek FXP 384-multichannel pipetting head (Beckman

Coulter) was used to precoat, feed, and treat wells. Protein and control sam-

ples suspended in Tris-buffered saline buffer were arrayed in 384-well v-bot-

tom plates (Greiner). Samples were diluted to a working concentration in assay
markers (A), ciliated cell markers (B), and basal cell markers (C). Shown is the

experiments. *p < 0.05; **p < 0.01; ***p < 0.001. One-way ANOVA and Dunnett’s

(D–F) Human airway basal cells were grown in 3D to produce bronchospheres, in t

increasing concentrations of a-N2 (mg/ml) together with 1 ng/ml of IL-13, and ana

cell markers (E), and basal cell markers (F). Shown is the mean fold change ± SEM

0.01; ***p < 0.001. One-way ANOVA and Dunnett’s multiple comparison test.

(G) Representative tiled images of ALI cultures treated with IgG control (first colum

IL-13 + a-N2 (fourth column) and stained forMUC5AC (green), MUC5B (red), and a

the total staining area for each marker is on the right. Shown is the average fold ch

five filters per treatment. Note that a-N2 inhibits the IL-13-driven increase in MUC5

0.001. Paired, two-tailed Student’s t test.

C

media with 0.1% BSA (Sigma) and were then used to treat wells at day 2 and

day 8 of culture at a final concentration of 4.4 nM–1.24 mM (indicated in Table

S1), depending on the sample protein. To record 3D structure morphology, a

bright-field image of each well was taken on day 12 of culture using an IN

Cell Analyzer 2000 high-content imaging system (GE Healthcare Life Sci-

ences). Gene expression was quantified on day 14 of culture using the Quan-

tiGene Plex 2.0 Assay (Affymetrix).

QuantiGene 2.0 Multiplex Assays

To quantify gene expression of 3D bronchosphere cultures, the QuantiGene

2.0 Multiplex Assay (Affymetrix) was used. All sample transfers were done

with a Biomek FXP 384-multichannel pipetting head (Beckman Coulter). Solu-

tion additionswere donewith aWellmatemicroplate dispenser (Thermo Scien-

tific). Wells were aspirated and washed with an ELX406 plate washer (BioTek).

RNA was processed with the QuantiGene Sample Processing kit (Affymetrix)

according to the manufacturer’s specifications. Briefly, day 14 bronchosphere

plates (384-well) were aspirated to 30 ml and 15 ml of Panomics Lysis mixture

was added. A 40 ml sample of each well was transferred to a 384-well v-bottom

plate (Greiner), and 20 ml of a hybridization solution containing lysis mixture,

proteinase k, blocking reagent, a probe set, and a bead set was added to

each well. To hybridize RNA, probes, and beads, plates were sealed and incu-

bated at 55�C overnight in an orbital shaking incubator at 500 rpm (Liconic).

The probe set containing the following target genes: POLR2A (NM_000937);

ITGA6 (NM_001079818); MUC5B (NM_002458); MUC5AC (NM_017511);

p63 (NM_003722); DNAI2 (NM_023036); and FOXJ1 (NM_001454) is available

from Affymetrix (panel 11783/catalog no. 311783). The next day, wash

solution, preamplifier solution, amplifier solution, and label probe streptavi-

din-phycoerythrin (SAPE) solution were prepared using the manufacturer’s

specifications. Hybridized RNA was multiplexed by combining in a clear,

flat-bottom, 384-well plate (Nunc). The plate was placed on amagnetic holder,

and wells were washed three times. RNA was incubated for 1 hr at 50�C and

500 rpm with preamplifier solution and then washed as before. This incubation

and wash cycle was repeated for addition of amplifier solution and again for

label probe SAPE solution. A bead-suspending solution was added, and

each well was then read using the Flexmap 3D instrument (Luminex). RNA

quality was monitored by examining the signal for a housekeeper (POLR2A)

to ensure that the levels were similar to other wells. The effect of each of the

recombinant proteins screened was determined by calculating the average

(n = 2 replicates for the screen) of the median signal of a well relative to the me-

dian signal of the plate (excluding active control wells) for each probe (i.e., for

each target gene).

Microscopy

Immunofluorescence of 3D bronchospheres was performed as described

previously for MCF10A cysts (Debnath et al., 2003) with the following modifi-

cations. After incubation with fluorescence-conjugated secondary antibodies,

DNA was stained with a 1:1 mix of PBS and ProLong gold antifade containing

DAPI. Confocal microscopy was performed at room temperature on a micro-

scope (Zeiss LSM510 Meta) using an EC Plan-Neofluar 103/0.30 dry objec-

tive (Zeiss), an EC Plan-Neofluor 203/0.5 dry objective (Zeiss), a C-Apochro-

mat 403/1.2 W corr (Zeiss), or a C-Apochromat 633/1.2 W Corr objective

(Zeiss). Images were collected with Zen confocal software (Zeiss). Scale

bars were added, and images were processed using Zen (Zeiss) and Photo-

shop (Adobe). ALI cultures were processed for immunofluorescence analysis
mean fold change ± SEM relative to control from at least three independent

multiple comparison test.

he presence of vehicle control or IgG (10 mg/ml), with or without 1 ng/ml IL-13, or

lyzed for the expression levels of the indicated goblet cell markers (D), ciliated

relative to control from at least four independent experiments. *p < 0.05; **p <

n), a-N2 (second column), 1 ng/ml IL-13 + IgG control (third column), or 1 ng/ml

cetylated a-tubulin (orange). The scale bar represents 500 mm.Quantification of

ange ± SEM relative to control from three independent experiments, each with

AC staining and partially restores levels of acetylated a-tubulin. *p < 0.01; **p <
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Figure 5. Notch2 Inhibition Blocks Goblet Cell Metaplasia Downstream of Multiple Mediators

Human airway basal cells were grown in 3D to produce bronchospheres, in the presence of IgG (0.1 mg/ml) or a-N2 (0.1 mg/ml), together with the indicated

proteins, and analyzed for the expression levels of goblet cell markers (A), ciliated cell markers (B), and basal cell markers (C). Shown is the mean fold change ±

SEM relative to control from at least three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. Paired, two-tailed Student’s t test.
after 14 days of culture at ALI by rinsing the apical surface of each filter with

PBS and then fixing in 4% paraformaldehyde for 4 hr. Filters were washed

with IF buffer (130 mM NaCl, 7 mM Na2HPO4, 3.5 mM NaH2PO4, 7.7 mM

NaN3, 0.1% bovine serum albumin, 0.2% Triton X-100, and 0.05% Tween-

20), blocked with IF wash containing 10% goat serum, and stained with

primary antibody in IF wash containing 10% goat serum overnight at 4�C.
Secondary antibodies were used at a 1:200 dilution in IF buffer containing
248 Cell Reports 10, 239–252, January 13, 2015 ª2015 The Authors
10% goat serum. To quantify the total staining area of ALI cultures, 10 3

13 images were collected with a plan Neofluar 103 0.3 numerical aperture

(NA) Ph1 objective (EC; Carl Zeiss) on a microscope (Axiovert 200; Carl Zeiss)

equipped with a motorized stage and a camera (Orca-ER-1394; Hamamatsu

Photonics) controlled by Axiovision software (Carl Zeiss) and used to

generate a single composite image using the MOSAIX function in Zeiss Axio-

vision. Quantification of the total staining area was performed with ImageJ.



Figure 6. Notch2 Neutralization Inhibits IL-13-Driven Goblet Cell Metaplasia In Vivo

(A) Schematic representation of the experimental design.

(B) Representative images of PAS-stained lung sections from the indicated treatment groups (8–10 mice per group). PAS positivity is dark violet. The scale bar

represents 200 mm. The inset scale bar represents 20 mm.

(C) Quantification of the relative area of PAS staining in the lung. Shown is the mean ± SEM. Each dot represents one mouse.

(D) Representative images of lung sections from the indicated treatment groups (8–10 mice per group) stained for the ciliated-cell-specific marker Foxj1. The

scale bar represents 200 mm. The inset scale bar represents 20 mm.

(E) Quantification of the number of Foxj1+ cells per 100 mm of epithelium. Shown is the mean ± SEM. Each dot represents one mouse.

(F) Quantitative PCR analysis of the Notch target gene Nrarp in lungs from the indicated treatment groups.

(G–I) Quantitative PCR analysis of goblet (Muc5ac,Muc5b, and Foxa3; G), ciliated (Foxj1 and Dnaic2; H), and basal cell marker (Trp63 and Itga6; I) expression in

lungs from the indicated treatment groups. Shown is the mean fold change ± SEM relative to control. Each dot represents one mouse. *p < 0.05; **p < 0.01; ***p <

0.001. One-way ANOVA and Dunnett’s multiple comparison test.
Two to three regions of each ALI culture were punched out with a 4 mm bi-

opsy punch (Miltex) and mounted in ProLong gold antifade containing DAPI

for imaging by confocal microscopy on a microscope (Axiovert 200; Carl

Zeiss) equipped with a motorized stage, a Yokogawa CSU-X1 spinning disc

head, and an electron-multiplying charge-coupled device camera (Evolve

512; Photometrics), with a Plan-Apochromat 1003/1.4 oil differential interfer-

ence contrast (DIC) objective (Zeiss). Cells positive for MUC5AC, MUC5B, or

cilia (acetylated a-tubulin) staining were counted manually. For time-lapse

video microscopy, human bronchial epithelial cells were imaged at the indi-

cated times during bronchosphere development at 37�C with a plan Neofluar

103 0.3 NA Ph1 objective (EC; Carl Zeiss). Images were taken every 5 min for
C

the indicated time period. Annotations (time stamp and scale bar) were

added, and videos were assembled using Axiovision software.

RNA Isolation and Quantitative PCR

RNA was isolated from 3D bronchosphere cultures with Trizol (Invitrogen), us-

ing manufacturer’s specifications. To isolate RNA from mouse tissue, approx-

imately 20 mg of tissue was placed in a 1.5 ml Eppendorf tube with 1 ml of

Buffer RLT Plus (QIAGEN) containing 10 ml of 2-mercaptoethanol (Sigma). A

5 mm stainless steel bead (QIAGEN) was added to the tube, and the tissue

was sheared using a Tissue Lyser II (QIAGEN). RNA from the sheared tissue

was purified using the RNeasy Plus Mini Kit (QIAGEN), using manufacturer’s
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Figure 7. Notch2 Neutralization Reverts a Preexisting IL-13-Induced Goblet Cell Metaplasia In Vivo

(A) Schematic representation of the experimental design.

(B) Representative images of PAS-stained lung sections from the indicated treatment groups (8–10 mice per group). PAS positivity is dark violet. The scale bar

represents 100 mm. The inset scale bar represents 10 mm.

(C) Quantification of the relative area of PAS staining in the lung. Shown is the mean ± SEM. Each dot represents one mouse.

(D) Representative images of lung sections from the indicated treatment groups (8–10 mice per group) stained for the ciliated-cell-specific marker Foxj1. The

scale bar represents 100 mm. The inset scale bar represents 10 mm.

(E) Quantification of the number of Foxj1+ cells per 100 mm of epithelium. Shown is the mean ± SEM. Each dot represents one mouse.

(F–H) Quantitative PCR analysis of goblet (Muc5ac,Muc5b, and Foxa3; F), ciliated (Foxj1 and Dnaic2; G), and basal cell marker (Trp63 and Itga6; H) expression in

lungs from the indicated treatment groups.

(I) Quantitative PCR analysis of the Notch target gene Nrarp in lungs from the indicated treatment groups. Shown is the mean fold change ± SEM relative to

control. Each dot represents one mouse. *p < 0.05; ***p < 0.001; ns, not significant. One-way ANOVA and Dunnett’s multiple comparison test.
specifications. TaqManReverse TranscriptionReagents (Invitrogen)were used

to generate cDNA from1 mg of total RNA.Quantitative PCRwas performedon a

ViiA7 Real-Time PCR System (Applied Biosystems), using 40 ng of cDNA per

reaction with the following Taqman probes (Applied Biosystems): MUC5AC,

Hs01365601_m1; MUC5B, Hs00861588_m1; FOXA3, Hs00270130_m1;

FOXJ1, Hs00230964_m1; DNAI2, Hs01001544_m1; p63, Hs00978340_m1;

ITGA6, Hs01041011_m1; NOTCH1, Hs01062011_m1; NOTCH2, Hs010

50702_m1; NOTCH3, Hs01128541_m1; NOTCH4, Hs00965897_m1; HEY1,

Hs01114113_m1; HEY2, Hs00232622_m1; HES1, Hs00172878_m1; HES5,

Hs01387463_g1; NRARP, Hs01104102_s1; GAPDH, Hs99999905_m1; Mu

c5ac, Mm012718_m1; Foxj1, Mm012367279_m1; Trp63, Mm00495788_m1;

and Gapdh, Mm99999915_g1.
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Animal Models

Female Balb/c mice (20–25 g) were obtained from Charles River Lab-

oratories. Mice were housed under specific pathogen-free conditions

and were provided with food and water ad libitum. Experiments were

performed in accordance with the UK Animals Scientific Procedures Act

1986.

For the experiment shown in Figure 6, mice received 0.5 mg of recombinant

mouse IL-13 (Ebiosciences) or PBS intranasally on 3 consecutive days (days

1–3). Mice received either 20 mg/kg neutralizing antibody to Notch2 or control

immunoglobulin G (IgG) or PBS intraperitoneally 2 hr before intranasal chal-

lenge with either IL-13 or PBS on days 1 and 3 only. Mice were euthanized

24 hr after the final IL-13 administration.



For the experiment shown in Figure S7 (chronic house dust mite model),

mice received 25 mg of HDM (D. pteronyssinus; GREER Laboratories) or saline

intranasally on 5 days a week for 5 weeks (days 1–5, 8–12, 15–19, 22–26, and

29–31). Mice received either 20 mg/kg neutralizing anti-Notch2 antibody or

isotype control IgG intraperitoneally 2 hr before intranasal challenge with

HDMon days 22, 24, 26, 28, and 30 only. Mice were euthanized 24 hr after their

final saline or HDM administration (day 32).

For the experiment shown in Figure 7, mice received 0.5 mg of recombinant

mouse IL-13 (Ebiosciences) or PBS intranasally on 10 consecutive days (days

1–10). Mice received either 20 mg/kg neutralizing anti-Notch2 antibody or

isotype control IgG intraperitoneally 2 hr before intranasal challenge with either

IL-13 or PBS on days 4, 6, 8, and 10 only. An additional group of mice received

0.5 mg of recombinant mouse IL-13 (Ebiosciences) or PBS intranasally on 3

consecutive days (days 1–3) only. Mice were euthanized 24 hr after their final

PBS or IL-13 administration.

The left lungs were excised, inflated with 10% neutral buffered formalin

(NBF), and preserved in NBF. Lungs were embedded in paraffin wax and

lung sections obtained for each animal. Sections were stained with PAS

stain for mucus and with anti-Foxj1 antibodies (Sigma) to label ciliated

cells.

PAS-positive staining and Foxj1-positive nuclei were quantified in lung

sections using Definiens Image Analysis software. Two distinct lung

sections were analyzed per mouse, and the total area of PAS-positive

staining or the number of Foxj1-positive nuclei within the sections was

determined. The PAS-positive staining was normalized to the area of tissue

analyzed and represented as ‘‘relative area PAS-positive mucus (%)’’. The

Foxj1-positive nuclei are represented as ‘‘Foxj1+ cells per 100 mm’’ of

epithelium.

Data are expressed asmean ±SEM. Statistical significancewas determined

using a parametric one-way ANOVA and Dunnett’s posttest. GraphPad Prism

(version 5.04) was used to generate graphs and perform statistical analysis.

***p < 0.001 denotes statistically significant difference from relevant isotype

control group.

Additional methods are provided in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, one table, and four movies and can be found with this article on-

line at http://dx.doi.org/10.1016/j.celrep.2014.12.017.
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Kuyper, L.M., Paré, P.D., Hogg, J.C., Lambert, R.K., Ionescu, D., Woods, R.,

and Bai, T.R. (2003). Characterization of airway plugging in fatal asthma.

Am. J. Med. 115, 6–11.

Lamar, E., Deblandre, G., Wettstein, D., Gawantka, V., Pollet, N., Niehrs, C.,

and Kintner, C. (2001). Nrarp is a novel intracellular component of the Notch

signaling pathway. Genes Dev. 15, 1885–1899.

Lange, P., Parner, J., Vestbo, J., Schnohr, P., and Jensen, G. (1998). A 15-year

follow-up study of ventilatory function in adults with asthma. N. Engl. J. Med.

339, 1194–1200.

Laoukili, J., Perret, E.,Willems, T., Minty, A., Parthoens, E., Houcine, O., Coste,

A., Jorissen, M., Marano, F., Caput, D., and Tournier, F. (2001). IL-13 altersmu-

cociliary differentiation and ciliary beating of human respiratory epithelial cells.

J. Clin. Invest. 108, 1817–1824.

Levine, S.J., Larivée, P., Logun, C., Angus, C.W., Ognibene, F.P., and Shel-

hamer, J.H. (1995). Tumor necrosis factor-alpha induces mucin hypersecre-
252 Cell Reports 10, 239–252, January 13, 2015 ª2015 The Authors
tion and MUC-2 gene expression by human airway epithelial cells. Am. J.

Respir. Cell Mol. Biol. 12, 196–204.

Li, K., Li, Y., Wu, W., Gordon, W.R., Chang, D.W., Lu, M., Scoggin, S., Fu, T.,

Vien, L., Histen, G., et al. (2008). Modulation of Notch signaling by antibodies

specific for the extracellular negative regulatory region of NOTCH3. J. Biol.

Chem. 283, 8046–8054.

Morimoto, M., Liu, Z., Cheng, H.T., Winters, N., Bader, D., and Kopan, R.

(2010). Canonical Notch signaling in the developing lung is required for deter-

mination of arterial smooth muscle cells and selection of Clara versus ciliated

cell fate. J. Cell Sci. 123, 213–224.

Morimoto, M., Nishinakamura, R., Saga, Y., and Kopan, R. (2012). Different as-

semblies of Notch receptors coordinate the distribution of the major bronchial

Clara, ciliated and neuroendocrine cells. Development 139, 4365–4373.

Munitz, A., Brandt, E.B., Mingler, M., Finkelman, F.D., and Rothenberg, M.E.

(2008). Distinct roles for IL-13 and IL-4 via IL-13 receptor alpha1 and the

type II IL-4 receptor in asthma pathogenesis. Proc. Natl. Acad. Sci. USA

105, 7240–7245.

Rackley, C.R., and Stripp, B.R. (2012). Building and maintaining the epithelium

of the lung. J. Clin. Invest. 122, 2724–2730.

Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell,

S.H., and Hogan, B.L. (2009). Basal cells as stem cells of the mouse trachea

and human airway epithelium. Proc. Natl. Acad. Sci. USA 106, 12771–12775.

Rock, J.R., Gao, X., Xue, Y., Randell, S.H., Kong, Y.Y., and Hogan, B.L. (2011).

Notch-dependent differentiation of adult airway basal stem cells. Cell Stem

Cell 8, 639–648.

Shaykhiev, R., Zuo, W.L., Chao, I., Fukui, T., Witover, B., Brekman, A., and

Crystal, R.G. (2013). EGF shifts human airway basal cell fate toward a smok-

ing-associated airway epithelial phenotype. Proc. Natl. Acad. Sci. USA 110,

12102–12107.

Stahl, M., Uemura, K., Ge, C., Shi, S., Tashima, Y., and Stanley, P. (2008).

Roles of Pofut1 and O-fucose in mammalian Notch signaling. J. Biol. Chem.

283, 13638–13651.

Tsao, P.N., Vasconcelos, M., Izvolsky, K.I., Qian, J., Lu, J., and Cardoso, W.V.

(2009). Notch signaling controls the balance of ciliated and secretory cell fates

in developing airways. Development 136, 2297–2307.

Vermeer, P.D., Harson, R., Einwalter, L.A., Moninger, T., and Zabner, J. (2003).

Interleukin-9 induces goblet cell hyperplasia during repair of human airway

epithelia. Am. J. Respir. Cell Mol. Biol. 28, 286–295.

Wills-Karp, M. (2004). Interleukin-13 in asthma pathogenesis. Immunol. Rev.

202, 175–190.

Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T.Y., Karp, C.L., and

Donaldson, D.D. (1998). Interleukin-13: central mediator of allergic asthma.

Science 282, 2258–2261.

Woodruff, P.G., Modrek, B., Choy, D.F., Jia, G., Abbas, A.R., Ellwanger, A.,

Koth, L.L., Arron, J.R., and Fahy, J.V. (2009). T-helper type 2-driven inflamma-

tion defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med.

180, 388–395.

Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T.J., de Leon, G.P., Chen, Y., Fin-

kle, D., Venook, R., Wu, X., Ridgway, J., et al. (2010). Therapeutic antibody tar-

geting of individual Notch receptors. Nature 464, 1052–1057.

Wu, X., Peters-Hall, J.R., Bose, S., Peña, M.T., and Rose, M.C. (2011). Human

bronchial epithelial cells differentiate to 3D glandular acini on basement mem-

brane matrix. Am. J. Respir. Cell Mol. Biol. 44, 914–921.


	Notch2 Is Required for Inflammatory Cytokine-Driven Goblet Cell Metaplasia in the Lung
	Introduction
	Results
	Human Airway Basal Cells Form “Bronchospheres” in 3D Culture
	IL-13 Induces a Mucus Hypersecretory Phenotype in Bronchospheres
	Inflammatory Cytokines Alter Basal Cell Fates
	IL-17A Treatment Biases Basal Cell Differentiation toward a Goblet Cell
	Notch2 Is Required for Cytokine-Driven Effects on Basal Cell Fate Specification In Vitro
	Inhibition of Notch2 Prevents Goblet Cell Metaplasia In Vivo

	Discussion
	Experimental Procedures
	Antibodies and Reagents
	Tissue Culture
	QuantiGene 2.0 Multiplex Assays
	Microscopy
	RNA Isolation and Quantitative PCR
	Animal Models

	Supplemental Information
	Acknowledgments
	References




