Corrigendum


Michelle Myersa, Brooke S. Middlebrooka, Martin M. Matzukab,c, Stephanie A. Pangasa,⁎

a Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
b Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
c Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

Subsequent to the publication of the paper, an error was discovered in the calculation for the relative amount of Gdf9 in WT and Inha−/− ovaries as presented in Fig. 5E. The corrected figure and legend is presented below and any statement in the text to increased Gdf9 should be disregarded. The overall conclusions of the paper remain unchanged. The authors apologize and sincerely regret this error.
Fig. 5. Alterations in the growth dynamics between germ and somatic cells in Inha−/− follicles. (A) A typical secondary follicles in a postnatal day 12 WT ovary consists of an oocyte (Oo, diameter = 43 μm), covered by a zona pellucida matrix (ZP) and 2–3 layers of granulosa cells (GC). (B) In contrast, the Inha−/− ovary has numerous secondary follicles with many of them exhibiting oocytes (Oo, diameter = 30 μm) of very small diameters and multiple layers of granulosa cells (GC). (C) Another example of a small oocyte (Oo, diameter = 23 μm) contained within multilayers of granulosa cells (GC). (D) Measurements from Inha−/− and WT ovaries show that oocytes in Inha−/− ovaries are associated with much larger follicles than those from WT littermates. This became particularly evident once the oocyte diameters were greater than 40 μm and were contained in very large multilayered follicles that had larger diameters than any follicle type in the WT ovary. Decreased expression of growth factors, (E) Gdf9, (F) Bmp15, and (G) Kitl, was found in Inha−/− ovaries compared to WT. Scale bars for A–C = 50 μm. qPCR results are expressed as relative quantity (RQ).