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Abstract

For any vertex algebra V and any subalgebra A ⊂ V , there is a new subalgebra of V known as the
commutant of A in V . This construction was introduced by Frenkel–Zhu, and is a generalization of an
earlier construction due to Kac–Peterson and Goddard–Kent–Olive known as the coset construction. In this
paper, we interpret the commutant as a vertex algebra notion of invariant theory. We present an approach
to describing commutant algebras in an appropriate category of vertex algebras by reducing the problem to
a question in commutative algebra. We give an interesting example of a Howe pair (i.e., a pair of mutual
commutants) in the vertex algebra setting.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For any vertex algebra V and any subalgebra A ⊂ V , the commutant of A in V , denoted by
Com(A,V), is defined to be the set of vertex operators v(z) ∈ V such that [a(z), v(w)] = 0 for all
a(z) ∈ A. This construction is analogous to the ordinary commutant in the theory of associative
algebras, and was introduced by Frenkel–Zhu in [14], generalizing a previous construction in
representation theory [20] and conformal field theory [16] known as the coset construction. De-
scribing Com(A,V) by giving generators and OPE relations is generally a non-trivial problem.
A priori, it is far from clear when Com(A,V) is finitely generated as a vertex algebra, even when
A and V are finitely generated.

Equivalently, Com(A,V) is the subalgebra{
v(z) ∈ V

∣∣ a(z) ◦n v(z) = 0, ∀a(z) ∈ A, n � 0
}
.

Thus if we regard V as a module over A via the “left regular action,” Com(A,V) is the subalgebra
of V which is annihilated by the operators {â(n) | a ∈ A, n � 0}. We regard V equipped with
its A-module structure as the analogue of an associative algebra equipped with a Lie group or
Lie algebra action, and we regard Com(A,V), which we often denote by VA+ , as the invariant
subalgebra. Often A will be a homomorphic image of a current algebra O(g,B), where g is
a Lie algebra and B is a symmetric, invariant bilinear form on g. In this case, VA+ is just the
invariant space Vg[t], where g[t] is the Lie subalgebra of the loop algebra g[t, t−1] generated by
{utn | u ∈ g, n � 0}. The problem of describing Vg[t] lies outside the realm of classical invariant
theory since g[t] is both infinite-dimensional and non-reductive.

1.1. Howe pairs

For any vertex algebra V and subalgebra A ⊂ V , we have A ⊂ Com(Com(A,V),V). If this
inclusion is an equality, so that A and Com(A,V) are mutual commutants, we say that A and
Com(A,V) form a Howe pair inside V . Our main goal is to give an interesting example of
a Howe pair in the vertex algebra setting, as well as outline a general strategy for describing
commutant algebras of the form Vg[t] in an appropriate category of vertex algebras.

We will focus on a particular situation which is induced by a problem in classical invariant
theory. Let g be a finite-dimensional, semisimple, complex Lie algebra, and let V be a finite-
dimensional complex vector space which is a g-module via ρ :g → End(V ). Associated to V is
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a vertex algebra S(V ) known as a βγ -ghost system or a semi-infinite symmetric algebra [15].
The map ρ induces a vertex algebra homomorphism

ρ̂ :O(g,B) → S(V ), (1.1)

where B is the bilinear form B(u, v) = −Tr(ρ(u)ρ(v)). Letting Θ = ρ̂(O(g,B)), we will study
the commutant S(V )Θ+ . Generically, S(V )Θ+ is a conformal vertex algebra with conformal
weight grading

S(V )Θ+ =
⊕
n�0

S(V )
Θ+
n ,

and the weight-zero subspace S(V )
Θ+
0 coincides with the classical ring Sym(V ∗)g of invariant

polynomial functions on V . In other words, S(V )Θ+ is a “chiralization” of Sym(V ∗)g.

1.2. The Zhu functor and invariant differential operators

In [32], Zhu introduced a functorial construction which attaches to every vertex algebra V
an associative algebra A(V) known as the Zhu algebra of V , together with a surjective linear
map πZh :V → A(V) known as the Zhu map. It is well known that A(O(g,B)) is the universal
enveloping algebra Ug, and A(S(V )) is the Weyl algebra D(V ) of polynomial differential op-
erators of V . D(V ) has generators βx, γ x′

which are linear in x ∈ V , x′ ∈ V ∗, and satisfy the
commutation relations [

βx, γ x′] = 〈x′, x〉. (1.2)

If we fix a basis x1, . . . , xn for V and a corresponding dual basis x′
1, . . . , x

′
n for V ∗, the variables

γ x′
i correspond to the linear functions x′

i , and the variables βxi correspond to the first-order
differential operators ∂

∂x′
i

.

If V is a g-module via ρ :g → End(V ), there is an induced action ρ∗ of g on D(V ). We
would like to study the relationship between S(V )Θ+ and the classical ring D(V )g of invariant
polynomial differential operators on V . Our discussion of D(V )g is based on [30]. The invari-
ant subalgebra D(V )g contains Sym(V ∗)g as the subspace of zeroth-order invariant differential
operators. Recall that D(V ) has a filtration known as the Bernstein filtration

0 ⊂ D0(V ) ⊂ D1(V ) ⊂ · · · ,

where
∑

(γ x′
i )ni (βxj )mj ∈ Dn(V ) iff

∑
i ni + ∑

j mj � n. It follows from (1.2) that the associ-
ated graded object

gr
(
D(V )

) =
⊕
n>0

Dn(V )/Dn−1(V ) = Sym
(
V ⊕ V ∗).

Moreover, g acts on D(V ) by derivations of degree 0, so the above filtration restricts to a filtration

0 ⊂ D0(V )g ⊂ D1(V )g ⊂ · · ·
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of D(V )g, and we have

gr
(
D(V )g

) = gr
(
D(V )

)g = Sym
(
V ⊕ V ∗)g

.

The action of g on D(V ) can be realized by inner derivations. We have a Lie algebra homo-
morphism τ :g →D(V ) given in our chosen basis by

τ(u) = −
∑

i

βρ(u)(xi )γ x′
i , (1.3)

which we may extend to a map Ug → D(V ), and the action of u ∈ g on ω ∈ D(V ) is
given by ρ∗(u)(ω) = [τ(u),ω]. Thus D(V )g may be alternatively described as the commutant
Com(T ,D(V )), where T = τ(Ug) ⊂ D(V ), in the sense of ordinary associative algebras. We
have the following commutative diagram:

S(V )Θ+

πZh|S(V )Θ+

i S(V )

πZh

D(V )g
i D(V ).

The horizontal maps above are inclusions, and the vertical map on the left is the restriction of
the Zhu map on S(V ) to the subspace S(V )Θ+ . A priori, this map need not be surjective, and
D(V )g need not coincide with the Zhu algebra of S(V )Θ+ . Even when this map is surjective, so
that any set of generators ω1, . . . ,ωk of D(V )g lifts to a set of vertex operators ω1(z), . . . ,ωk(z)

in S(V )Θ+ , it is not clear when this collection generates S(V )Θ+ as a vertex algebra.
For any g-module V , D(V )g always contains the Euler operator

∑
i β

xi γ x′
i , where {xi} is a

basis of V and {x′
i} is the corresponding dual basis of V ∗. If V admits a symmetric, g-invariant

bilinear form B , there is a Lie algebra homomorphism ψ : sl(2) → D(V )g given in an orthonor-
mal basis (relative to B) by the formulas

h →
∑

i

βxi γ x′
i , x → 1

2

∑
i

γ x′
i γ x′

i , y → −1

2

∑
i

βxi βxi . (1.4)

Here x, y,h denote the standard generators of sl(2), satisfying

[x, y] = h, [h,x] = 2x, [h,y] = −2y.

ψ may be extended to a map U(sl(2)) → D(V )g, and we denote the image ψ(U(sl(2))) ⊂ D(V )g

by A.
Likewise in the vertex algebra setting, S(V )Θ+ contains a vertex operator analogous to

the Euler operator above, which generates a Heisenberg vertex algebra inside S(V )Θ+ of
central charge −dimV . When V is admits a symmetric, g-invariant bilinear form, the map
ψ :U(sl(2)) → D(V )g gives rise to a vertex algebra homomorphism

ψ̂ :O
(

sl(2),−dimV
K

)
→ S(V )Θ+ , (1.5)
8
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where K denotes the Killing form on sl(2). This construction is compatible with the Zhu functor
in the sense that the diagram below commutes:

O(sl(2),− dimV
8 K)

ψ̂

πZh

S(V )Θ+

πZh|S(V )Θ+

U(sl(2))
ψ

D(V )g.

Let A denote the image of O(sl(2),− dimV
8 K) under ψ̂ . Clearly πZh(A) = A since πZh maps

the generators of A to the generators of A.

1.3. Some open questions

We regard S(V )Θ+ as a vertex algebra analogue of the classical invariant ring D(V )g, and
we ask whether various properties of D(V )g have appropriate analogues in the vertex algebra
setting. For example, D(V )g is finitely generated as a ring by a classical theorem of Hilbert [7].
Working in gr(D(V )) = Sym(V ⊕ V ∗), the idea of the proof is to use the complete reducibility
of the g-action on Sym(V ⊕V ∗) to express Sym(V ⊕V ∗)g as a direct summand. It is a standard
fact in commutative algebra that any ring which is a summand of a finitely generated polynomial
ring is finitely generated [7].

Question 1.1. Is S(V )Θ+ finitely generated as a vertex algebra? Can one find a set of generators?
Is this an appropriate analogue of Hilbert’s theorem? More generally, when are commutant
algebras of the form Vg[t] finitely generated?

Unfortunately, S(V ) is not unitary as an O(g,B)-module in general, so a priori S(V ) need
not decompose into a direct sum of irreducible O(g,B)-modules, and a similar proof cannot be
expected to go through. One of our goals will be to outline an alternative approach to answering
this kind of question.

Another classical question one can ask is whether T = τ(Ug) and D(V )g form a Howe pair
(i.e., a pair of mutual commutants) inside D(V ). This question has been studied by Knop in [21]
in a much wider context, namely, when the linear space V is replaced by an algebraic variety
with an algebraic group action.

Question 1.2. When do Θ and S(V )Θ+ form a Howe pair inside S(V )?

To answer Question 1.2, one needs to compute Com(S(V )Θ+ ,S(V )) and determine whether
it coincides with Θ . This may be possible to carry out even without a complete description
of S(V )Θ+ . A priori, we have Θ ⊂ Com(S(V )Θ+ ,S(V )). Note that if B is any subalgebra
of S(V )Θ+ , we have

Com
(
S(V )Θ+ ,S(V )

) ⊂ Com
(
B,S(V )

)
.
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If we can show that Com(B,S(V )) = Θ , it follows that

Θ ⊂ Com
(
S(V )Θ+ ,S(V )

) ⊂ Com
(
B,S(V )

) = Θ,

so all of these algebras are equal.

1.4. Statement of main result

We will answer Question 1.2 in the basic but non-trivial special case when g = sl(2)

and V is the adjoint module. We will show that S(V )A+ = Θ , where A is the subalgebra
ψ̂(O(sl(2),− 3

8K)) of S(V )Θ+ , as above. It follows immediately that Com(S(V )Θ+ ,S(V ))=Θ .
Thus we obtain

Theorem 1.3. In the case g = sl(2) = V , the subalgebras Θ and S(V )Θ+ form a Howe pair
inside S(V ).

Note that both S(V )A+ and S(V )Θ+ are commutant algebras of the form Vg[t]. In the case
g = sl(2) = V , S(V )A+ is indeed finitely generated; it is just a copy of O(sl(2),−K). We expect
that our method for calculating S(V )A+ in this special case will useful for describing S(V )Θ+

and S(V )A+ for more general g and V , and possibly more general commutant algebras of the
form Vg[t] as well. We hope to return to these questions in the future.

1.5. Outline of proof

Following ideas introduced in [28], we reduce the problem of computing S(V )A+ to a ques-
tion in commutative algebra. We will single out a certain category � of Z�0-filtered vertex
algebras whose associated graded objects are Z�0-graded supercommutative rings. In particular,
the assignment V → gr(V) is a functor from � to the category of Z�0-graded supercommutative
rings. The filtrations possessed by the objects of � are examples of the good increasing filtrations
introduced by Li in [23]. � includes all vertex algebras of the form S(V ) and O(g,B), and is
closed under taking subalgebras, so Θ , A, and S(V )Θ+ and S(V )A+ lie in � as well. Moreover,
� has an important reconstruction property; if we can find a set of generators for the ring gr(V),
we can use them to construct a set of generators for V as a vertex algebra.

In the case V = S(V ), the ring gr(S(V )) is isomorphic to the polynomial algebra

P = Sym

(⊕
k�0

(
Vk ⊕ V ∗

k

))
,

where each Vk and V ∗
k are copies of V and V ∗, respectively. The action of A = ψ̂(O(sl(2),

− 3
8K)) on S(V ) induces an action of the Lie algebra sl(2)[t] on P by derivations of degree 0,

and we denote the sl(2)[t]-invariant subalgebra by PA+ . We will study S(V )A+ indirectly by
studying its associated graded algebra gr(S(V )A+), and comparing it to PA+ . There is a canon-
ical injective ring homomorphism

Γ : gr
(
S(V )A+)

↪→ PA+ . (1.6)
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Using tools from commutative algebra and classical invariant theory, we will be able to write
down generators for PA+ and see that (1.6) is in fact an isomorphism. By the reconstruction
property, we obtain generators for S(V )A+ as a vertex algebra, and we will see explicitly that
these generators coincide with the generators of Θ .

1.6. Related questions

S(V )Θ+ is an interesting vertex algebra that appears in several other contexts as well. Asso-
ciated to the vector space V is another vertex algebra E(V ) known as a bc-ghost system or a
semi-infinite exterior algebra, which is an odd analogue of S(V ) [15]. If V is a g-module via
ρ :g → End(V ), there is an induced vertex algebra map O(g,B) → E(V ), analogous to (1.1),
where B(u, v) = Tr(ρ(u)ρ(v)). In the case V = g, the tensor product E(g) ⊗ S(g) is known
as the semi-infinite Weil complex of g [9]. W(g) is a conformal vertex algebra with weight
grading by the non-negative integers, and W(g)0 coincides with the classical Weil algebra
W(g) = Λ(g∗)⊗Sym(g∗). W(g) also has a Z-grading by fermion number, and contains a BRST
current J (z) whose zero mode J (0) is a square-zero derivation of degree 1 in this grading.
The complex (W(g)∗, J (0)) coincides with a certain relative semi-infinite cohomology complex
of the affine Lie algebra ĝ of central charge −1, with coefficients in the module S(g) [8,12].
The cohomology H ∗(W(g), J (0)) is analogous to the Lie algebra cohomology of g with coef-
ficients in Sym(g∗), and was studied in [9] and [1]. It is related to the commutant S(g)Θ+ since
S(g)Θ+ = Ker(J (0)) ∩ (1 ⊗ S(g)). In the case g = sl(2), Akman wrote down several examples
of vertex operators in W(g) which represent non-zero cohomology classes, and her list includes
the generators of the subalgebra A ⊂ S(g)Θ+ , which plays an important role in this paper.

The semi-infinite Weil complex can also be used to define a vertex algebra valued equivariant
cohomology theory for any smooth G-manifold M , where G is a compact Lie group, known
as the chiral equivariant cohomology [27]. The definition of H∗

G(M) is analogous to the de
Rham model for the classical equivariant cohomology H ∗

G(M) due to H. Cartan [3,4] and further
developed in [6,17]. H∗

G(M) is Z�0-graded by weight, and contains H ∗
G(M) as the weight-zero

subspace. Taking g to be the complexified Lie algebra of G, W(g) plays the role of W(g) in the
classical theory, and the commutant construction plays the role of classical invariant theory in
defining the appropriate notion of basic subcomplex W(g)bas.

When G is simple and M is a point, H∗
G(pt) = H ∗(W(g)bas) is an interesting conformal ver-

tex algebra containing H ∗
G(pt) = Sym(g∗)G as the weight-zero subspace. Computing H∗

G(pt) is
a fundamental building block of this theory since for any G-manifold M , H∗

G(M) is a module
over H∗

G(pt) via a chiral analogue of the Chern–Weil map. Moreover, S(g)Θ+ is a canonical
subalgebra of W(g)bas, and we expect that describing S(g)Θ+ will be a key step in comput-
ing H∗

G(pt).

2. Vertex algebras

In this section, we define vertex algebras and their modules, which have been discussed from
various different points of view in the literature [2,10,11,13,15,18,22,24,29]. We will follow the
formalism developed in [24] and partly in [22]. Let V = V0 ⊕ V1 be a super vector space over C,
and let z,w be formal variables. By QO(V ), we mean the space of all linear maps

V → V
(
(z)

) =
{∑

v(n)z−n−1
∣∣∣ v(n) ∈ V, v(n) = 0 for n � 0

}
.

n∈Z
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Each element a ∈ QO(V ) can be uniquely represented as a power series

a(z) =
∑
n∈Z

a(n)z−n−1 ∈ (EndV )
[[
z, z−1]],

although the latter space is clearly much larger than QO(V ). We refer to a(n) as the nth Fourier
mode of a(z). Each a ∈ QO(V ) is assumed to be of the shape a = a0 + a1 where ai :Vj →
Vi+j ((z)) for i, j ∈ Z/2, and we write |ai | = i.

On QO(V ) there is a set of non-associative bilinear operations, ◦n, indexed by n ∈ Z, which
we call the nth circle products. For homogeneous a, b ∈ QO(V ) they are defined by

a(w) ◦n b(w) = Resz a(z)b(w)ι|z|>|w|(z − w)n − (−1)|a||b| Resz b(w)a(z)ι|w|>|z|(z − w)n.

Here ι|z|>|w|f (z,w) ∈ C[[z, z−1,w,w−1]] denotes the power series expansion of a rational func-
tion f in the region |z| > |w|. Note that ι|z|>|w|(z−w)n �= ι|w|>|z|(z−w)n for n < 0. We usually
omit the symbol ι|z|>|w| and just write (z − w)n to mean the expansion in the region |z| > |w|,
and write (−1)n(w−z)n to mean the expansion in |w| > |z|. It is easy to check that a(w)◦n b(w)

above is a well-defined element of QO(V ).
The non-negative circle products are connected through the operator product expansion

(OPE) formula [24, Proposition 2.3]. For homogeneous a, b ∈ QO(V ), we have

a(z)b(w) =
∑
n�0

a(w) ◦n b(w) (z − w)−n−1 + :a(z)b(w): (2.1)

as formal power series in z,w. Here

:a(z)b(w): = a(z)−b(w) + (−1)|a||b|b(w)a(z)+,

where a(z)− = ∑
n<0 a(n)z−n−1 and a(z)+ = ∑

n�0 a(n)z−n−1. (2.1) is customarily written as

a(z)b(w) ∼
∑
n�0

a(w) ◦n b(w) (z − w)−n−1,

where ∼ means equal modulo the term :a(z)b(w):.
Note that :a(z)b(z): is a well-defined element of QO(V ). It is called the Wick product of a

and b, and it coincides with a(z) ◦−1 b(z). The other negative circle products are related to this
by

n! a(z) ◦−n−1 b(z) = :(∂na(z)
)
b(z):,

where ∂ denotes the formal differentiation operator d
dz

. For a1(z), . . . , ak(z) ∈ QO(V ), the k-fold
iterated Wick product is defined to be

:a1(z)a2(z) · · ·ak(z): = :a1(z)b(z):
where b(z) = :a2(z) · · ·ak(z):.

The set QO(V ) is a non-associative algebra with the operations ◦n and a unit 1. We have
1 ◦n a = δn,−1a for all n, and a ◦n 1 = δn,−1a for n � −1. We are interested in subalgebras
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A ⊂ QO(V ), that is, linear subspaces of QO(V ) containing 1, which are closed under the circle
products. In particular A is closed under formal differentiation ∂ since ∂a = a ◦−2 1. We call such
a subalgebra a circle algebra (also called a quantum operator algebra in [24]). Many formal al-
gebraic notions are immediately clear: a circle algebra homomorphism is just a linear map which
sends 1 to 1 and preserves all circle products; a module over A is a vector space M equipped
with a circle algebra homomorphism A → QO(M), etc. A subset S = {ai | i ∈ I } of A is said to
generate A if any element a ∈A can be written as a linear combination of non-associative words
in the letters ai , ◦n, for i ∈ I and n ∈ Z. We say that S strongly generates A if any a ∈ A can be
written as linear combination of words in the letters ai,◦n, for n < 0. Equivalently, A is spanned
by the collection of vertex operators of the form :∂k1ai1(z) · · · ∂kmaim(z):, for k1, . . . , km � 0.

Remark 2.1. Fix a non-zero vector 1 ∈ V and let a, b ∈ QO(V ) such that a(z)+1 = b(z)+1 = 0
for n � 0. Then it follows immediately from the definition of the circle products that (a ◦p

b)+(z)1 = 0 for all p. Thus if a circle algebra A is generated by elements a(z) with the property
that a(z)+1 = 0, then every element in A has this property. In this case the vector 1 determines
a linear map

χ :A → V, a → a(−1)1 = lim
z→0

a(z)1

(called the creation map in [24]), having the following basic properties:

χ(1) = 1, χ(a ◦n b) = a(n)b(−1)1, χ
(
∂pa

) = p! a(−p − 1)1. (2.2)

Next, we define the notion of commutativity in a circle algebra.

Definition 2.2. We say that a, b ∈ QO(V ) circle commute if

(z − w)N
[
a(z), b(w)

] = 0 (2.3)

for some N � 0. Here [ , ] denotes the supercommutator. If N can be chosen to be 0, then we
say that a, b commute. A circle algebra is said to be commutative if its elements pairwise circle
commute.

Note that this condition implies that a ◦n b = 0 for n � N . An easy calculation gives the
following very useful characterization of circle commutativity.

Lemma 2.3. The condition (2.3) is equivalent to the condition that the following two equations
hold:

[
a(z)+, b(w)

] =
N−1∑
p=0

(a ◦p b)(w)(z − w)−p−1, (2.4)

[
a(z)−, b(w)

] =
N−1∑
p=0

(−1)p(a ◦p b)(w)(w − z)−p−1. (2.5)
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The notion of a commutative circle algebra is abstractly equivalent to the notion of a vertex
algebra (see for example [13]). Briefly, every commutative circle algebra A is itself a faithful
A-module, called the left regular module. Define

ρ :A → QO(A), a → â, â(ζ )b =
∑
n∈Z

(a ◦n b) ζ−n−1.

It can be shown (see [25] and [27]) that ρ is an injective circle algebra homomorphism, and
the quadruple of structures (A, ρ,1, ∂) is a vertex algebra in the sense of [13]. Conversely, if
(V ,Y,1,D) is a vertex algebra, the collection Y(V ) ⊂ QO(V ) is a commutative circle algebra.
We will refer to a commutative circle algebra simply as a vertex algebra throughout the rest of
this paper.

Remark 2.4. Let A′ be the vertex algebra generated by ρ(A) inside QO(A). Since â(n)1 =
a(z) ◦n 1 = 0 for all a ∈A and n � 0, it follows from Remark 2.1 that for every α ∈A′, we have
α+1 = 0. The creation map χ : A′ → A sending α → α(−1)1 is clearly a linear isomorphism
since χ ◦ ρ = id. It is often convenient to pass between A and its image A′ in QO(A). For
example, we shall often denote the Fourier mode â(n) simply by a(n). When we say that a
vertex operator b(z) is annihilated by the Fourier mode a(n) of a vertex operator a(z), we mean
that a ◦n b = 0. Here we are regarding b as an element of the state space A, while a operates on
the state space, and the map a → â is the state-operator correspondence.

Let A be a vertex algebra, and let a(z), b(z), c(z) ∈ A. The following well-known formulas
will be useful to us:

:(:ab:)c: = :abc: +
∑
n�0

1

(n + 1)!
(:(∂n+1a

)
(b ◦n c): + (−1)|a||b|(∂n+1b

)
(a ◦n c):). (2.6)

For any n � 0, we have

a ◦n (:bc:) − :(a ◦n b)c: − (−1)|a||b|:b(a ◦n c): =
n∑

i=1

(
n

i

)
(a ◦n−i b) ◦i−1 c. (2.7)

For any n ∈ Z, we have

a ◦n b =
∑
p∈Z

(−1)p+1(b ◦p a) ◦n−p−1 1. (2.8)

By the preceding remark, in order to prove these identities, it suffices to show that â, b̂, ĉ sat-
isfy them, which can be checked by applying the creation map to both sides and then using (2.2).
Equations (2.6)–(2.8) measure the non-associativity of the Wick product, the failure of the pos-
itive circle products to be derivations of the Wick product, and the failure of the circle products
to be commutative, respectively.
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2.1. Conformal structure

Many vertex algebras V have a Virasoro element, that is, a vertex operator L(z) satisfying the
OPE

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1, (2.9)

where the constant c is called the central charge of L(z). It is customary to write L(z) =∑
n∈Z

L(n)z−n−1 in the form
∑

n∈Z
Lnz

−n−2, so that L(n) = Ln−1. Often we require further
that L0 be diagonalizable and L−1 acts on V by formal differentiation. In this case, the pair
(V,L(z)) is called a conformal vertex algebra of central charge c. An element a(z) ∈ V which is
an eigenvector of L0 with eigenvalue Δ is said to have conformal weight Δ, and we denote the
subspace of conformal weight Δ by VΔ. If a(z) ∈ VΔ satisfies the OPE

L(z)a(w) ∼ Δa(w)(z − w)−2 + ∂a(w)(z − w)−1,

so that all the higher poles vanish, a(z) is said to be primary. In any conformal vertex algebra V ,
the operator ◦n is homogeneous of weight −n − 1. In particular, the Wick product ◦−1 is homo-
geneous of weight zero, so V0 is closed under the Wick product. If the conformal weight grading
is a Z�0-grading V = ⊕

n�0 Vn (which will be the case in all our examples), V0 is an associative,
supercommutative algebra with unit 1 under the Wick product.

Example 2.5 (Current algebras). Let g be a Lie algebra equipped with a symmetric g-invariant
bilinear form B . The loop algebra of g is defined to be

g
[
t, t−1] = g ⊗ C

[
t, t−1],

with bracket given by [
utn, vtm

] = [u,v]tn+m.

The form B determines a 1-dimensional central extension of g[t, t−1]

ĝ = g
[
t, t−1] ⊕ Cκ,

with bracket [
utn, vtm

] = [u,v]tn+m + nB(u, v)δn+m,0κ.

ĝ is equipped with the Z-grading deg(utn) = n, and deg(κ) = 0. Let ĝ�0 ⊂ ĝ be the subalgebra
of elements of non-negative degree, and let

N(g,B) = Uĝ ⊗ĝ�0
C

be the induced ĝ-module, where C is the 1-dimensional ĝ�0-module on which g[t] acts by zero
and κ acts by 1. Clearly N(g,B) is graded by the non-positive integers. For each u ∈ g, let u(n)

denote the linear operator on N(g,B) representing utn, and put
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u(z) =
∑
n∈Z

u(n)z−n−1 ∈ QO
(
N(g,B)

)
. (2.10)

The collection {u(z) | u ∈ g} generates a vertex algebra inside QO(N(g,B)), which we denote
by O(g,B) [14,24,26]. For any u,v ∈ g, the vertex operators u(z), v(z) ∈ O(g,B) satisfy the
OPE

u(z)v(w) ∼ B(u, v)(z − w)−2 + [u,v](w)(z − w)−1. (2.11)

Let 1 denote the vacuum vector 1 ⊗ 1 ∈ N(g,B).

Lemma 2.6. (See [26].) The creation map χ :O(g,B) → N(g,B) sending a(z) → a(−1)1 is an
isomorphism of O(g,B)-modules.

In fact, for u1, . . . , uk ∈ g and n1, . . . , nk � 0,

χ
(:∂n1u1(z) · · · ∂nkuk(z):

) = n1! · · ·nk!u1(−n1 − 1) · · ·uk(−nk − 1).

By the Poincare–Birkhoff–Witt (PBW) theorem, we may choose a basis of N(g,B) consisting of
monomials of the form u1(−n1 −1) · · ·uk(−nk −1). Hence O(g,B) is spanned by the collection
of standard monomials

:∂n1u1(z) · · · ∂nkuk(z):. (2.12)

If g is finite-dimensional and the form B is non-degenerate, O(g, λB) admits a Virasoro ele-
ment LO(z) such that (O(g, λB),LO(z)) is a conformal vertex algebra, for all but finitely many
values of λ ∈ C [26]. For example, if g is simple, O(g, λK) has a Virasoro element given by the
Sugawara–Sommerfield formula:

LO(z) = 1

2λ + 1

∑
i

:ui(z)ui(z):, (2.13)

whenever λ �= − 1
2 , where the ui form an orthonormal basis of g relative to the Killing form K .

Note that we have chosen a normalization so that we do not need to mention the dual Coxeter
number of g. LO(z) has central charge 2λdim(g)

2λ+1 , and for each u ∈ g, u(z) is primary of conformal
weight 1. In fact, LO(z) is characterized by these properties [26].

Example 2.7 (βγ -ghost systems). Let V be a finite-dimensional vector space. Regard V ⊕V ∗ as
an abelian Lie algebra. Then its loop algebra has a one-dimensional central extension

h = h(V ) = (
V ⊕ V ∗)[t, t−1] ⊕ Cτ,

which is known as a Heisenberg algebra. Its bracket is given by[
(x, x′)tn, (y, y′)tm

] = (〈y′, x〉 − 〈x′, y〉)δn+m,0τ,

for x, y ∈ V and x′, y′ ∈ V ∗. Let b ⊂ h be the subalgebra generated by τ , (x,0)tn, and (0, x′)tm,
for n � 0 and m > 0, and let C be the one-dimensional b-module on which (x,0)tn and (0, x′)tm
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act trivially and the central element τ acts by the identity. Denote the linear operators representing
(x,0)tn, (0, x′)tn on Uh ⊗Ub C by βx(n), γ x′

(n − 1), respectively, for n ∈ Z. The power series

βx(z) =
∑
n∈Z

βx(n)z−n−1, γ x′
(z) =

∑
n∈Z

γ x′
(n)z−n−1 ∈ QO(Uh ⊗Ub C)

generate a vertex algebra S(V ) inside QO(Uh ⊗Ub C), and the generators satisfy the OPE rela-
tions

βx(z)γ x′
(w) ∼ 〈x′, x〉(z − w)−1, βx(z)βy(w) ∼ 0, γ x′

(z)γ y′
(w) ∼ 0. (2.14)

This algebra was introduced in [15], and is known as a βγ -ghost system, or a semi-infinite
symmetric algebra. By the PBW theorem, the vector space Uh ⊗Ub C has the structure of a
polynomial algebra with generators given by the negative Fourier modes βx(n), γ x′

(n), n < 0,
which are linear in x ∈ V and x′ ∈ V ∗. It follows that S(V ) is spanned by the collection of
iterated Wick products of the form

μ = :∂n1βx1 · · · ∂ns βxs ∂m1γ x′
1 · · · ∂mt γ x′

t :.

S(V ) has the following Virasoro element:

LS(z) =
∑

i

:βxi (z)∂γ x′
i (z):, (2.15)

where x1, . . . , xn is a basis of V and x′
1, . . . , x

′
n is the corresponding dual basis of V ∗. LS(z)

is characterized by the property that it is a Virasoro element of central charge 2 dim(V ), and
βx(z), γ x′

(z) are primary of conformal weights 1,0, respectively.
Suppose that V is a finite-dimensional g-module via ρ :g → End(V ), where g is a finite-

dimensional Lie algebra.

Lemma 2.8. The map ρ induces a vertex algebra homomorphism

ρ̂ :O(g,B) → S(V ),

where B is the bilinear form B(u, v) = −Tr(ρ(u)ρ(v)) on g.

Proof. In terms of a basis x1, . . . , xn for V and dual basis x′
1, . . . , x

′
n for V ∗, we define

θu(z) = −
∑

i

:βρ(u)(xi )(z)γ x′
i (z):, (2.16)

which is analogous to (1.3). An OPE computation shows that

θu(z)θv(w) ∼ B(u, v)(z − w)−2 + θ [u,v](w)(z − w)−1. �
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2.2. The commutant construction

There is a way to construct interesting vertex subalgebras known as commutant subalgebras
of a given vertex algebra, which is analogous to the commutant construction in the theory of
associative algebras.

Definition 2.9. Let V be a vertex algebra and let A be any subset of V . The commutant of A

in V , denoted by Com(A,V), is defined to be the set of vertex operators v(w) ∈ V which strictly
commute with the elements of A, that is, [a(z), v(w)] = 0 for all a(z) ∈ A.

It follows from Lemma 2.3 that [a(z), v(w)] = 0 iff a(z) ◦n v(z) = 0 for all n � 0, so

Com(A,V) = {
v(z) ∈ V

∣∣ a(z) ◦n v(z) = 0, ∀a(z) ∈ A, n � 0
}
.

For any A, Com(A,V) is a vertex subalgebra, and Com(A,V) = Com(A,V), where A ⊂ V is
the vertex subalgebra generated by A. We regard V as a module over A via the left regular action,
and we regard Com(A,V), which will be denoted by VA+ , as the invariant subalgebra.

If A is a homomorphic image of a current algebra O(g,B), A is generated by the sub-
set A = {u(z) | u ∈ g}. Hence VA+ = Vg[t]. Consider the case V = S(V ) and A = Θ(g) =
ρ̂(O(g,B)), where g is semisimple and V is a finite-dimensional g-module. We claim that gener-
ically, S(V )Θ+ is a conformal vertex algebra. Suppose first that g is simple, so

B(u, v) = −Tr
(
ρ(u)ρ(v)

) = λK(u, v)

for some scalar λ ∈ C. If λ �= − 1
2 , O(g, λK) has the Virasoro element LO(z) given by (2.13).

An OPE calculation shows that

L(z) = LS(z) − ρ̂
(
LO(z)

)
(2.17)

is a Virasoro element of central charge (2λ+2)dim(g)
2λ+1 . In particular, if V is the adjoint module of g,

λ = −1 and L(z) has central charge 0.

Lemma 2.10. L(z) lies the commutant S(V )Θ+ . Moreover, (S(V )Θ+ ,L(z)) is a conformal ver-
tex algebra, and for any a(z) ∈ S(V )Θ+ , the OPEs of L(z)a(w) and LS(z)a(w) coincide.

Proof. Clearly each θu(z) is primary of weight 1 relative to both LS(z) and ρ̂(LO(z)). It follows
that L(z) commutes with each θu(z). Hence L(z) ∈ S(V )Θ+ .

It follows from (2.13) that any a(z) ∈ S(V )Θ+ will satisfy the OPE ρ̂(LO(z))a(w) ∼ 0, so
the OPEs of LS(z)a(w) and L(z)a(w) coincide. In particular, the conformal weight grading
on (S(V )Θ+ ,L(z)) coincides with the conformal weight grading on S(V )Θ+ inherited from the
ambient space (S(V ),LS(z)). �
Remark 2.11. If g is semisimple, the bilinear form B on g will be a linear combination of the
Killing forms corresponding to the various simple components of g. Hence ρ̂(LO(z)) will be
a linear combination of terms of the form (2.13) whenever it exists. Thus (S(V )Θ+ ,L(z)) will
generically be a conformal vertex algebra, although the formula for the central charge will be
more complicated.
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Even when L(z) is not defined, the Fourier modes LS(n) preserve S(V )Θ+ for all n � 0. In
particular, LS(0) acts by ∂ and LS(1) acts diagonalizably, so S(V )Θ+ is still a quasi-conformal
vertex algebra and is graded by conformal weight.

Lemma 2.12. The weight zero subspace S(V )
Θ+
0 ⊂ S(V )Θ+ coincides with the classical invari-

ant ring Sym(V ∗)g. In other words, S(V )Θ+ is a “chiralization” of Sym(V ∗)g.

Proof. Clearly S(V )
Θ+
0 ⊂ S(V )

Θ0
0 , and S(V )

Θ0
0 = Sym(V ∗)g. We need to show that if ω ∈

S(V )0 is g-invariant, then ω is automatically Θ+-invariant as well. This is clear since θu(n) is
homogeneous of conformal weight −n, and the conformal weight grading on S(V ) is bounded
below by 0. �

Next, we show that S(V )Θ+ always contains a canonical element which is analogous to the
Euler operator

∑
i β

xi γ x′
i ∈ D(V )g.

Lemma 2.13. For any semisimple g and finite-dimensional module V , the vertex operator

v(z) =
∑

i

:βxi (z)γ x′
i (z):

lies in the commutant S(V )Θ+ . Here x1, . . . , xn is any basis of V and x′
1, . . . , x

′
n is the corre-

sponding dual basis of V ∗.

Proof. Clearly v(z) ∈ S(V )Θ0 since the pairing between V and V ∗ is g-invariant. It suffices
to show that for any u ∈ g, θu(z) ◦1 v(z) = 0. An OPE calculation shows that for any u ∈ g,
θu(z) ◦1 v(z) = −Tr(ρ(u)), which vanishes since g is semisimple. �
Remark 2.14. The element v(z) given by Lemma 2.13 satisfies the OPE

v(z)v(w) ∼ −dim(V )(z − w)−2,

so it generates a copy of the Heisenberg vertex algebra of central charge −dim(V ) inside
S(V )Θ+ .

Suppose next that the g-module V admits a symmetric, g-invariant bilinear form. Recall that
D(V )g has an sl(2)-module structure given by:

ψ(h) =
∑

i

βxi γ x′
i , ψ(x) = 1

2

∑
i

γ x′
i γ x′

i , ψ(y) = −1

2

∑
i

βxi βxi ,

where x1, . . . , xn is an orthonormal basis of V and x′
1, . . . , x

′
n is the corresponding dual basis

of V ∗.
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Lemma 2.15. For any semisimple Lie algebra g and any g-module V equipped with a symmet-
ric, g-invariant bilinear form, the homomorphism ψ : sl(2) → D(V )g induces a vertex algebra
homomorphism

ψ̂ : O
(

sl(2),−dim(V )

8
K

)
→ S(V )Θ+ ,

sending

h(z) → vh(z) =
∑

i

:βxi (z)γ x′
i (z):,

x(z) → vx(z) = 1

2

∑
i

:γ x′
i (z)γ x′

i (z):,

y(z) → vy(z) = −1

2

∑
i

:βxi (z)βxi (z):,

where K is the Killing form of sl(2). Note that vh(z) coincides with v(z) given by Lemma 2.13.

Proof. This is a straightforward OPE calculation. �
3. Category �

In this section we introduce a certain category � of vertex algebras, together with a func-
tor from � to the category of supercommutative rings. � contains all vertex algebras of the
form S(V ), E(V ), and O(g,B) and is closed under taking subalgebras, so Θ , S(V )Θ+ , A, and
S(V )A+ lie in � as well. This functor provides a bridge between vertex algebras and commuta-
tive algebra, and it allows us to answer structural question about vertex algebras V ∈ � by using
the tools of commutative algebra.

Definition 3.1. Let � be the category of pairs (V,deg), where V is a vertex algebra equipped
with a Z�0-filtration

V(0) ⊂ V(1) ⊂ V(2) ⊂ · · · , V =
⋃
k�0

V(k) (3.1)

such that V(0) = C, and for all a ∈ V(k), b ∈ V(l), we have

a ◦n b ∈ V(k+l), for n < 0, (3.2)

a ◦n b ∈ V(k+l−1), for n � 0. (3.3)

Here V(k) := 0 for k < 0. A non-zero element a(z) ∈ V is said to have degree d if d is the minimal
integer for which a(z) ∈ V(d). Morphisms in � are morphisms of vertex algebras which preserve
the above filtration.
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Filtrations on vertex algebras satisfying (3.2)–(3.3) were introduced in [23] and are known as
good increasing filtrations. If V possesses such a filtration, it follows from (2.6)–(2.8) that the
associated graded object

gr(V) =
⊕
k>0

V(k)/V(k−1)

is a Z�0-graded associative, supercommutative algebra with a unit 1 under a product induced by
the Wick product on V . Moreover, gr(V) has a derivation ∂ of degree zero (induced by the oper-
ator ∂ = d

dz
on V), and for each a ∈ V(d) and n � 0, the operator a◦n on V induces a derivation

of degree d − 1 on gr(V). Finally, these derivations give gr(V) the structure of a vertex Poisson
algebra, i.e., a graded associative, super-commutative algebra A equipped with a derivation ∂ ,
and a family of derivations a(n) for each n � 0 and a ∈A [10,23].

We do not require the filtration on V to come from a Z�0-grading

V =
⊕
k�0

V (k)

where V(k) = ⊕k
i=0 V (i). If V does possess such a grading, we will say that V is graded by

degree. If A is a vertex subalgebra of V , the filtration (3.1) on V induces a filtration

A(0) ⊂ A(1) ⊂ A(2) ⊂ · · ·

on A, where A(k) = A ∩ V(k). With respect to this filtration, (A,deg) lies in �. In general, if V
is graded by degree, a subalgebra A needs not be graded by degree.

In general, there is no natural linear map from V → gr(V), but we do have projections

φd :V(d) → V(d)/V(d−1) ⊂ gr(V) (3.4)

for d � 1. If a, b ∈ gr(V) are homogeneous of degrees r, s respectively, and a(z) ∈ V(r),
b(z) ∈ V(s) are vertex operators such that φr(a(z)) = a and φs(b(z)) = b, it follows that
φr+s(:a(z)b(z):) = ab.

Let R denote the category of Z�0-graded supercommutative rings equipped with a derivation
∂ of degree 0, which we shall call ∂-rings.

Lemma 3.2. If (V,deg) and (V ′,deg′) lie in �, and f :V → V ′ is a morphism in �, f induces
a homomorphism of ∂-rings gr(f ) : gr(V) → gr(V ′). In particular, the assignment (V,deg) →
gr(V) is a functor from � to R.

Proof. Let a ∈ gr(V) be homogeneous of degree r , and let a(z) ∈ V be any vertex operator of
degree r such that φV

r (a(z)) = a. We define

gr(f )(a) = φV ′
r f

(
a(z)

)
.

If a′(z) ∈ V(r) is another vertex operator such that φV
r (a′(z)) = a, then deg(a(z) − a′(z)) < r .

Since f preserves degree, f (a(z) − a′(z)) also has degree less than r , so φV ′
r f (a(z)) −
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φV ′
r f (a′(z)) = 0. Hence gr(f ) is well-defined. To see that gr(f ) is a ring homomorphism,

let b ∈ V be homogeneous of degree s and choose b(z) ∈ V(s) such that φV
s (b(z)) = b. Then

:a(z)b(z): ∈ V(r+s) and φV
(r+s)

(:a(z)b(z):) = ab. It follows that

gr(f )(ab) = φV ′
r f

(:a(z)b(z):) = φV ′
r

(:f (
a(z)

)
f

(
b(z)

):)
= φV ′

r f
(
a(z)

)
φV ′

r f
(
a(z)

) = gr(f )(a)gr(f )(b).

The same argument shows that gr(f )(∂(a)) = ∂(gr(f )(a)). Checking that gr respects composi-
tions of mappings and that gr(idV ) = idgr(V) is also straightforward. �

A vertex algebra V is said to be freely generated by an ordered collection {ai(z) | i ∈ I }, if the
collection of iterated Wick products{:ai1(z) · · ·air (z):

∣∣ i1 � · · · � ir
}

forms a basis of V [19]. For example, if we fix a basis u1, . . . , un for a Lie algebra g, O(g,B) is
freely generated by the collection{

∂kui(z)
∣∣ i = 1, . . . , n, k � 0

}
,

which we order by declaring ∂kui(z) > ∂luj (z) if i > j , or i = j and k > l.
Similarly, if x1, . . . , xn is a basis for a vector space V and x′

1, . . . , x
′
n is the corresponding dual

basis for V ∗, S(V ) is freely generated by the collection{
∂kβxi , ∂kγ x′

i (z)
∣∣ i = 1, . . . , n, k � 0

}
,

which we order in the obvious way.

Lemma 3.3. Suppose that V is freely generated by an ordered collection of vertex operators
{ai(z) | i ∈ I }. Assign each ai(z) degree di > 0, and define a linear Z�0-grading V = ⊕

n�0 V (n)

by declaring

(1) V(0) = C.
(2) V(n) is spanned by the collection of vertex operators :ai1(z) · · ·air (z): for which di1 + · · · +

dir = n.

If the generators ai(z) satisfy (3.2)–(3.3), then (V,deg) lies in �.

Proof. This is a special case of Theorem 4.6 of [23]. A straightforward induction on the de-
gree and on the number of derivatives shows that any pair of homogeneous vertex operators
a(z), b(z) ∈ V of degrees da, db , respectively, satisfies a(z) ◦n b(z) ∈ Vda+db−1 for n � 0. Hence
(3.3) holds for all of V . (3.2) then follows immediately from (2.6). �
Corollary 3.4. If we equip O(g,B) with the grading deg(∂ku(z)) = 1 for all u ∈ g and k � 0,
O(g,B) lies in � and is graded by degree. O(g,B)(n) is spanned by the collection of vertex
operators
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:∂k1u1(z) · · · ∂knun(z):,
where ui ∈ g and ki � 0. Moreover, gr(O(g,B)) is the polynomial algebra

Sym

(⊕
k�0

gk

)
,

where gk is the copy of g spanned by the collection of vertex operators {∂ku(z)} which are linear
in u ∈ g.

Corollary 3.5. If we equip S(V ) with the grading

deg
(
∂kγ x′

(z)
) = deg

(
∂kβx(z)

) = 1

for all x ∈ V , x′ ∈ V ∗, and k � 0, S(V ) lies in � and is graded by degree. S(V )(n) is spanned
by the collection

:∂k1βx1(z) · · · ∂kr βxr (z)∂l1γ x′
1(z) · · · ∂ls γ x′

s (z):,
and gr(S(V )) is the polynomial algebra

Sym

(⊕
k�0

(
Vk ⊕ V ∗

k

))
,

where Vk and V ∗
k are the copies of V and V ∗, spanned by the collections {∂kβx(z)} and

{∂kγ x′
(z)}, which are linear in x ∈ V and x′ ∈ V ∗, respectively.

If (V,deg) ∈ �, we may rescale deg by a factor of m for any positive integer m, and the
resulting pair (V,m · deg) will still lie in �. When V is a g-module via ρ :g → End(V ), the map

ρ̂ :O(g,B) → S(V )

given by Lemma 2.8 is a morphism in � if we double the above grading on O(g,B), so that
deg(u(z)) = 2 for all u ∈ g. Likewise, if V admits a symmetric, g-invariant bilinear form, the
map

ψ̂ : O
(

sl(2),−dim(V )

8
K

)
→ S(V )Θ+

given by Lemma 2.15 is a morphism in � if the degree grading on O(sl(2),− dim(V )
8 K) is dou-

bled.
Let V be a g-module as above, and let S(V )Θ0 ⊂ S(V ) denote the g-invariant subalgebra

which is annihilated by {θu(0) | u ∈ g}. Clearly S(V )Θ+ ⊂ S(V )Θ0 , and these vertex algebras
both lie in � as subalgebras of S(V ) with the induced filtration. S(V )Θ0 is graded by degree as a
subalgebra of S(V ) since each {θu(0) | u ∈ g} is a homogeneous derivation of degree 0 on S(V ).
The associated graded algebra gr(S(V )Θ0) is the classical invariant ring
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Sym

(⊕
k�0

(
Vk ⊕ V ∗

k

))g

.

However, for n > 0, θu(n) decomposes into homogeneous components of degrees 0 and −2, so
S(V )Θ+ is not graded by degree as a subalgebra of S(V ).

Similarly, if V admits a symmetric, g-invariant bilinear form, so that S(V )Θ+ contains the
subalgebra A = ψ̂(O(sl(2),− dimV

8 K)), the sl(2)-invariant space S(V )A0 is graded by degree
but S(V )A+ is not, since the operators vu(n) decompose into homogeneous components of de-
grees 0 and −2, for n > 0.

The key feature of � is that vertex algebras V ∈ � have the following reconstruction property:
we can write down a set of strong generators for V as a vertex algebra just by knowing the ring
structure of gr(V). We say that the collection {ai | i ∈ I } generates gr(V) as a ∂-ring if the
collection {∂kai | i ∈ I, k � 0} generates gr(V) as a graded ring.

Lemma 3.6. Let V be a vertex algebra in �. Suppose that gr(V) is generated as a ∂-ring by a
collection {ai | i ∈ I }, where ai is homogeneous of degree di . Choose vertex operators ai(z) ∈
V(di ) such that φdi

(ai(z)) = ai . Then V is strongly generated by the collection {ai(z) | i ∈ I }.

Proof. Let V ′ ⊂ V denote the linear subspace spanned by the monomials

:∂k1ai1(z) · · · ∂kr air (z):.
We need to prove that V ′ = V ; we proceed by induction on degree. The statement is trivial in
degree 0, so assume it for degree less than d . Let ω(z) ∈ V(d) and let ω ∈ gr(V) denote the image
of ω(z) under φd : V(d) → V(d)/V(d−1). Since gr(V) is generated as a ∂-ring by ai , we can write

ω =
∑
K,I

λK,I ∂
k1ai1 · · · ∂kr air ,

where the sum is over all monomials in gr(V) for which d1 + · · · + dr = d . Let

ω′(z) =
∑
K,I

λK,I :∂k1ai1(z) · · · ∂kr air (z):.

It is easy to see that φd(ω′(z)) = ω = φd(ω(z)), so that ω′′(z) = ω(z) − ω′(z) has degree less
than d . Since ω′(z) ∈ V ′, we have ω′′(z) ≡ ω(z) modulo V ′. The claim follows by induction. �

Recall that for all a(z) ∈ V(d) and n � 0, a(z)◦n induces a derivation of degree d − 1 on
gr(V), and these maps give gr(V) the structure of a vertex Poisson algebra [10,23]. However,
this structure may be trivial in the sense that all these maps on gr(V) are zero. If V is abelian
(i.e., [a(z), b(w)] = 0 for all a, b ∈ V) this will always be the case, but it may be true even if V
is non-abelian. However, we will modify this construction slightly to obtain a non-trivial vertex
Poisson algebra structure on gr(V) whenever V is not abelian. Define

k = k(V,deg) = sup
{
j � 1

∣∣ V(r) ◦n V(s) ⊂ V(r+s−j) ∀r, s, n � 0
}
.

It follows easily that k is finite iff V is not abelian.
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Lemma 3.7. Let (V,deg) ∈ � and let k = k(V,deg) be as above. For each a(z) ∈ V of degree
d and n � 0, the operator a(z)◦n on V induces a homogeneous derivation a(n)Der on gr(V) of
degree d − k, defined on homogeneous elements b of degree r by

a(n)Der(b) = φr+d−k

(
a(z) ◦n b(z)

)
. (3.5)

Here b(z) ∈ V is any vertex operator of degree r such that φr(b(z)) = b.

Proof. If b′(z) ∈ V is another vertex operator of degree r such that φr(b
′(z)) = b, then

deg((b(z) − b′(z))) < r . Using (3.5), it follows that

φr+d−k

(
a(z) ◦n b′(z)

) − φr+d−k

(
a(z) ◦n b(z)

) = φr+d−k

(
a(z) ◦n

(
b(z) − b′(z)

)) = 0.

Hence a(n)Der is well-defined, and is clearly homogeneous of degree d − k. It remains to show
that for any homogeneous b, c ∈ V of degrees r, s respectively, we have

a(n)Der(bc) − (
a(n)Der(b)

)
c − b

(
a(n)Der(c)

) = 0.

Let b(z), c(z) ∈ V be vertex operators of degrees r, s, respectively, such that φr(b(z)) = b and
φs(c(z)) = c, so that φr+s(:b(z)c(z):) = bc. Hence a(n)Der(bc) = φr+s+d−ka(z) ◦n (:b(z)c(z):).
Similarly, (

a(n)Der(b)
)
c = φr+s+d−k

(:(a(z) ◦n b(z)
)
c(z):),

and

b
(
a(n)Der(c)

) = φr+s+d−k

(:b(z)
(
a(z) ◦n c(z)

):).
Hence a(n)Der(bc) − (a(n)Der(b))c − b(a(n)Der(c)) is equal to

φr+s+d−k

(
a(z) ◦n

(:b(z)c(z):) − :(a(z) ◦n b(z)
)
c(z): − :b(z)

(
a(z) ◦n c(z)

):).
Using (2.7), we see that this expression is equal to

φr+s+d−k

(
n∑

i=1

(
n

i

)(
a(z) ◦n−i b(z)

) ◦i−1 c(z)

)
.

By (3.5), a(z) ◦n−i b(z) ∈ Vr+d−k , and (a(z) ◦n−i b(z)) ◦i−1 c(z) ∈ Vr+s+d−2k by applying (3.5)
again. Since k � 1, the claim follows. �

Clearly the maps {a(n)Der | a ∈ V, n � 0} give gr(V) the structure of a vertex Poisson algebra,
and this structure is non-trivial whenever k is finite. Note that if (V,deg) lies in � and we rescale
the degree by a factor of m, k(V,m · deg) = m · k(V,deg). If V is strongly generated by a set
{ai(z) | i ∈ I } of vertex operators of degrees di satisfying the conditions of Lemma 3.3, it is easy
to see that k(V,deg) is the minimum value of
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deg
(
ai(z)

) + deg
(
aj (z)

) − deg
(
ai(z) ◦n aj (z)

)
,

where i, j range over I and n � 0. It follows from the OPE formulas (2.11) and (2.14) that

k
(
O(g,B),deg

) = 1, k
(
S(V ),deg

) = 2. (3.6)

Lemma 3.8. Let (V,deg) ∈ �, and suppose a(z), b(z) ∈ V are vertex operators of degrees r and
s such that [a(z), b(z)] = 0. Then for all n,m � 0, a(n)Der and b(m)Der commute as operators
on gr(V).

Proof. Let c ∈ gr(V) be homogeneous of degree t , and let c(z) ∈ V be a vertex operator of degree
t such that φt (c(z)) = c. Then b(m)Der(c) = φs+t−k(b(z) ◦m c(z)). Likewise,

a(n)Der
(
b(m)Der(c)

) = φr+s+t−2k

(
a(z) ◦n ω(z)

)
,

where ω(z) is any vertex operator of degree s + t − k such that φs+t−k(ω(z)) = b(m)Der(c). We
may take ω(z) = b(z) ◦m c(z). Then

a(n)Der
(
b(m)Der(c)

) = φr+s+t−2k

(
a(z) ◦n

(
b(z) ◦m c(z)

))
,

and similarly,

b(m)Der
(
a(n)Der(c)

) = φr+s+t−2k

(
b(z) ◦m

(
a(z) ◦n c(z)

))
.

It follows that

[
a(n)Der, b(m)Der

]
(c) = φr+s+t−2k

([
a(n), b(m)

](
c(z)

))
. (3.7)

Since a(z), b(z) commute, it follows that [a(n), b(m)] = 0 for all n,m � 0, which proves the
claim. �
3.1. Commutants in �

Let (V,deg) ∈ �, k = k(V,deg), and let A be a subalgebra of V which is a homomorphic
image of a current algebra O(g,B). We would like to use the filtration deg on V to study the
commutant VA+ . Suppose that for each u ∈ g, u(z) ∈ A has degree k, so that the derivations
{u(n)Der | n � 0} on gr(V) are homogeneous of degree 0 by Lemma 3.7.

Lemma 3.9. The derivations {u(n)Der | n � 0} form a representation of g[t] on gr(V). Moreover,
the actions of g[t] on V and gr(V) are compatible in the sense that for any ω(z) ∈ V of degree r ,
we have

u(n)Derφr

(
ω(z)

) = φr ◦ u(n)
(
ω(z)

)
. (3.8)
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Proof. Let ω ∈ gr(V) be homogeneous of degree r , and let ω(z) ∈ V be a vertex operator of
degree r such that φr(ω(z)) = ω. Using (3.7) and the fact that each u(n)Der has degree 0, we
have [

u(n)Der, v(m)Der
]
(ω) = φr

([
u(n), v(m)

](
ω(z)

))
= φr

([u,v](n + m)
(
ω(z)

)) = [u,v](n + m)Der(ω). �
Since each u(n)Der is degree-homogeneous, the invariant space gr(V)A+ under this action is

graded by degree as a subalgebra of gr(V). Moreover, gr(V)A+ is closed under ∂ since VA+

is a vertex algebra and ∂ is homogeneous of degree 0. By functoriality, the inclusion of vertex
algebras VA+ ⊂ V gives rise to an injective ring homomorphism gr(VA+) ↪→ gr(V) whose image
clearly lies in gr(V)A+ . Hence we have a canonical injection

Γ : gr
(
VA+)

↪→ gr(V)A+ (3.9)

which is a homomorphism of ∂-rings.

3.2. A strategy for computing VA+

Let R ⊂ gr(V)A+ denote the image of gr(VA+) under Γ . The problem of finding a set of
generators {ai | i ∈ I } for R as a ∂-ring is a problem in commutative algebra. Solving this
problem allows us find generators for the vertex algebra VA+ as well. Since Γ maps gr(VA+)

isomorphically onto R, these generators correspond to elements of gr(VA+), which in turn come
from vertex operators {ai(z) | i ∈ I } in VA+ such that φdi

(ai(z)) = ai . Here di = deg(ai). By
Lemma 3.6, this collection strongly generates VA+ . In particular, VA+ is (strongly) finitely gen-
erated as a vertex algebra whenever R is finitely generated as a ∂-ring.

In our main example, we will find a finite set of generators for gr(V)A+ as a ∂-ring. These
generators correspond to vertex operators in VA+ , so in this case Γ is surjective (and hence an
isomorphism), and we obtain a finite set of generators for VA+ as well.

Consider the case V = S(V ) and A = Θ(g), where g is semisimple and V is a finite-
dimensional g-module. In this case, deg(θu(z)) = 2 = k, so each θu(n)Der is homogeneous of
degree 0 and gr(S(V )) is a g[t]-module by Lemma 3.9. For notational simplicity, we denote
gr(S(V )) by P , and we denote the images of ∂kβx(z), ∂kγ x′

(z) in P by βx
k and γ x′

k , respec-
tively. The action of θu(n)Der on the generators of P is given by

θu(n)Der
(
βx

k

) = cn
kβ

ρ(u)(x)
k−n , θu(n)Der

(
γ x′
k

) = cn
kγ

ρ∗(u)(x′)
k−n , (3.10)

where cn
k = k(k − 1) · · · (k − n + 1), for n, k � 0. Clearly c0

k = 1 and cn
k = 0 for n > k.

If V admits a symmetric, g-invariant bilinear form, so that by Lemma 2.15, S(V )Θ+ contains
the subalgebra A = ψ̂(O(sl(2),− dim(V )

8 K)), the operators {vu(k)Der | u = x, y,h, k � 0} on
P form a representation of the Lie algebra sl(2)[t] by derivations of degree 0. In terms of an
orthonormal basis of V , the action is given by

vh(n)Der
(
β

xi

k

) = −cn
kβ

xi

k−n, vh(n)Der
(
γ

x′
i

k

) = cn
kγ

x′
i

k−n, (3.11)

vx(n)Der
(
β

xi

k

) = −1
cn
kγ

x′
i

k−n, vx(n)Der
(
γ

x′
i

k

) = 0, (3.12)

2
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vy(n)Der
(
β

xi

k

) = 0, vy(n)Der
(
γ

x′
i

k

) = −1

2
cn
kβ

x′
i

k−n. (3.13)

We denote the invariant space gr(S(V ))A+ by PA+ . Our main task is to describe PA+ as a
∂-ring in the case where g = sl(2) and V is the adjoint module. For this purpose, it is useful to
define another Z�0-grading on P which we call level; each βx

k and γ x′
k has level k. It is clear

from (3.11)–(3.13) that each vu(n)Der is homogeneous of level −n, so PA+ is graded by level. In
addition to the gradings deg and lev, P has various auxiliary Z�0-gradings which will be useful.
An essential argument is to show that the condition ω ∈ PA+ implies that the projection of ω

onto certain homogeneous subspaces is non-zero (see Lemmas 4.15–4.17).

3.3. Gröbner bases

PA+ has an additional feature; it is a subalgebra of the classical invariant ring PA0 = P sl(2).
In the case g = sl(2) = V , PA0 can be exhibited as a quotient F/I , where F is a polynomial
algebra on countably many variables, and I is a countably generated ideal. Regarding PA+ as a
subalgebra of F/I , we can study it using the tools of commutative algebra. In particular, we can
find a Gröbner basis for I and a corresponding normal form for elements of PA0 . By passing
back and forth between the description of PA+ as a subalgebra of P and as a subalgebra of F/I ,
we will give a complete description of PA+ .

Even though PA0 is not finitely generated, it has a natural filtration by finitely generated
subalgebras. P is filtered by the subalgebras

PN = Sym

(
N⊕

k=0

(
Vk ⊕ V ∗

k

))
, N � 0,

which are generated by βx
k , γ x′

k for k = 0, . . . ,N . By (3.11)–(3.13), the action of sl(2)[t] on

P preserves each PN , so PA0 and PA+ are filtered by the subalgebras P
A0
N = PA0 ∩ PN and

P
A+
N = PA+ ∩PN , respectively. Hence when working in PA0 and PA+ , we may always assume

that we are working inside some PN for N sufficiently large. Then P
A0
N will be a quotient F/I of

a finitely generated polynomial ring F , and we can apply the standard techniques of commutative
algebra (localization, Gröbner basis theory, etc.) without difficulty.

We recall the definition and basic properties of Gröbner bases, following [5]. Let F be the
polynomial ring C[x1, . . . , xn], and let I ⊂ F be an ideal. By the Hilbert basis theorem, I is
finitely generated; let I = 〈g1, . . . , gk〉. Fix a monomial ordering on F . We will always assume
that this ordering comes from ordering the generators

x1 < x2 < · · · < xn,

and then ordering monomials in F lexicographically. For any polynomial f ∈ F , we denote the
leading term of f with respect to this ordering by lt(f ). Let 〈lt(I )〉 denote the monomial ideal
generated by the collection {lt(f ) | f ∈ I }.

Definition 3.10. We say that the collection {g1, . . . , gk} forms a Gröbner basis for I if
〈lt(g1), . . . , lt(gk)〉 = 〈lt(I )〉.
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The key property of Gröbner bases is the following.

Theorem 3.11. Let B = {g1, . . . , gk} be a Gröbner basis for I . Then for any f ∈ F , there is a
unique r ∈ F with the following properties:

(i) No monomial appearing in r is divisible by lt(g1), . . . , lt(gk).
(ii) There is a unique g ∈ I such that f = g + r .

The polynomial r is called the normal form of f . By uniqueness, r is the remainder of f upon
long division by the generators g1, . . . , gk in any order. Clearly normal forms behave well under
addition; if r1 and r2 are the normal forms of f1 and f2, respectively, then r1 + r2 is the normal
form of f1 + f2. There is a procedure, known as Buchberger’s algorithm, for extending a given
set of generators B = {g1, . . . , gk} for I to a Gröbner basis. We sketch this procedure, following
the notation in [5].

For any two polynomials f,g ∈ F , define the S-polynomial

S(f,g) = LCM(lt(f ), lt(g))

lt(f )
f − LCM(lt(f ), lt(g))

lt(g)
g.

For any two elements gi, gj ∈ B , let S(gi, gj )
B denote the remainder of S(gi, gj ) upon long

division by g1, . . . , gk (in that order). Buchberger showed that B is a Gröbner basis for I if and
only if S(gi, gj )

B = 0 for every pair i, j . If B is not a Gröbner basis for I , we may adjoin all
the (non-zero) polynomials of the form S(gi, gj )

B to the set B , obtaining a bigger set B ′. This
algorithm terminates after a finite number of steps, and the resulting set will be a Gröbner basis
for I .

Lemma 3.12. Let F ′ be the subalgebra C[x1, . . . , xs] ⊂ F for s < n. Suppose that F ′ ∩ I is
empty, so the images x̄1, . . . , x̄s of x1, . . . , xs in F/I are algebraically independent. Order the
generators

x1 < · · · < xs < xs+1 < · · · < xn,

and then order monomials in F using the standard lexicographic ordering. Choose a correspond-
ing Gröbner basis B = {g1, . . . , gk} for I . Then every element of F ′ is already in normal form
with respect to this Gröbner basis.

Proof. Since F ′ ∩ I is empty, each gi must contain monomials which do not lie in F ′. But any
such monomial is greater than any monomial in F ′ in the above ordering, so the leading term
of gi cannot lie in F ′. �

Let A = C[y1, . . . , ym], and let f :F → A be a ring homomorphism with kernel I . As above,
let F ′ = C[x1, . . . , xs] ⊂ F , and suppose that F ′ ∩ I is empty. Order monomials in F as in
Lemma 3.12, and choose a corresponding Gröbner basis B for I , so that every element of F ′ is
in normal form. Let A′ and A′′ denote the subalgebras f (F ) and f (F ′) of A, respectively. For
any ω ∈ A′, let ω̂ ∈ F denote the normal form of the corresponding element f −1(ω) ∈ F/I .
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Lemma 3.13. Let A′′′ be a subalgebra of A satisfying A′′ ⊂ A′′′ ⊂ A′. Suppose that A′′′ has
the following property: for any ω ∈ A′′′ of positive degree, the normal form ω̂ ∈ F contains a
monomial in F ′ with non-zero coefficient. Then A′′′ = A′′.

Proof. For any ω ∈ A′′′, define the length of ω, denoted by l(ω), to be the number of distinct
monomials appearing in ω̂ with non-zero coefficients. We proceed by induction on length. If
l(ω) = 1, ω̂ consists of a single monomial, which lies in F ′ by hypothesis. Since F ′ corresponds
isomorphically to A′′ under f , we have ω ∈ A′′. Suppose that l(ω) = n. Consider the normal
form ω̂, and let μ be a monomial appearing in ω̂ which lies in F ′. Let ω′ = ω − f (μ). Since the
elements of F ′ are already in normal form and normal forms are additive, ω̂′ = ω̂ − μ, so ω′ has
length n − 1. Since ω′ ≡ ω modulo A′′, the claim follows by induction. �
Remark 3.14. Consider the case

A = P = Sym

(⊕
k�0

(
Vk ⊕ V ∗

k

))
, A′ = PA0 , A′′′ = PA+ , A′′ = Pτ .

Here Pτ is a certain candidate for PA+ (to be defined in the next section) which is contained
in P A+ and is generated by algebraically independent elements. We will use Lemma 3.13 to
show that Pτ = PA+ .

4. The computation of S(V )A+

In this section, we prove Theorem 1.3. For g = sl(2) = V , we denote S(V ) and Θ(g) =
ρ̂(O(sl(2),−K)) by S and Θ , respectively, and we work in the basis x, y,h with the commuta-
tion relations

[x, y] = h, [h,x] = 2x, [h,y] = −2y. (4.1)

Θ is generated by the vertex operators

θx(z) = 2:βx(z)γ h′
(z): − :βh(z)γ y′

(z):,
θy(z) = −2:βy(z)γ h′

(z): + :βh(z)γ x′
(z):,

θh(z) = −2:βx(z)γ x′
(z): + 2:βy(z)γ y′

(z):.

In the above basis, the subalgebra A = ψ̂(O(sl(2),− 3
8K)) of SΘ+ is generated by the vertex

operators

vx(z) = 1

2

(:γ h′
(z)γ h′

(z): + :γ x′
(z)γ y′

(z):),
vy(z) = −1

2

(:βh(z)βh(z): + 4:βx(z)βy(z):),
vh(z) = :βx(z)γ x′

(z): + :βy(z)γ y′
(z): + :βh(z)γ h′

(z):.
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In terms of the above basis, P = gr(S) is the polynomial algebra generated by {βu
k , γ u′

k |
u = x, y,h, k � 0}. To simplify notation, we drop the subscript Der and denote the operators
θu(n)Der and vu(n)Der on P by θu(n) and vu(n), respectively. Define the polynomials

τx
0 = φ2

(
θx(z)

) = 2βx
0 γ h′

0 − βh
0 γ

y′
0 , (4.2)

τ
y

0 = φ2
(
θy(z)

) = −2β
y

0 γ h′
0 + βh

0 γ x′
0 , (4.3)

τh
0 = φ2

(
θh(z)

) = −2βx
0 γ x′

0 + 2β
y

0 γ
y′
0 . (4.4)

Here φ2 denotes the projection S(2) → S(2)/S(1) ⊂ gr(S) = P . Define τu
k = ∂kτu

0 , and let Pτ ⊂ P

denote the subalgebra generated by the collection{
τu
k

∣∣ k � 0, u = x, y,h
}
. (4.5)

Since Θ ⊂ SA+ , we have τu
0 ∈ PA+ . Since Pτ is generated as a ∂-ring by the τu

0 , it follows that
Pτ ⊂ PA+ .

The main result in this section is the following

Theorem 4.1. PA+ = Pτ .

Proof of Theorem 1.3. Once Theorem 4.1 is established, Theorem 1.3 is an immediate con-
sequence. Since the vertex operators θu(z) already lie in SA+ , it follows that the map Γ :
gr(SA+) ↪→ PA+ given by (3.9) is surjective, and hence is an isomorphism. By Lemma 3.6,
SA+ = Θ . �

We will also show that

Theorem 4.2. The map ρ̂ :O(sl(2),−K) → S , whose image is Θ , is injective.

It follows that SA+ is isomorphic to O(sl(2),−K), so we have a complete description of this
commutant algebra.

4.1. Outline of proof

First, we will apply a classical theorem of Weyl to construct an isomorphism

Φ :F/I → PA0 ,

where F is a polynomial algebra on countably many variables corresponding to the quadratic
generators of PA0 . By a linear change of variables, we may assume that the polynomials τu

k

correspond to a subset of the generators of F , which generate a subalgebra FT ⊂ F . We show
that the polynomials τu

k are algebraically independent, so that FT ∩ I is trivial, and FT may be
regarded as a subalgebra of F/I . Theorem 4.2 is an immediate consequence of this fact.

Using Lemma 3.12 (and assuming implicitly that we are working in some PN for N suffi-
ciently large), we choose a monomial ordering on F and a corresponding Gröbner basis for I

such that elements of FT are in normal form. By Lemma 3.13 and Remark 3.14, in order to show
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that PA+ = Pτ it suffices to prove that for any ω ∈ PA+ of positive degree, the normal form
ω̂ ∈ F of Φ−1(ω) contains a monomial in FT with non-zero coefficient.

P has several Z�0-gradings which will be useful to us. For a monomial

μ = βx
i1

· · ·βx
ir
β

y
j1

· · ·βy
js

βh
k1

· · ·βh
kt

γ x′
i′1

· · ·γ x′
i′
r′
γ

y′
j ′

1
· · ·γ y′

j ′
s′
γ h′
k′

1
· · ·γ h′

k′
t ′

∈ P,

we define the βu-degree and γ u′
-degree of μ as follows:

degβx (μ) = r, degβy (ω) = s, degβh(μ) = t,

deg
γ x′ (μ) = r ′, deg

γ y′ (μ) = s′, deg
γ h′ (μ) = t ′.

Similarly, we define the βu-level and γ u′
-level of μ to be

levβx (μ) =
r∑

a=1

ia, levβy (ω) =
s∑

a=1

ja, levβh(μ) =
t∑

a=1

ka,

lev
γ x′ (μ) =

r ′∑
a=1

i′a, lev
γ y′ (ω) =

s′∑
a=1

j ′
a, lev

γ h′ (μ) =
t ′∑

a=1

k′
a.

We will see that the condition ω ∈ PA+ implies that the projection of ω onto a certain homo-
geneous subspace (with respect to the above gradings) is non-zero. This will force ω̂ to contain
a monomial in FT with non-zero coefficient.

4.2. Description of PA0

It is immediate from (3.11)–(3.13) that as a module over A0 = sl(2), P is isomorphic to

Sym

(⊕
n�0

W 1
n ⊕ W 2

n ⊕ W 3
n

)
, (4.6)

where each Wi
n is a copy of the standard 2-dimensional irreducible sl(2)-module. In particular,

for each n � 0, each of the following vector spaces form such a copy:

W 1
n = 〈

βx
n , γ

y′
n

〉
, W 2

n = 〈
β

y
n , γ x′

n

〉
, W 3

n = 〈
βh

n , γ h′
n

〉
. (4.7)

The description of the sl(2)-invariant subspace of such a module can be found in [31, p. 45,
Theorem 2.6.A, and p. 70, Theorem 2.14.A].

Theorem 4.3. Let S = Sym(
⊕

n�0 Wn), where Wn = 〈a1
n, a

2
n〉 is a copy of the standard 2-

dimensional irreducible sl(2)-module. The invariant subalgebra Ssl(2) is generated by the 2 × 2-
determinants:

qij =
∣∣∣∣a1

i a2
i

1 2

∣∣∣∣ (0 � i < j), (4.8)

aj aj
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which each corresponds to a choice of two distinct modules from the collection {Wn | n � 0}. The
ideal of relations among the polynomials qij is generated by the polynomials

rijkl = qij qkl − qikqjl + qilqjk. (4.9)

Each of these polynomials corresponds to a choice of four distinct modules from the collection
{Wn | n � 0}.

In our context, taking into account the normalization of the modules {Wi
n | i = 1,2,3, n � 0},

PA0 is generated by the following six types of polynomials, which each corresponds to a choice
of two distinct modules from the collection {Wi

n | i = 1,2,3, n � 0}:

q
1,1
i,j = 2βx

i γ
y′
j − 2βx

j γ
y′
i , 0 � i < j, (4.10)

q
2,2
i,j = 2β

y
i γ x′

j − 2β
y
j γ x′

i , 0 � i < j, (4.11)

q
3,3
i,j = βh

i γ h′
j − βh

j γ h′
i , 0 � i < j, (4.12)

q
1,2
i,j = 2βx

i γ x′
j − 2β

y
j γ

y′
i , i, j � 0, (4.13)

q
1,3
i,j = −2βx

i γ h′
j + βh

j γ
y′
i , i, j � 0, (4.14)

q
2,3
i,j = 2β

y
i γ h′

j − βh
j γ x′

i , i, j � 0. (4.15)

Note that

τx
k =

k∑
i=0

(
k

i

)
q

1,3
i,k−i , τ

y
k =

k∑
i=0

(
k

i

)
q

2,3
i,k−i , τ h

k =
k∑

i=0

(
k

i

)
q

1,2
i,k−i . (4.16)

It will be convenient to perform a linear change of variables and replace q
1,3
0,k , q

2,3
0,k , q

1,2
0,k with τx

k ,

τ
y
k , and τh

k , respectively, using (4.16).
Let F denote the polynomial algebra on the following generators:

Q
1,2
i,j ,Q

1,3
i,j ,Q

2,3
i,j , i > 0, j � 0,

Q
1,1
k,l ,Q

2,2
k,l ,Q

3,3
k,l , 0 � k < l,

T x
m,T

y
m,T h

m, m � 0.

Let I be the ideal generated by the relations of the form (4.9). By Theorem 4.3, the map

Φ :F/I → PA0 (4.17)

sending Q
a,b
i,j → q

a,b
i,j and T u

k → τu
k is an isomorphism. Let FT be the subalgebra of F generated

by the variables T u.
k
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Remark 4.4. The description (4.6) of P induces the auxiliary Z�0-gradings degWi and levWi

on P , defined as follows:

degW 1 = degβx +deg
γ y′ , degW 2 = degβy +deg

γ x′ , degW 3 = degβh +deg
γ h′ ,

levW 1 = levβx + lev
γ y′ , levW 2 = levβy + lev

γ x′ , levW 3 = levβh + lev
γ h′ .

PA+ is graded by (total) level and Wi -degree, since each of the operators vu(n) for u = x, y,h

and n � 0 is homogeneous of level −n and preserves Wi -degree. However, for n > 0, vu(n) is
not homogeneous with respect to Wi -level, so PA+ is not graded by Wi -level.

Remark 4.5. Since each q
a,b
i,j and τu

k is homogeneous with respect to level and Wi -degree,
F and I inherit these gradings in an obvious way.

Since the generators q
a,b
j,k ∈ PA0 each correspond to a choice of two distinct modules from

the collection {Wi
l | i = 1,2,3, l � 0} (namely Wa

j and Wb
k ), a monomial

μ = q
a1,b1
j1,k1

· · ·qad ,bd

jd ,kd

of degree d in the variables q
a,b
j,k corresponds uniquely to the list of pairs

Lμ = {{
W

a1
j1

,W
b1
k1

}
, . . . ,

{
W

ad

jd
,W

bd

kd

}}
. (4.18)

Consider the expansion of μ as a polynomial of degree 2d in the variables βu
k , γ u′

k . Each q
a,b
j,k

appearing in μ will contribute a factor of the form βγ , of which there are exactly two choices.

(For example, each q
1,2
j,k can contribute either βx

j γ x′
k or β

y
k γ

y′
j ).

Suppose for the moment that we consider only monomials μ in the variables q
a,b
j,k for a < b,

which are given by (4.13)–(4.15).

Lemma 4.6. Let

ε = (
βx

0 γ h′
i1

) · · · (βx
0 γ h′

ir

)(
βx

0 γ x′
j1

) · · · (βx
0 γ x′

js

)(
β

y
k1

γ h′
0

) · · · (βy
kt

γ h′
0

)
.

The only monomials in the variables q
a,b
j,k for a < b which contain ε with non-zero coefficient are

of the form

μ = q
1,3
0,i′1

· · ·q1,3
0,i′r

q
1,2
0,j1

· · ·q1,2
0,js

q
2,3
k1,i

′′
1
· · ·q2,3

kt ,i
′′
t
,

where the lists (i′1, . . . , i′r , i′′1 , . . . , i′′t ) and (i1, . . . , ir ,0, . . . ,0) are related by a permutation.

Proof. First, the only variables q
a,b
j,k for a < b which can contribute βx

0 are q
1,2
0,k (which contains

the monomial βx
0 γ h′

k ) and q
1,3
0,k (which contains βx

0 γ x′
0 ). Since ε is divisible by (βx

0 )r+s , exactly

r + s of the variables q
1,2

, q
1,3 must occur. Since μ is not divisible by any q

2,2, no pairings of the
0,k 0,k j,k



B.H. Lian, A.R. Linshaw / Journal of Algebra 317 (2007) 111–152 141
form β
y
ka

γ x′
jb

can occur, so each γ x′
jb

must be paired with one of the βx
0 ’s, for b = 1, . . . , s. Hence

μ must be divisible by exactly s of the variables q
1,2
0,k , namely q

1,2
0,j1

· · ·q1,2
0,js

. Then μ must be

divisible by exactly r of the variables q
1,3
0,k , say q

1,3
0,i′1

· · ·q1,3
0,i′r

. The indices i′1, . . . , i′r correspond to a

choice of r modules {W 3
i′1
, . . . ,W 3

i′r
}, from the set {W 3

i1
, . . . ,W 3

ir
,W 3

0 , . . . ,W 3
0 }, which contain r +

t elements.
Let {W 3

i′′1
, . . . ,W 3

i′′t
} ⊂ {W 3

i1
, . . . ,W 3

ir
,W 3

0 , . . . ,W 3
0 } be the complement of {W 3

i′1
, . . . ,W 3

i′r
}, so

that (i′1, . . . , i′r , i′′1 , . . . , i′′t ) is some permutation of (i1, . . . , ir ,0, . . . ,0). The factor

q
1,3
0,i′1

· · ·q1,3
0,i′r

q
1,2
0,j1

· · ·q1,2
0,js

appearing in μ accounts for the factor (βx
0 γ h′

i′1
) · · · (βx

0 γ h′
i′r

)(βx
0 γ x′

j1
) · · · (βx

0 γ x′
js

) appearing in ε.

The remaining factor (β
y
k1

γ h′
i′′1

) · · · (βy
kt

γ h′
i′′t

) of ε can only appear in a monomial in the variables

q
a,b
j,k of the form q

2,3
k1,i

′′
1
· · ·q2,3

kt ,i
′′
t
. �

Lemma 4.7. As above, let

ε = (
βx

0 γ h′
i1

) · · · (βx
0 γ h′

ir

)(
βx

0 γ x′
j1

) · · · (βx
0 γ x′

js

)(
β

y
k1

γ h′
0

) · · · (βy
kt

γ h′
0

)
.

The only monomials in the variables τu
k which can contain ε with non-zero coefficient are of the

form

ν = τx
i′1

· · · τx
i′r τ

h
j1

· · · τh
js

τ
y

k′
1
· · · τy

k′
t
,

where the lists (i′1, . . . , i′r ) and (k′
1, . . . , k

′
t ) are obtained from the lists (i1, . . . , ir ) and (k1, . . . , kt )

by replacing some of the pairs (ia, kb) with (0, ia + kb).

Proof. In order for ν to contain ε with non-zero coefficient, a monomial of the form

μ = q
1,3
0,i′1

· · ·q1,3
0,i′r

q
1,2
0,j1

· · ·q1,2
0,js

q
2,3
k1,i

′′
1
· · ·q2,3

kt ,i
′′
t
,

must appear when ν is expanded as a polynomial in the variables q
a,b
j,k , using (4.16). Here

(i′1, . . . , i′r , i′′1 , . . . , i′′t ) is some permutation of (i1, . . . , ir ,0, . . . ,0), by Lemma 4.6. It is immedi-
ate from (4.16) that the only monomial in the variables τu

k which will contain μ is

τx
i′1

· · · τx
i′r τ

h
j1

· · · τh
js

τ
y

i′′1 +k1
· · · τy

i′′t +kt
.

Setting k′
a = i′′a + ka for each a = 1, . . . , t , the claim follows. �

Lemma 4.8. The polynomials τu
k are algebraically independent. Equivalently, FT ∩ I is trivial,

so we may regard FT as a subalgebra of F/I , which maps isomorphically onto Pτ under Φ .
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Proof. Let Q be a polynomial in the variables τu
k , which we may assume to be homogeneous of

fixed level and Wi -degree. Let

μ = τx
i1

· · · τx
ir
τ h
j1

· · · τh
js

τ
y
k1

· · · τy
kt

be a monomial appearing in Q. Clearly

degW 1(μ) = r + s, degW 2(μ) = s + t, degW 3(μ) = r + t.

Since Q is homogeneous with respect to W 1-degree, W 2-degree, and W 3-degree, it follows that
degWi (μ) = degWi (Q) for i = 1,2,3. Solving for r , s, and t , we obtain:

r = 1

2

(
degW 1(Q) − degW 2(Q) + degW 3(Q)

)
,

s = 1

2

(
degW 1(Q) + degW 2(Q) − degW 3(Q)

)
,

t = 1

2

(−degW 1(Q) + degW 2(Q) + degW 3(Q)
)
.

Since r , s, and t only depend on degWi (Q), for i = 1,2,3, they are the same for all monomials
μ appearing in Q.

Fix a monomial μ = τx
i1

· · · τx
ir
τ h
j1

· · · τh
js

τ
y
k1

· · · τy
kt

appearing Q such that the number of zeros
appearing in the list {i1, . . . , ir } is maximal (in the case r = 0, no such choice is necessary). By
Lemma 4.7, the monomial

ε = (
βx

0 γ h′
i1

) · · · (βx
0 γ h′

ir

)(
βx

0 γ x′
j1

) · · · (βx
0 γ x′

js

)(
β

y
k1

γ h′
0

) · · · (βy
kt

γ h′
0

)
appears in μ with non-zero coefficient. Moreover, any other monomial containing ε with non-
zero coefficient has the form

μ′ = τx
i′1

· · · τx
i′r τ

h
j1

· · · τh
js

τ
y

k′
1
· · · τy

k′
t
,

where the lists (i′1, . . . , i′r ) and (k′
1, . . . , k

′
t ) are obtained from (i1, . . . , ir ) and (k1, . . . , kt ) by

replacing some of the pairs (ia, kb) with (0, ia + kb). Since the number of zeros in the list
{i1, . . . , ir } is maximal, no such μ′ can appear in Q. Hence ε appears in Q, and in particular,
Q �= 0. �
Corollary 4.9. ρ̂ :O(sl(2),−K) → S is injective.

Proof. Recall that ρ̂ is a morphism in the category � if we declare that the generators
x(z), y(z), h(z) of O(sl(2),−K) have degree 2. The induced map on the associated graded alge-
bras

gr(ρ̂) : gr
(
O(sl(2),−K)

) → P

is a ∂-ring homomorphism. By Corollary 3.4, gr(O(sl(2),−K)) is the polynomial algebra with
generators xk, yk, hk for k � 0, and gr(ρ̂) sends
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xk → τx
k , yk → τ

y
k , hk → τh

k .

Since the polynomials τu
k are algebraically independent, it follows that gr(ρ̂) is injective, so ρ̂

must be injective as well. �
Next, we will choose a monomial ordering on F and a corresponding Gröbner basis B for I .

We order the generators Q
a,b
i,j , T u

k as follows:

Q
3,3
i,j > Q

2,3
i,j > Q

2,2
i,j > Q

1,2
i,j > Q

1,1
i,j > T

y
k > T x

k > T h
k , (4.19)

for all i, j, k. Then for each a, b = 1,2,3 such that a � b,

Q
a,b
i,j > Q

a,b
k,l (4.20)

if j > l or if j = l and i > k. Likewise, T u
k > T u

l if k > l, for each u = x, y,h. Finally, order
monomials in these variables using the standard lexicographic ordering. To find a Gröbner basis
for I , begin with the generating set of relations of the form (4.9), eliminating the variables q

1,2
0,k ,

q
1,3
0,k , and q

2,3
0,k using (4.16). Replacing q

a,b
i,j , τ u

k with Q
a,b
i,j , T u

k , respectively, we obtain a generat-
ing set B ′ for I . Extend this set to a Gröbner basis B for I using Buchberger’s algorithm. For
any ω ∈ PA0 , let ω̂ ∈ F denote the corresponding normal form.

Remark 4.10. It follows from Lemmas 3.12 and 4.8, and the term ordering (4.19)–(4.20) that
any element of FT is automatically in normal form with respect to B .

The following observation will be useful to us later:

Lemma 4.11. Suppose that f ∈ F is in normal form. Then f is not divisible by the product
Q

3,3
i,j T h

0 for any 0 � i < j . Similarly, f is not divisible by Q
2,3
i,j T h

0 for any i > 0 and j � 0.

Proof. We begin with the first statement. It suffices to show that Q
3,3
i,j T h

0 is the leading term of
an element of B . Note that

q
3,3
i,j q

1,2
0,0 − q

1,3
0,i q

2,3
0,j + q

1,3
0,j q

2,3
0,i (4.21)

is a relation of the form (4.10). Use (4.16) to eliminate the variables q
1,2
0,0 , q

1,3
0,i , q

1,3
0,j , q

2,3
0,i , and

q
2,3
0,j from (4.21), and then replace q

a,b
r,s , τu

t with Q
a,b
r,s , T u

t , respectively. We obtain the relation

Q
3,3
i,j T h

0 −
(

T x
i −

i∑
a=1

(
i

a

)
Q

1,3
a,i−a

)(
T

y
j −

j∑
b=1

(
j

b

)
Q

2,3
b,j−b

)

+
(

T x
j −

j∑(
j

a

)
Q

1,3
a,j−a

)(
T

y
i −

i∑(
i

b

)
Q

2,3
b,i−b

)
, (4.22)
a=1 b=1
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which lies in B ′ (and hence in B) by definition. According to the term ordering given by (4.19)–
(4.20), the leading term of (4.22) is Q

3,3
i,j T h

0 , as desired. The proof of the second statement in
Lemma 4.11 is verbatim. �
4.3. Some commutative algebra

Since PA0 and PA+ are subalgebras of the polynomial algebra P , they are integral domains.
Hence F/I is also a domain, as is any subalgebra of F/I . For any domain R, we shall denote the
corresponding field of fractions by R. The isomorphism Φ :F/I → PA0 given by (4.17) extends
to an isomorphism

Φ :F/I → PA0 ⊂ P . (4.23)

If S is any multiplicative subset of F/I , we may regard the localization S−1(F/I) as a subalgebra
of F/I , and by (4.23), as a subalgebra of P . Recall that FT may be regarded as a subalgebra
of F/I , and that Φ maps FT isomorphically onto Pτ , by Lemma 4.8.

For the remainder of this section, let S ⊂ FT be the multiplicative subset generated by the
single element T h

0 . Let R be the subalgebra Φ−1(PA+) ⊂ F/I . Clearly FT ⊂ R; our goal is to
prove that FT = R. Since S ⊂ FT ⊂ R ⊂ F/I , we may localize all these rings with respect to S.
We obtain inclusions

S−1(FT ) ↪→ S−1R ↪→ S−1(F/I) ↪→ Φ(S)−1P.

Here Φ(S) denotes the multiplicative subset of P generated by Φ(T h
0 ) = τh

0 , and the last inclu-
sion above is the restriction of Φ to the subalgebra S−1(F/I) ⊂ F/I . We need the following
technical statement.

Lemma 4.12. Let α ∈ S−1(FT ). If Φ(α) ∈ P , then α ∈ FT .

Proof. Equivalently, we need to prove that α /∈ FT implies that Φ(α) /∈ P . Let us rephrase this
as an ideal membership problem. Since FT is a polynomial algebra, α can be written uniquely in
the form

α =
∑
i�0

αi

(T h
0 )i

,

where the αi ’s are elements of FT which are not divisible by T h
0 for i > 0 (and hence do not lie in

the principal ideal J ⊂ FT generated by T h
0 ). The condition α /∈ FT means that some αi �= 0 for

i > 0. By multiplying by an appropriate power of T h
0 , we may assume without loss of generality

that

α = α0 + α1

T h
0

,

where α1 /∈ J .
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The statement Φ(α) /∈ P is equivalent to the statement that Φ(α1) does not lie in the ideal
J ⊂ P generated by τh

0 = Φ(T h
0 ). Without loss of generality, we may assume that α1 is a linear

combination of monomials of the form

μ = T x
i1

· · ·T x
ir

T h
j1

· · ·T h
js

T
y
k1

· · ·T y
kt

for which r, s, t are fixed. Moreover, we may assume that each such monomial μ /∈ J , so that
(j1, . . . , js) are all positive.

Recall from the proof of Lemma 4.8 that for each monomial

μ = T x
i1

· · ·T x
ir

T h
j1

· · ·T h
js

T
y
k1

· · ·T y
kt

appearing in α1 for which the list (i1, . . . , ir ) contains the maximum number of zeros, Φ(α1)

will contain the monomial

ε = (
βx

0 γ h′
i1

) · · · (βx
0 γ h′

ir

)(
βx

0 γ x′
j1

) · · · (βx
0 γ x′

js

)(
β

y
k1

γ h′
0

) · · · (βy
kt

γ h′
0

)
with non-zero coefficient.

Since τh
0 = −2βx

0 γ x′
0 + 2β

y

0 γ
y′
0 , any element ω ∈ J has the property that each monomial

appearing in ω is divisible by either βx
0 γ x′

0 or β
y

0 γ
y′
0 . Since ε is not divisible by either γ x′

0 (since

j1, . . . , js are all positive), or γ
y′
0 , we conclude that Φ(α1) /∈ J , as claimed. �

Corollary 4.13. Let ω ∈ PA+ . If τh
0 ω ∈ Pτ , then ω ∈ Pτ as well.

Proof. The condition τh
0 ω ∈ Pτ means that Φ−1(τh

0 ω) can be expressed as a polynomial ν ∈ FT .
Consider the element 1

T h
0
ν ∈ S−1(FT ) and note that

Φ

(
1

T h
0

ν

)
= ω ∈ P.

It follows from Lemma 4.12 that 1
T h

0
ν ∈ FT , so that ν = T h

0 ν′ for some ν′ ∈ FT . Then

ω = Φ

(
1

T h
0

ν

)
= Φ(ν′)

which lies in Pτ since ν′ ∈ FT . It follows that ω ∈ Pτ , as claimed. �
By applying Corollary 4.13 repeatedly, we see that for any ω ∈ PA+ and r � 0,

(
τh

0

)r
ω ∈ Pτ ⇔ ω ∈ Pτ . (4.24)

Thus given ω ∈ PA+ , in order to prove that ω ∈ Pτ , it suffices to prove that (τh
0 )rω ∈ Pτ for

some r .
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Lemma 4.14. If ω ∈ PA+ is homogeneous of degree 2d , choose r > 2d , and let ω′ = (τh
0 )rω.

Then each monomial appearing in the normal form ω̂′ is divisible by T h
0 .

Proof. Recall that each generator q
a,b
j,k ∈ PA0 corresponds to the pair {Wa

j ,Wb
k } of distinct

modules from the collection {Wi
l | i = 1,2,3, l � 0}. By Theorem 4.3, we may write ω as a

polynomial ω̃ of degree d in the variables q
a,b
j,k . Recall that each monomial

μ = q
a1,b1
j1,k1

· · ·qad ,bd

jd ,kd

appearing in ω̃, corresponds to the list of pairs modules

Lμ = {{
W

a1
j1

,W
b1
k1

}
, . . . ,

{
W

ad

jd
,W

bd

kd

}}
.

If we choose r > 2d , the corresponding list

L(τh
0 )rμ = {{

W 1
0 ,W 2

0

}
, . . . ,

{
W 1

0 ,W 2
0

}
,
{
W

a1
j1

,W
b1
k1

}
, . . . ,

{
W

ad

jd
,W

bd

kd

}}
will contain at least 2d + 1 copies of W 1

0 and 2d + 1 copies of W 2
0 . Any monomial μ′ in the

variables q
a,b
j,k for which Lμ′ and L(τh

0 )rμ contain the same collection of modules (possibly re-

ordered) must be divisible by τh
0 by the pigeonhole principle, since each q

a,b
j,k depends on a pair

of distinct modules. This statement remains true after making the change of variables (4.16), so
in particular the normal form ω̂ will have the desired property. �
4.4. Description of PA+

Let ω ∈ PA+ be non-zero, which we may assume to be homogeneous of level l and Wi -
degree di (and hence total degree d = d1 + d2 + d3). Note that τh

0 is homogeneous of level 0 and
W 1-degree, W 2-degree, W 3-degree 1,1,0, respectively, so (τh

0 )rω will still be homogeneous
with respect to these gradings. By (4.24) and Lemma 4.14, we may assume without loss of
generality that each monomial appearing in the normal form ω̂ is divisible by T h

0 . In particular,
d1 > 0 and d2 > 0. We will show that the condition ω ∈ PA+ implies that the projection of ω onto
a certain homogeneous subspace is non-zero. This will force ω̂ to contain a monomial in FT with
non-zero coefficient. Theorem 4.1 then follows immediately from Lemma 3.13 and Remark 3.14.

Lemma 4.15. Let πγ y′
,e denote the projection of P onto its homogeneous component of γ y′

-

degree e. Then πγ y′
,0(ω) �= 0. Equivalently, ω has a non-zero term of βx -degree d1, since

degW 1 = degβx +deg
γ y′ and degW 1(ω) = d1.

Proof. Let e be the minimal γ y′
-degree of terms appearing in ω, and write ω = ω0 + ω1, where

ω0 = πγ y′
,e(ω). Let k be the largest integer such that γ

y′
k appears in ω0, and write

ω0 = (
γ

y′)t
qt + (

γ
y′)t−1

qt−1 + · · · + γ
y′

q1 + q0,
k k k
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where the qa’s do not depend on γ
y′
k , and at least one of the qa’s is non-zero for a = 1, . . . , t .

Clearly each non-zero qa must have γ y′
-degree e − a since ω0 has γ y′

-degree e.
Applying (3.13) in the case g = sl(2) = V , and working in the basis (4.1), we have

vy(n)
(
γ

y′
m

) = −1

2
m(m − 1) · · · (m − n + 1)βx

m−n, (4.25)

and in particular, vy(k)(γ
y′
k ) = − 1

2k!βx
0 . We compute

vy(k)(ω) = t
(
γ

y′
k

)t−1
(

−1

2
k!βx

0

)
qt + (t − 1)

(
γ

y′
k

)t−2
(

−1

2
k!βx

0

)
qt−1 + · · · +

(
−1

2
k!βx

0

)
q1

+ (
γ

y′
k

)t
vy(k)(qt ) + (

γ
y′
k

)t−1
vy(k)(qt−1) + · · · + (

γ
y′
k

)
vy(k)(q1) + vy(k)(q0)

+ vy(k)(ω1).

The term

t
(
γ

y′
k

)t−1
(

−1

2
k!βx

0

)
qt + (t − 1)

(
γ

y′
k

)t−2
(

−1

2
k!βx

0

)
qt−1 + · · · +

(
−1

2
k!βx

0

)
q1

is homogeneous of γ y′
-degree e − 1. Furthermore, this term is non-zero since at least one of the

qa’s is non-zero, and none of the qa’s depends on γ
y′
k .

We claim that

πγ y′
,e−1(vy(k)(ω)

)
= t

(
γ

y′
k

)t−1
(

−1

2
k!βx

0

)
qt + (t − 1)

(
γ

y′
k

)t−2
(

−1

2
k!βx

0

)
qt−1 + · · · +

(
−1

2
k!βx

0

)
q1. (4.26)

In other words, none of the other terms appearing in vy(k)(ω) can have γ y′
-degree e − 1. It

follows that vy(k)(ω) �= 0, which contradicts ω ∈ PA+ . Hence we must have e = 0.
In order to prove (4.26), we need to show that

(
γ

y′
k

)t
vy(k)(qt ) + (

γ
y′
k

)t−1
vy(k)(qt−1) + · · · + (

γ
y′
k

)
vy(k)(q1) + vy(k)(q0) + vy(k)(ω1)

has no term of γ y′
-degree e − 1. By (4.25), vy(k)(γ

y′
m ) = 0 for m < k, and qa does not depend

on γ
y′
m for any m � k. It follows that each term of vy(k)(qa) must have γ y′

-degree e − a, so each
term appearing in

(
γ

y′
k

)t
vy(k)(qt ) + (

γ
y′
k

)t−1
vy(k)(qt−1) + · · · + (

γ
y′
k

)
vy(k)(q1) + vy(k)(q0)

has γ y′
-degree e.

Finally, ω1 consists of terms with γ y′
-degree at least e + 1, so every term of vy(k)(ω1) has

γ y′
-degree at least e. �
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Lemma 4.16. Let π
βx

e denote the projection of P onto its homogeneous component of βx -level e.

Then π
βx

0 ◦ πγ y′
,0(ω) �= 0. Equivalently, ω has a non-zero term which does not depend on any of

the variables γ
y′
i for i � 0 and βx

j for j > 0.

Proof. Write ω = ω0 + ω1, where ω0 = πγ y′
,0(ω). Recall that ω0 has βx -degree d1 > 0. Let e

be the minimal βx -level of terms appearing in ω0, and write ω0 = ω′
0 + ω′′

0 , where

ω′
0 = πβx

e (ω0) = πβx

e ◦ πγ y′
,0(ω).

Suppose that e > 0, and let k be the largest integer such that βx
k appears in ω′

0. Clearly 0 <

k � e. Write

ω′
0 = (

βx
k

)t
qt + (

βx
k

)t−1
qt−1 + · · · + βx

k q1 + q0,

where the qa’s do not depend on βx
k , and at least one of the qa’s is non-zero for a = 1, . . . , t .

Clearly each non-zero qa must have βx -level e − ka, since ω′
0 has βx -level e.

By (3.11), we have

vh(n)βx
m = −m(m − 1) · · · (m − n + 1)βx

0 ,

and in particular, vh(k)(βx
k ) = −k!βx

0 . We compute

vh(k)(ω) = t
(
βx

k

)t−1(−k!βx
0

)
qt + (t − 1)

(
βx

k

)t−2(−k!βx
0

)
qt−1 + · · · + (−k!βx

0

)
q1

+ (
βx

k

)t
vh(k)(qt ) + (

βx
k

)t−1
vh(k)(qt−1) + · · · + (

βx
k

)
vh(k)(q1) + vh(k)(q0)

+ vh(k)
(
ω′′

0

) + vh(k)(ω1).

We claim that

π
βx

e−k ◦ πγ y′
,0(vh(k)(ω)

)
= t

(
βx

k

)t−1(−k!βx
0

)
qt + (t − 1)

(
βx

k

)t−2(−k!βx
0

)
qt−1 + · · · + (−k!βx

0

)
q1,

which is clearly non-zero, contradicting ω ∈ PA+ . This proves that e = 0.
First, the term(

βx
k

)t
vh(k)(qt ) + (

βx
k

)t−1
vh(k)(qt−1) + · · · + (

βx
k

)
vh(k)(q1) + vh(k)(q0)

must be homogeneous of βx -level e, since vh(k)(βx
m) = 0 for m < k, and qa does not depend on

βx
m for m � k.

Second, the term vh(k)(ω′′
0) must have βx -level at least e + 1 − k since ω′′

0 has βx -level at
least e + 1 and vh(k) can lower the βx -level by at most k.

Finally, the term vh(k)(ω1) must have positive γ y′
-degree, since ω1 has positive γ y′

-degree
and vh(k) preserves γ y′

-degree. �
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Lemma 4.17. Let πβy,e denote the projection of P onto its homogeneous component of βy -

degree e. Then πβy,0 ◦ π
βx

0 ◦ πγ y′
,0(ω) �= 0.

Proof. Let ω0 = π
βx

0 ◦ πγ y′
,0(ω), and write ω = ω0 + ω1. Let e be the minimal βy -degree of

terms appearing in ω0, write ω0 = ω′
0 + ω′′

0 , where

ω′
0 = πβy,e(ω0) = πβy,e ◦ π

βx

0 ◦ πγ y′
,0(ω).

Suppose that e > 0, and let k be the maximum integer such that β
y
k appears in ω′

0. Write

ω′
0 = (

β
y
k

)t
qt + (

β
y
k

)t−1
qt−1 + · · · + β

y
k q1 + q0,

where the qa’s do not depend on β
y
k , and at least one of the qa’s is non-zero for a = 1, . . . , t .

Clearly each non-zero qa must have βy -degree e − a since ω′
0 has βy -degree e.

By (3.12), we have vx(n)(β
y
m) = − 1

2m(m − 1) · · · (m − n + 1)γ x′
m−n, and in particular,

vx(k)(β
y
k ) = − 1

2k!γ x′
0 . We compute

vx(k)(ω) = t
(
β

y
k

)t−1
(

−1

2
k!γ x′

0

)
qt + (t − 1)

(
β

y
k

)t−2
(

−1

2
k!γ x′

0

)
qt−1 + · · · +

(
−1

2
k!γ x′

0

)
q1

+ (
β

y
k

)t
vx(k)(qt ) + (

β
y
k

)t−1
vx(k)(qt−1) + · · · + (

β
y
k

)
vx(k)(q1) + vx(k)(q0)

+ vx(k)
(
ω′′

0

) + vx(k)(ω1).

We claim that

πβy,e−1 ◦ π
βx

0 ◦ πγ y′
,0(vh(k)ω

)
= t

(
β

y
k

)t−1
(

−1

2
k!γ x′

0

)
qt + (t − 1)

(
β

y
k

)t−2
(

−1

2
k!γ x′

0

)
qt−1 + · · · +

(
−1

2
k!γ x′

0

)
q1,

which is clearly non-zero, contradicting ω ∈ PA+ . This proves that e = 0.
First, the term(

β
y
k

)t
vx(k)(qt ) + (

β
y
k

)t−1
vx(k)(qt−1) + · · · + (

β
y
k

)
vx(k)(q1) + vx(k)(q0)

must have βy -degree e, since qt does not depend on β
y
m for any m � k.

Second, the term vx(k)(ω′′
0) must have βy degree at least e, since ω′′

0 has βy -degree at least
e + 1.

Finally, the term vx(k)(ω1) must have positive βx -level or positive γ y′
-degree. This follows

from the fact that

vx(k)
(
βx

m

) = −1

2
m(m − 1) · · · (m − k + 1)γ

y′
m−k,

which shows that vx(k) can only lower the βx -level by raising the γ y′
-degree. �
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Proof of Theorem 4.1. In order to prove Theorem 4.1, it suffices to show that the normal form
ω̂ contains a monomial in FT with non-zero coefficient, by Lemma 3.13 and Remark 3.14. As
we shall see, Lemmas 4.17 and 4.11 taken together will force ω̂ to contain such a monomial.

Let ω0 = πβy,0 ◦ π
βx

0 ◦ πγ y′
,0(ω), which is non-zero by Lemma 4.17. Since ω0 only depends

on the variables βx
0 , γ x′

k , βh
k , γ h′

k for k � 0, it is a linear combination of monomials of the form

ε = (
βx

0

)d1γ x′
i1

· · ·γ x′
ir

βh
j1

· · ·βh
js

γ h′
k1

· · ·γ h′
kt

.

Here r = d2, s + t = d3, and d1 + s = d2 + t = d
2 , since the total number of β and γ are equal.

A similar argument to the proof of Lemma 4.6 shows that the only possible monomials in the
variables q

a,b
i,j (before making the change of variables given by (4.16)) which can contain ε are

of the form

q
1,3
0,k′

1
· · ·q1,3

0,k′
a
q

1,2
0,i′1

· · ·q1,2
0,i′b

q
2,3
i′′1 ,j ′

1
· · ·q2,3

i′′c ,j ′
c
q

3,3
j ′′

1 ,k′′
1
· · ·q3,3

j ′′
e ,k′′

e
.

In this notation, b + c = r , c + e = s, and a + e = t , and this lists (i′1, . . . , i′b, i′′1 , . . . , i′′c ),
(j ′

1, . . . , j
′
c, j

′′
1 , . . . , j ′′

e ), and (k′
1, . . . , k

′
a, k

′′
1 , . . . , k′′

e ) are permutations of the lists (i1, . . . , ir ),
(j1, . . . , js), and (k1, . . . , kt ), respectively.

Hence in the new variables q
a,b
i,j , τ u

k , the only possible monomials which can contain ε are of
the form

τx
k′

1
· · · τx

k′
a
τ h
i′1

· · · τh
i′b

q2,3
i′′1 ,j ′

1
· · ·q2,3

i′′c ,j ′
c
q

3,3
j ′′

1 ,k′′
1
· · ·q3,3

j ′′
e ,k′′

e
. (4.27)

In this notation, q2,3
a,b can denote either q

2,3
a,b or τ

y
a+b (which contains q

2,3
a,b by (4.16)). In order

for ε to appear in ω, any representative for the coset Φ−1(ω) ∈ F/I must contain at least one
monomial

μ = T x
k′

1
· · ·T x

k′
a
T h

i′1
· · ·T h

i′b
Q2,3

i′′1 ,j ′
1
· · ·Q2,3

i′′c ,j ′
c
Q

3,3
j ′′

1 ,k′′
1
· · ·Q3,3

j ′′
e ,k′′

e
(4.28)

corresponding to (4.27). Here Q2,3
a,b can denote either Q

2,3
a,b or T

y
a+b , as above. In particular, the

normal form ω̂ is a representative for Φ−1(ω), so it must contain at least one monomial μ of the
form (4.28). Since every monomial appearing in ω̂ is divisible by T h

0 , it follows that b > 0, and
at least one of elements in the list (i′1, . . . , i′b) is zero. We may assume without loss of generality
that i′1 = 0.

First, we claim that e = 0. By Lemma 4.11, the factor T h
0 Q

3,3
j ′′
u k′′

u
is the leading term of an

element of the Gröbner basis B , for each u = 1, . . . , e. Since μ is in normal form and is divisible
by T h

0 , it cannot be divisible by any of the factors Q
3,3
j ′′
u k′′

u
, so we have e = 0. Hence μ has the

form

T x
k · · ·T x

k T h
0 T h

i′ · · ·T h
i′ Q2,3

′′ · · ·Q2,3
i′′,j .
1 t 2 b i1 ,j1 s s
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Finally, we claim that for each u = 1, . . . , s, we have Q2,3
i′′u,ju

= T
y

i′′u+ju
. Otherwise, μ would be

divisible by T h
0 Q

2,3
i′′u,ju

for some i′′u > 0, which is impossible since this is the leading term of an
element of B , by Lemma 4.11. Hence the monomial

T x
k1

· · ·T x
kt

T h
0 T h

i′2
· · ·T h

i′b
T

y

i′′1 +j1
· · ·T y

i′′s +js

appears in ω̂, as desired. �
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