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Combinators are shown to provide a very suitable basis for implementations of 
functional and symbolic computation in computer architecture. A powerful 
combinator reduction system is developed which meets programmers and mac~ne 
requirements for (i) efficiency of representation and execution of symbolic 
algorithms, and (ii) availability of algebraic manipulation needed to analyse 
symbolic computations. An algebraic model is constructed to provide rigorous 
semantics for the system. The reduction language of the system aims at exposing 
efficient flows of data and fine-grain parallelism, and a computer architecture, 
which is proposed to run the system, utilizes both sequential and parallel 
processing modes in order to achieve maximum efficiency of symbolic 
computation. Finally, an implementation of the interpreter and functional 
simulator for the architecture is described. 

1. Introduction 

As a resul t  o f  deve lopmen t s  in the design o f  non von Neumann style of  
p rogramming ,  in part icular  Backus '  Functional  Programming (FP), and also 
in the  ref inement  o f  novel  hardware concepts such as control flow, data flow 
or reduc t ion  machines ,  p rogramming  languages for symbolic  computatiomre 
no longer  v iewed  on ly  as part  of  the theoretical foundations of  programming 
or as spec i f i ca t ion  l anguages ,  bu t  are also seen as pract ical  tools  for 
programmers .  

H o w e v e r  at  p r e s e n t  it still  r emains  the case  that mos t  prac t ica l  
p rog ramming  languages  used for symbol ic  computat ion are only incomplete 
vers ions  o f  var ious  logics deve loped  to deal with symbolic  objects,  e.g. 
L ISP  vs. l ambda  calculus (Eick & Feb_r, 1983) or FP vs. combinatory theory 
(Backus ,  1978). Var ious  reasons for  this situation will  be discussed in the 
fo l lowing  paragraphs.  

The  wel l  d e v e l o p e d  mathemat ica l  theory  of  l ambda  calculus provides  
p o w e r f u l  tools  for symbol ic  execut ion  o f  programs (McCarthy,  1960). All 
l ambda-def ined  functions are all computable  functions and the simple axiom 
schemes  ¢x and [3 g ive  a not ion of  symbol ic  computa t ion  via reduction.  
Howeve r ,  the ~ and 13 reduct ions are inefficient when performed directly by a 
machine ,  because  subst i tut ions in the presence  of  bound variables used in 
these  reduct ions  are veryexpensive,  and an efficient execution of  a program 
is ga ined  at the pr ice  o f  incons is tencies  in semantics  of  a programming 
language (Eick & Fehr,  1983). The problem of  eff iciency can be avoided by 
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using combina to r s  as a basis for a p rogramming  language  whi l e  preserving 
the comple te  semantics of  combinatory theory. 

The recen t  deve lopment  in combina tory  theory (Engeler ,  1977; (Engeler,  
1981; Enge le r  1984; Obtulowicz & Wiweger ,  1981; see also M e y e r ,  1982) 
reveals  h o w  to use it as a theory  o f  equat ions  for  a class o f  o rd inary  
algebraic structures. In this approach algori thmic p rob lems  such  as "find x 
such tha t  F(x)"  are reduced  to combina to r i a l  equa t i ons  o f  the  form:  
tl(X ) - - t 2 ( x ) ,  where  t 1 and t2 are terms over an a lgebraic  s t ruc tu re .  To 
solve the  p rob lem F s imply means  to f ind an e l emen t  a of  t h e  structure 
which sa t i s f ies  the equat ion,  i.e. t l ( a ) =  t2 (a ) .  A number  o f  ways  for 
solving such combinator ial  equations are well  known,  one of  w h i c h  is the 
l ambda  abs t rac t ion .  S imi la r ly ,  to solve the p r o b l e m  F b y  s y m b o l i c  
man ipu la t ion  would  mean firstly, describe a as a d o s e d  term (a  program),  
i.e. term with  no free variables, secondly simplify it according to axioms of  
the algebraic  structure. 

A c o m b i n a t o r  based funct ional  language such as Backus '  F P  supports 
"structured programming"  (Backus, 1978). It offers compactness  o f  notation, 
as s ingle  combina tors  express h igh ly  complex  opera t ions  o n  s t ruc tured  
objects .  T h e  p rograms  au toma t i ca l l y  possess  a l g e b r a i c  p r o p e r t i e s  o f  
combinators  which allow a programmer  to reason about  the p r o g r a m s  at the 
funct ion level  rather then at the object  level (Backus ,  1981) a n d  provide 
simple tools for program transformation and verif ication.  

Fur thermore ,  the combinatory approach appears to build a b r i dge  between 
p r o g r a m m e r s  and  machine  requi rements  for a l anguage  and a mach ine  
archi tec ture  for  symbol ic  computa t ion .  Mach ines  to mode l  c o m b i n a t o r y  
systems have  uncompl ica ted  structures and they  run ve ry  e f f i c i e n t l y  as 
compared  to l ambda  calculus machines ,  (Turner ,  1979b; H u g h e s ,  1982; 
Pey ton - Jones ,  1982; Jones & Muchn ick ,  1982; S toye  e t  a l . ,  1984).  The 
absence o f  env i ronmen t  makes  a combina to ry  code  ve ry  a t t r a c t i v e  for  
i m p l e m e n t a t i o n  in data driven or data f low arch i tec tures ,  ( S l e e p  1980; 
Maurer & Oldehoeft ,  1983; also A m a m i y a  & Hasegawa,  1984). 

However  the choice o f  combinators  seems to be a di f f icul t  one .  In his FP 
Backus (1978) uses very high level  combinators  (e.g. f u n c t i o n a l s  such as 
apply-to-all ,  insert, and construction) and he restricts them to p l a y  only the 
role o f  p rogram forming operators (PFO's). PFO's  a l low h im to cons t ruc t  a 
simple tool  for verification of  FP programs:  the FP Algebra  o f  Programs.  
But  in this way  FP suffers in express ive power  as genera l  h i g h e r  order 
funct ions ,  or  new PFO's cannot  be defined. Moreove r ,  al l  f u n c t i o n s  and 
funct ionals  o f  FP, except condit ional ,  are assumed to be strict ( "unde f ined -  
p re se rv ing" )  in order to give a s imple f ixed  po in t  s e m a n t i c s  for  the 
l anguage .  H o w e v e r  m a n y  func t iona l  compu ta t i ons  are e x p r e s s e d  more  
na tura l ly  by  non-str ict  funct ions (Fr iedman & Wise ,  1976), t h e  s imples t  
example o f  which  is the condit ional (if-then-else statement).  The F P  algebra 
can be used  to deal with recursive programs conta ining cond i t i ona l s  only  i f  
they are o f  a certain type: linear (Backus,  1978) and non l inea r  "overrun-  
tolerant" (Wil l iams,  1982). 

The l imi t a t ions  of  FP can be remedied  by e m b e d d i n g  FP in to  some 
comple t e  a lgebra ic  combina to ry  s tructure such as Bohm ' s  c o m b i n a t o r y  
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monoid (Bohm, 1982) or a combinatory algebra (Gibert, 1983a) which uses 
the standard combinators  of  Combinatory  Logic.  Such combina to ry  
structures preserve the algebraic nature of the functional  language and 
provide a complete  semantics for it. At the same time the standard 
combinators can be viewed as simple operators which "do nothing more  than 
move data around",  and therefore they provide for simple operat ional  
semantics and a possible machine architecture. 

The standard combinators such as I, S, K, ]3, C and ¥ have been used for 
implement ing funct ional  programs by Turner  (Turner,  1979b). These  
combinators are attractive because of the simplicity of the abstract ion 
algorithm, i.e. the transformation process from conventional  funct ional  
expressions into "free-from-bound-variables" combinatory code. Turner  has 
shown that the resulting code for a functional program generated using these 
combinators is excessively long, far removed from a source program and too 
ineff icient  for practical applications. Although he later improved  the 
performance of the abstraction algorithm by using new combinators S',B', C' 
(Turner, 1979a), the big gap between a combinatory code and a source 
program still remained, making the understanding of  a computation process 
and debugging practically impossible because intermediate values during the 
computation could not be tracked down. 

A solution may lie in providing a collection of combinators that closely 
correspond to a funct ional  notation, so some in termedia te  "state" of  
evaluation would be easier to interpret. This approach has been taken by 
Hughes (1982) with his "super-combinators", which are dynamically defined 
generalized combinators (i.e. combinators defined during the elimination of  
bound variables from lambda expressions). Unfortunately, the loss of  a fixed 
set of  primitive combinators in Hughes' approach results in the costs of 
interpreting virtual instructions. 

We have further developed Hughes' approach o f  using an unbounded 
number of combinators and put combinators into classes via combinatory 
schemata to obtain a limited base set of  machine instructions. In (Gibert & 
Shepherd, 1983) the classes have been derived directly for Backus' FP from 
the equational specification of  the language which has provided the basis for 
design of an elegant, algebraically structured FP compiler. In (Gibert, 1983) 
and (Gibert, 1984a) the classes of eombinators have been generalized in order 
to serve as a basis for an eff ic ient  implementa t ion  of  func t iona l  
programming. An abstraction algorithm have been modified in such a way 
that it maps a potential for parallelism in functional programs into the 
combinatory code by abstracting more than one variable at a time (Abdali, 
1976; Maurer & O1dehoeft, 1983; Gibert, 1983; Gibert, 1984a). 

This paper demonstrates a new model for symbolic computation, based 
upon combinatory theory, which: (i) has an elementary algebraic construction 
that provides a natural environment for mechanical verification and analysis 
of programs, (ii) allows one to express programs in complete and compact  
forms which exhibits their control structures more  clearly,  the re fo re  
permitting algebraic manipulations and efficient parallel processing. 

In particular, it is shown that a partial algebra of functions Jar, def ined 
here to be our model, is a consistent extension of the combinatory algebra, 
and that it gives simple semantics for practical programming languages such 
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as Backus '  FP. It is argued that our language,  Ja£, d e v e l o p e d  a long wi th  the 
Jaf algebra can be  seen as a power fu l  combina to ry  reduct ion  language  which  
is intui t ively access ib le  to p rogrammers  and can be  i m p l e m e n t e d  ef f ic ient ly  
in a machine architecture, JAMachine (Gibert ,  1984b).  The e f f i c iency  o f  the 
i m p l e m e n t a t i o n  is ga ined  f rom such  p rope r t i e s  o f  Jal e x p r e s s i o n s  as 
dis t r ibut ivi ty  and f reedom f rom bound  var iables .  These  p roper t i e s  s imply  
mean  that s u b e x p r e s s i o n s  o f  a Jal e x p r e s s i o n  c o n t a i n  all n e c e s s a r y  
in format ion  to be  eva lua ted  sepa ra t e ly  in a para l le l  manner .  The  short  
descr ipt ion of  the Jal language is i l lustrated by  some example s  of  s y m b o l  
manipulat ing programs.  

The second sect ion reviews the defini t ion and bas ic  proper t ies  of  the Jar 
a lgebra  of  func t ions ,  o f  w h i c h  a p r e l i m i na ry  ve r s ion  was  p r e s e n t e d  in 
(Gibert,  1983). 

The third sect ion discusses  programs def ined  by  combina to r i a l  equat ions  
b e t w e e n  terms o f  Jaf, and shows  that  un ique  par t ia l  so lu t ions  o f  the  
equat ions can be  found mechanica l ly  by  algebraic  manipula t ions .  W e  prove  
that the Yaf algebra is essential ly the extens ional  combina to ry  algebra.  

The four th  sec t ion  presents  the imp lemen ta t i on  o f  the Ja£ l anguage  on 
JAM(achine)  and demonstra tes  the conven ience  of  using it in deve lop ing  a 
pract ical  funct ional  p rogramming  language  by mode l l ing  Backus '  FP in Jal 
in a very  natural way.  Finally an interpreter and funct ional  s imulator  o f  JAM 
is described.  JAM is designed to execute  funct ional  p rograms  in a data f low 
fashion but  it can retain sequent ia l  eva lua t ion  for  p rograms ,  or  parts  o f  
them, which are inherently sequential.  

2. yafAlgebra of Functions 

In this sect ion we outl ine an approach to the interpretat ion o f  funct ional  
p r o g r a m s  in c o m b i n a t o r y  a lgeb ras .  W e  g ive  an e x p l i c i t  a l g e b r a i c  
const ruct ion of  a model  for  funct ional  p r o g r a m m i n g  in cartesian closed 
universes. A ca tegory- theore t ic  character iza t ion o f  such m o d e l s  was g iven  
by  Longo  & Moggi  (1984) and later b y  Curien (1986). 

W e  start with a construct ion of  a part ial  a lgebra  o f  func t ions  Jar over  a 
cartesian closed universe Ccu(Fun, Tup), where  Tup is a set o f  arbitrari ly long 
and nested tuples o f  Ccu, and Fun is a set o f  funct ions  of  Ccu o f  arbi trary 
arity. W e  call tuples of  length one that  are no t  nes ted  atomic. W e  regard  
some atomic tuples  o f  Tup as denot ing  funct ions  o f  Ccu and cer ta in  non- 
a tomic tuples as denoting parameter izefhnct ions .  W e  call a set  o f  all such 
tuples ®. Therefore  let us define a pair o f  functions:  

~ : ® - - - ~  and 9 : ~  --~® 

where ~ c Fun, ® c Tup such that 

and 

g( (f, al ..... an) ) = f a  1 ..... an 

where  f a  1 . . . .  , an is a funct ion with parameters  a 1 . . . .  , an. 
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T h e r e  are two  c lasses  o f  p r imi t i ve  func t ions  in Fun:  
"subs t i tu t ion"  func t ions  de f ined  as fo l lows:  

[ S{i,n}:An---~ A ; A c  TuP}i,n,i< n 

is the class o f  p ro jec t ion  funct ions ,  where  

(PRO]) S{i,n}(a 1 ..... a i ..... an) = a i. 

"p ro j ec t ion"  and  

{ *{nil, g: An--> A; A c  'Tup }n 

is the class o f  subs t i tu t ion  funct ions ,  where  

(SUBS) *{n)f,g (a 1 ..... a n) = f a  1 ..... an( (g, a 1 ..... an) ). 

NOTATION. (i) B e c a u s e  o f  the  complex i ty  o f  nota t ion,  we will  of ten  avoid  the 

exp l i c i t  use  o f  func t ions  gt and P by adopt ing the conven t ion  that  i talic font  
w i l l  i nd i ca t e  func t i ons  o f  Fun,  i.e. f wil l  denote  g ( f ). 
(ii) L e t  S{i,n} deno te  p( S{i,n} ), (f *{n} g) denote  p( *{n}f,g ). 

(iii) L e t  T ,  F e @ s tand fo r  S{1,2}, S[2,2} respec t ive ly ,  and I e @ stands 
fo r  S{1,1}. T and  F are o f ten  used in def ini t ions  by cases since 

~(T)(al,  az) = s{ x,2} (el,  a2) = al,  

and  s imi la r ly  
~ ® ( a l ,  a2) = a2, 

T h e  e l e m e n t  T c a n  also be used  to def ine  cons tan t  funct ions T a, i.e. 

Ta(b ) = Ix( (T, a) )( b ) = g(T)(a, b) = a. 

T h e  e l e m e n t  id represents  the ident i ty  func t ion  but  only  on atoms of  q: 
T h e  equa l i t y  in  Tup is the  ident i ty  re la t ion  and the equal i ty  be tween  the 

e l e me n t s  o f  F is de t e rmined  by  the fo l lowing  "extensional i ty"  rule: f i g ~  Fun 

(EXT) ( V t e Tup, f(t) = g (t)) ~ f =  g. 

D E ~ O N .  L e t  • c Fu n  and ® c Tup be f ixed and funct ions  kt, p be given. 
T h e  above def in i t ions  g ive  rise to a (partial) extensional  algebra of  functions 

Jaf-~ < Ccu(Fun, Tup), :, *{i}, S{id}, I, T, F > 

w h e r e  ":" is a b ina ry  opera t ion  of  applicat ion,  if  (PROJ), (SUBS), (EXT) and the 

f o l l o w i n g  c o n d i t i o n  holds  for  all t e Tup, (a 1 ..... a i ..... a n) e A n, n > 1, A c Tup: 

l f  t e @ then 

f ~t(t)(a 1 ..... a i ..... an) 

(APPt)  

else 

(aPra) 

t : (a 1 ... . .  a i ..... a n) = ~ ~ ( t ) ( a  1 ..... a i) : (ai+ 1 ..... an) 

[ ~t(t)al ..... a i ..... a n 

t :  (a 1 . . . . .  a~ . . . . .  an) = (t, a 1 . . . . .  % ..., an). 

if~(t) e [An--->Tup] 

if ~(t) E [ A i---) Tup ] 

otherwise  
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NOTATION. (i) The  application opera t ion  ":" is a s sumed  to be lef t -associa t ive ,  
i .e.  

t :  a 1 : a 2 : ... : a n = ( . . . ( ( t  : a l )  : a2) ... : a n ) .  

(ii) W e  omit  the index express ion (1} after functions,  e.g. * stands for *{1 }. 

REMARK. Let  P = ( I * I ). Ja l  is only  a part ial  a lgebra  since, fo r  example ,  
( P : P ) is inde te rmina te :  

P : P = ~(l:,)(P) = *I,I (P) = s{1,1}ff ' )  : ( I :  P ) = P : ( I :  P )  

=*I,I (I :P)  =s[1 ,1}(I :P): (I : (I  :P))  
= s{1 ,1}(P) :  ( I  : ( I : P ) ) = P :  ( I :  ( I  : P ) )  = . . .  

The above definit ion of  the Jal  algebra was chosen as the s imples t  and most  
eff icient  one for an implementat ion in compute r  architecture (refer  to sect ion 
4.4). A user, however ,  may  wish  to ex tend  J a f  b y  adding new func t ions  and 
es tab l i sh ing  a lgebra ic  ident i t ies  w h i c h  can  help  de r iv ing  and  p r o v i n g  
proper t ies  of  symbo l i c  p rograms .  Cons ide r ,  for  e x a m p l e ,  the  f o l l o w i n g  
definitions of  two functions,  which  we  wil l  find very  usefu l  in the fo l lowing  
sect ions.  

DEFINITION. Let  T{n} denote S{1,n+l }. Then  a "composi t ion" opera tor  e{n} can 
be defined as 

f°{n} g = (T{n}, f) *{n} g. 

Some of  the a lgebraic  proper t ies  of  the class of  compos i t i on  opera to rs  can 
be expressed,  for  example,  by  the fo l lowing equiva lences  in J. 

PROPOSITION. For  all f, g, h e ® a n d  (a 1 . . . . .  an) e A n, 

(1) (f • g) : (a 1 ..... an) = f (  (g, a 1 ..... an) ) where  f =  ~t(f), 

(2) (T, f) .{n} g = (T{n}, f) and (F, f) .{n} g = g, 

(3) (f *{n} g) . h =  f.{n} (g ° h), 

(4) l f  m > n then 

(f*{m} g) *{n} h = (f o{n} h) *{m} (g .{n} h) 
and also 

(f .{m} g) *{n} h = f °{rn} (g *{n} h). 

PROOF. The proofs  are straightforward verif icat ion and are omit ted.  

3 .  C o m b i n a t o r i a l  E q u a t i o n s  i n  Jar 

At the end o f  the previous section we  have demons t ra ted  how we can use 
the J a r  algebra to directly define new funct ions f rom the pr imi t ive  ones.  In 
the fo l lowing we  discuss an al ternative funct ion  cons t ruc t ion  mechan i sm in 
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J a i l  r e c u r s i o n .  R e c u r s i o n  c a n  b e  u s e d  to wr i te  f u n c t i o n a l  p r o g r a m s  in the 
f o r m  o f  r e c u r s i v e  de f in i t ions .  W e  show tha t  (par t ia l )  canon ica l  solut ions  to a 
f in i t e  se t  o f  c o m b i n a t o r i a l  equa t ions  are  d e t e r m i n e d  un ique ly  in Jafand can  
be  f o u n d  in a u n i f o r m  w a y  b y  s i m p l e  abs t r ac t i on  a lgo r i t hms  based  on the 
f o l l o w i n g  c o m p l e t e n e s s  and  f ixed  p o i n t  resul ts .  

DEFINITION. G ( v  I . . . . .  Vm),  d e n o t i n g  a term o v e r  Jar in v a r i a b l e s  f r o m  a 

f i x e d  set  o f  v a r i a b l e s  {Vl . . . . .  Vm}, is de f i ned  by  induc t ion  as fo l lows:  

(i) v 1 . . . . .  v m and  e l e m e n t s  o f  Tu.p are all t e rms ,  

(i i)  i f  G 1, G 2 are t e r m s  then  G 1 : G 2 and  G 1 *{i} G 2 are also terms.  

DEFINITION. L e t  A c T~p. A n  a p p l i c a t i v e  f u n c t i o n  7: An ~ A is c a l l ed  
representable over Jaf i f  

3 g e  ® , V  (at, ... , an) e A n, g : ( a  1 . . . . .  an)=~((a  1 .... ,an) ) . 

DEFINITION. L e t  A c Tup. A n  a p p l i c a t i v e  f u n c t i o n  7: A n --~ A is ca l l ed  
a l g e b r a i c  in J a f i f  there  is a t e rm G o v e r  Ja f in  var iab les  f rom a f ixed  set  o f  

v a r i a b l e s  {v 1 . . . . .  v n} such  that  for  a l l ( a  I . . . .  , a n ) e  A n, 

7(al . . . . .  an) = G(Vl/a 1 ..... Vn/an), 

w h e r e  v/a d e n o t e s  the s i m u l t a n e o u s  r e p l a c e m e n t  o f  all  o c c u r r e n c e s  of  the 
v a r i a b l e  v b y  the e l e m e n t  a.  

I f  we  p o s t u l a t e  that  all  app l i ca t ive  a lgeb ra i c  func t ions  are r ep resen tab le  in 
a s y s t e m  then  the  s y s t e m  is ca l led  c o m b i n a t o r y  c o m p l e t e  (a not ion at t r ibuted 
to C u r r y  (1930) ) .  

T H E O R E M  ( C o m b i n a t o r y  C o m p l e t e n e s s ) .  The Jar algebra is combinatory 
complete, i.e. i f  G ( v  1 . . . . .  Vn) is a term over J a f i n  variables from a 
f i xed  set of  variables {v 1 . . . . .  v n} then there exists an (extensionally 

unique) element f in ® such that for all (a 1 . . . . .  art) ~ A n, 

G(vl/a 1 ..... Vn/an) -- f :  (a 1 . . . . .  an). 

PROOF. B y  i n d u c t i o n  o n  the  s t ruc ture  o f  a term.  

(i) I f  G con t a i n s  no f r ee  va r i ab les  then  f -- (T{n} ,  G),  because  

f :  (v 1 . . . . .  Vn) -- ~(T{n})(G, v 1 . . . . .  Vn) = S{1,n+I}(G, v 1 . . . . .  vn) = O. 

( i i )  I f  G is a va r i ab l e ,  i.e. G(v 1 . . . . .  v i . . . . .  vn) = v i then  f = S{i,n] because  

f :  (v 1 . . . . .  Vn) = Ix(S {i,n})(v 1 . . . . .  v n) = S{i,n} (v 1 . . . . .  v n) = v i. 

( i i i )  I f  O(v 1 . . . . .  v n) = Gl(Vl . . . . .  v n) : O2(v 1 . . . . .  v n) then  b y  induct ion  step 

Gl(Vl . . . . .  Vn) = fl : (Vl . . . . .  Vn) 

02(v l  . . . . .  Vn) = f2:  (vl . . . . .  vn). 

H e n c e  f = f l  *{n} f2, b e c a u s e  
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f :  (Vl . . . . .  Vn) = (fl : (Vl . . . . .  Vn)) : (f2: (Vl . . . . .  Vn)) 

= G l ( v l  . . . . .  vn)  : O 2 ( v l  . . . . .  v n) 

= C ( v l  . . . . .  

(iv) I f  G(v 1 . . . . .  vn) = Gl(V 1 . . . . .  Vn) *{m} G2(v 1 . . . . .  Vn) then by  induct ion  stop, 
in a similar way to above, we have f - f l  *{m+n} f2. 

The uniqueness of  f follows directly f rom the (EXT) rule. 

COROLLARY. Jar is an extensional combinatory algebra (cf. Barendregt ,  1981; 
Meyer,  1982). 

A combina tory  algebra can be constructed expl ic i t ly  in Jar  because  it is 
suff icient  to isolate two dif ferent  e lements  K and S of  Jar  such that  for all 

a, b, c ~ A, (K : a) : b = a and ((S : a) : b) : c = (a : c) : ( b : c). The 
existence of  elements K and S in an algebraic structure guarantees  solutions 
to a finite set of  combinatorial  equations (Barendregt,  1981), but  the process 
o f  f inding these solutions in terms of  S and K is u n a c c e p t a b l e  f rom a 
computat ional  point  of  view, because it leads to a combina to r ia l  growth  in 
the size of result ing variable free expressions (Turner,  1979a; also Burton,  
1983). The above proof of  the completeness  theorem demonstra tes  a practical 
algorithm which performs abstraction on combina tory  terms with  respect  to 
all specified variables in a single step. This is possible because  o f  the given 
defini t ion of  the Jar algebra. The a lgor i thm also retains i n fo rma t ion  f rom 
funct ional  terms within combina to ry  express ions  that  enables  a paral le l  
reduct ion of  the expressions. Our a lgor i thm is similar but more direct  then 
the one presented by Abdali  (1976), and it yields compac t  and a lgebraical ly  
structured combinatory expressions. 

A special case of a combinatorial  equat ion is recursive defini t ion.  One can 
find the representat ion of  a recurs ively  def ined  funct ion  in Jar  using f ixed 
point functionals (Barendregt, 1981). 

DEFINITION. A recursive definition over Jar  is a finite sys tem of  equat ions  of  
the form: 

v i = G i , 

where G i is a term in n variables from the set of  variables Iv 1 ..... v i ..... Vn}. 

DEFINITION. A f i xed  point  func t iona l  is a func t iona l  9" such that  for  any 
function g 

Y ( g )  = g ( Y ( g )  ), 

i.e. y ( g )  is a fixed point of  g. 

TrmORFM (Fixed Point). L e t  Z = S{2,2} *{21 ((S{1,2} *{2} 8{1,2})*{2} S{2,2}). 

Then the e lement  Y = (Z, Z) o f  @ represents  a f i x e d  po in t  f unc t iona l  
Y ~ Fun. 
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PROOF. F o r  any  f ~ O 

Y : f = g(Z) Z ( f )  = S{2,2} z : ( f ) ( (,5{ 1,2} Z ( f ) : (S{ 1,2} Z ( f ) )  ) : (S{2,2} Z ( f )) ) 
= f :  ( ( z , z )  : r ) =  r :  (Y : f). 

PROPOSITION ( D o u b l e  F i x e d  Po in t ,  B a r e n d r e g t  (1981) ) .  Consider the following 
system o f  equations in Yaf. 

v 1 = G l ( v  1, v2) 

v 2 = G2(v 1, v2). 

We show that there exists f l ,  f2  e ® such that 

fl = ol (vl / f l ,  v2&) 

f2 = G2(Vl/fl, v2/f2), 
i.e. 

fl = gl : (fl,  f2) 

f2 = g2 : (fl,  f2)" 

PROOF. D e f i n e  X( fl ) = 9"(g2 : fl) = (Y "g2) : fl so t h a t f  2 = X ( f  1 ). T h u s  

fl  = gl : (fl, X(  fl )) = (gl * (Y ' g2)) : fl = Y(gl  * (Y "g2)) 
and 

f2 = X ( f l )  = ( Y "  g2) : Y ( g l  * (Y " g 2 ) ) .  

N o w  let  us  v e r i f y  the  a b o v e  c h o i c e  o f  fl and  f2 

fl = Y(gl  * (Y * g2)) = (gl * (Y "g2)) : Y(gl  * (Y * g2)) = (gl * (Y * g2)) : fl 

= gl ( f l )  ( (Y "g2) ( f l ) )  = gl : (fl, X( fl )) = gl : (fl, f2) 

f2 = (Y ° g2) : Y(gl  * (Y ° g2)) = (Y ° g2) : fl = 9"( (g2, fl) ) = g2 : (fl, 9,( (g2, fl) ) 

= g2 : ( f l ,  f2)' 

THEOREM ( M u l t i p l e  F i x e d  Po in t ) .  There exists f l ,  f2 . . . .  ,fn ~ e such that 

fl = gl : (fl ,  f2 ..... fn) 

h = g2 : ( f l ,  f2 ..... fn) 

fn --- gn : (fl,  f2 ..... fn), 

where gi e ® corresponds to a term Gi(v 1 ..... v i ..... Vn) over flaf. 

PROOF. L e t  us  d e f i n e  

X(fl, f2 ..... fn-1) = Y(gn:  (fl, f2 ..... fn)) = (Y *{n-l} gn) : (fl, f2 ..... fn-1) 

Z ( f l ,  f2 .. . . .  fn-2) = Y(  (gn *{n-l} (Y ,[n-l} gn)) : (fl, f2 ..... fn-2) ) 

= (Y *{n-2} (gn-1 *{n-l] (Y .{n-l} gn)) : (fl, f2 ..... fn-2) 

X( fl ) = Y( (g2 *{2} ( Y .{3) (... ( Y .{n-2} ( gn-1 *{n-l} ( Y .{n-l} gn)))"'))) : fl ) 

= ( Y " (g2 *{21 ( Y .{3} (,.. ( Y *{n-2} ( gn-1 *{n-l} ( Y *In-l} gn)))'")) ) : fl 
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so that 

fn_l = 

f2--- 

fl = 

gn : ( fl, f2 ..... fn-l, fn) = X(fl, f2 ..... fn-1) 

gn-1 : ( fl, f2 ..... fn-1, X(fl, f2 ..... fn-1) ) 

( gn-1 *{n-i} (Y .{n-i] gn)) : (fl, f2 ..... fn-2, fn-1) 

x ( f l ,  f2 ..... f -2) 

X(f 1) 

Y(g l  * (V " (.'. ( Y .{n-2} (gn-1 *{n-l} ( Y *{n-l} gn)))"')) )' 

The proofs of  the above theorem demonstrate  a simple mechan ica l  me thod  for 
f inding un i fo rm represen ta t ions  ( f ixed points)  o f  func t ions  de f i ned  by  
mutua l ly  recurs ive  def ini t ions.  This m e t h o d  is pa r t i cu la r ly  sui table  for  
i m p l e m e n t a t i o n s  o f  symbo l i c  c o m p u t a t i o n  because  e x p r e s s i o n s  w h i c h  
represent  the f ixed points are obtained by symbol i c  manipu la t ions  wi thout  
using any auxi l ia ry  func t ions  such as tup l ing  ( B a r e n d r e g t ,  1981) or  
e n v i r o n m e n t  (Wil l iams,  1981). T h e y  can be c o m p u t e d  wh i l e  r ecu r s ive  
definit ions are part ial ly supplied, and the full  representa t ions  are obta ined 
when  the last mutual ly  recurs ive  def ini t ion is given. There fo re ,  any o f  the 
mutual ly  recursive functions can be used and evaluated independen t ly  o f  the 
others from its full f ixed point  representat ion in Jar. 

COROLLARY. Recursive definitions over Ja fhave  (extensionally unique) 
solutions (fixed points) in Jaf which can be found uniformly. 

The canonical  f ixed points cor respond to least  f ixed points  o f  a structure 
ordered  by approximat ions  (c.p.o.)  (Barendregt ,  1981). The re fo re ,  s imple  
computa t ional  induct ion and a lgebraic  manipu la t ions  can be c o m b i n e d  to 
infer properties o f  recursively def ined functions.  

Now,  let  us enr ich  Tup by n u m e r a l s  w i t h o u t  w o r r y i n g  a b o u t  the 
representa t ion  o f  a numera l  sys tem in Jar. The ex i s t ence  o f  a num era l  
system in Yafis guaranteed by combina tory  comple teness  (Barendregt ,  1981) 
and it can be cons t ructed  in a n u m b e r  of  d i f f e ren t  w a y s  (Bunder ,  1981; 
van der  Poel  et al., 1980). We  simply a d d  new e lements  ca l l ed  numerals ,  
Numc  Tup, and arithmetic functions,  e lements  of  Fun. 

DEFINITION. Let  numerals, Nurn~  Tup, be r e p r e s e n t e d  by  d i s t inc t  new 
elements  n ~ Tup for n = 0,-1,1,-2,2 . . . . .  Let  ADD{i} (add i t ion  funct ions) ,  
SUB{i) (subtract ion funct ions) ,  EQU (the equa l i ty  test  func t ion)  be new 

elements of  Fun defined for all (n 1 .... , ni) ~ 9 ~ m  i, i > 1, as fo l lows:  

(NUM1) ADD{i](n 1 ..... ni) = nl+ ...+ n i 

(NUM2) SUB{i}(n 1 ..... hi) = n 1- ...- n i 

(NUM3) EQU(nl, n2) = T if nl= n2, o therwise  F 

We can now define,  using recurs ive  def ini t ions ,  and represen t ,  using the 
fixed point  operator ~ all computable  funct ions  in Jar (Kleene,  1936). 
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4. Implementation of JAM 

This  s ec t i on  descr ibes  an interpreter  and func t iona l  s imulator  of  a 
combinator  machine  cal led JAMachine. JAM is based on Jar algebra defined 
in sect ion 2 and it is an algebraically structured architecture (Thatcher et 
al., 1981). It supports both serial and parallel processing for functional  
programs that  manipula te  symbolic  streams. A funct ional  program is first 
t ranslated into a combinator  code using our abstraction algorithms, section 
3. Combinator  code is further translated into a directed graph for execution 
on JAM. The execution of  a graph takes place by communicat ing streams of  
graph pointers ,  which represent  argument  and result  subexpressions, along 
graph arcs representing data dependencies between the combinators within the 
combina to r  code. The m e m o r y  organizat ion of  JAM supports sharing of  
subgraphs  through graph pointers,  which  in turn avoids re-evaluation of  
separate copies of  common  arguments. JAM executes functional programs in 
a data f low fashion but it  applies sequential graph reduction for graphs, or 
subgraphs,  which  are inherent ly  sequential. This makes JAM a useful cross 
between a data f low machine and graph reduction machine (Treleaven, 1984) 
for the purpose of  eff icient  symbolic computation. 

4.1. PROGRAMMING ON JAM 

JAM is p r o g r a m m e d  using a reduct ion  language called Yaf, which is 
founded on funct ional  expressions that are formed using recursive definitions 
or recurrence relat ions (viewed as simple iterations) over the domain of 
arbitrarily long tuples (viewed as streams). 

The  e x p r e s s i o n s  are in te rpre ted  in the car tes ian  c losed universe  
Ccu(T~p, Fun). The elements of  T~p are called functional objects, or simply 
objects, and the e lements  of  Y~n are functions which manipulate objects. 
Constant objects such as numerals and quoted character strings ("abc"), and 
simple names, which are non-empty  strings of  symbols,  are distinguished 
f rom the other objects and they are called atomic objects. Simple names 
that  start with alphabetic characters may  represent functions or objects and 
s imple  names  that  start with non-alphabet ic  characters are reserved for 
r e p r e s e n t i n g  o p e r a t o r s .  A s i m p l e  n a m e  m a y  r e p r e s e n t  a 
functions~objects~operators (1) directly,  e.g. the name s represents the s 
funct ions,  (2) through a definition, e.g. DEF True = T, or (3) by combining 
both previous methods,  e.g. (S{1,2}, true). 

A n a m e  t h a t  r e p r e s e n t s  a function~object~operator is ca l led  
function~object~operator name,  or jus t  name for short. A name can be 
associated with any valid Ya(expression by the definition of  the form: 

DEF Func_name_expression = expression; 

where  Func_name_expression is a JaC expression which starts with the name 
of  a funct ion or an object,  and than may be fol lowed by variables. All .qaf 
operators are infix operators, i.e. ( a & b ), which are defined and named in 
the fol lowing general way: 

OPR Opt  _name_expression = expression; 
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where Opr name expression is a Jal expression involv ing  the name  of  an 
operator and possibly variables. 

A def in i t ion  in Jal can be s i m p l e , f u n c t i o n a l  or indexed.  A simple  
definit ion associates a Jalexpression directly to a name. If  variables are used 
to def ine  a funct ion,  object  or opera tor  then the de f in i t ion  is cal led a 
funct ional  definition. For  example,  the fo l lowing  def ini t ion 

DEF (Const, x) : y = x; 

specifies that Const represents  a func t iona l  o f  ari ty one w h i c h  takes its 
first argument,  x, to produce a constant  function.  An indexed  def in i t ion m a y  
take the form of  either simple or funct ional  definit ion.  The  d i f fe rence  f rom 
the o ther  two types of  def in i t ions  is that  an i ndexed  de f in i t i on  is an 
induct ive  def ini t ion which  def ines  an indexed  class ra ther  then  a single 
function,  operator or object. 

A class is indexed by index expressions in variables ranging  over natural  
numbers.  An index  expression can only  be a simple ar i thmet ic  express ion 
over  natural  numbers .  A simple a r i thmet ic  express ion  is an add i t ion  or 
subtract ion of  a constant  to / f rom a i ndexed  var iable  (e,g. i+1 or j-5).  
However ,  there are the fol lowing restr ict ions:  (1) the same index  var iable  
name cannot  occur  more then once on the left hand side o f  the indexed  
def in i t ion ,  (2) s imple ar i thmet ic  express ions  i n v o l v i n g  i n d e x  var iables  
cannot  occur on the left  hand side of  the def ini t ion.  A name  i m m e d i a t e l y  
fo l lowed  by an index express ions ,  wh ich  are separa ted  by c o m m a s  and 
enclosed in a pair of  braces is called index name (e.g. Ind_nameCi+ld-5}) .  

An indexed def in i t ion  is usual ly  combined  wi th  a s imple  de f in i t i on  to 
specify the initial elements of  the class. A n  example of  an indexed  defini t ion 
is a def ini t ion of  an indexed  class of  func t iona l  objects ,  Fib_number{ i}  
(i=1,2,..),  which corresponds to the cha in  o f  F ibonacc i  n u m b e r s  as they  
increase with the index i: 

DEF Fib_number{i} = ADD{2} : (Fibnumber{M}), Nb number{i-2}); 

DEF Fib_number{2} = 1; 

0EF Fib number{I} = 1; 

Because the Jallanguage has an associated partial algebra of  funct ions  Jafi t  
is possible  to mode l  a part ial  equ iva lence  predicate  in JaL The  par t ia l  
equ iva l ence  f u n c t i o n  E Q V  appl ied to two func t ions  resu l t s :  T i f  the 
func t ions  can be proved  equ iva len t  in Jar, F i f  they  can  be d i sproved  
equivalent  in Jail and it is indeterminate  otherwise.  

The undefined value can be s imply represented  in Jar by the e lement  
UV = (Y, T). The e lement  UV has a dua l  purpose ,  for  i t  r ep resen t s  the 
undefined value as well as the everywhere-undef ined funct ion U ~  because 

UV(a) = YT (a) = S{1,2}( (Y, T), a) = (Y, T) = UV. 

A strict funct ion f ,  i.e. f (UV) = UV, can now be expressed  in Jaf  using 
EQV funct ion which tests an a rgument  to be UV. For  example ,  a strict 
version of  fixed point  funct ional  % denoted  9~/V, can be expressed in Jafas 

YUV = (T, (EQV, UV)) *{2] V *{2] UV; 
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A func t ion  can  also be de f i ned  strict by the strict definition in .qaf: 

STRICT funct ion_name;  

T h i s  c o n c l u d e s  this  shor t  i n t r o d u c t i o n  to the .Tar l anguage .  Sec t ion  4.4 
descr ibes  fla£ and JAM in more  details.  

W e  end  this sec t ion  b y  demons t ra t ing  how to def ine  recursive lists in .7af 
w h i c h  we  wi l l  e x t e n d  in  the nex t  sec t ion  to the comple te  e m b e d d i n g  of  
Backus '  FP  in to  JM, see F igure  1 and  2. 

W e  def ine  an  i ndexed  class o f  pair ing operators  (Church,  1941) ^{n} in the 
f o l l o w i n g  w a y  (Gibert ,  1983b): 

o p R  a ^Cnl b : x = (a:x) AIn-ll (b:x); 

OPR a ^ b : x=  x:  a:  b; 

O n e  can use  these  pa i r ing  operators  to induc t ive ly  def ine finite lists and r.e. 
inf ini te  lists. Fo r  example ,  if  (1 ^ (2 ^ (3 A UV))) is an object  that  represents 
the list  o f  three  n u m b e r s  "<1,2,3>" (UV represents  the empty  list) then the 
l i s t  m a n i p u l a t i n g  f u n c t i o n s  h e a d  and tai l  (Hd,  T1 in Figure  1) can be 
cons t ruc ted  us ing  the func t ion  swap def ined  as fol lows:  

DEF Swap= S{2,2/* S{1,2}; 

i.e. Swap : (a, b) = (b, a). T h e n  

Hd : (a ^ b) = (Swap, T) : (a ^ b) = a 
and 

TI : (a ̂  b) = (Swap, F) : (a ^ b) = b. 

A n  i nde xe d  class  o f  cons t ruc tors  for  recursive lists,  List{i}, i = 1,2 ..... can be 
n o w  def ined  as 

DEF List{n} = s[1,n} ^ [ n + l }  (T, List{n-l}) ;  

DEFLis t{1}  = I ^ [ 2 } U V ;  

i.e. List{3} : (a, b, c) = (1 ^ (2 ^ (3 ^ UV))).  

4.2. FUNCTIONAL PROORAMMING ON JAM 

The universality and the expressive power of the ,qaf language guarantees 
that one can run efficiently any "high level" functional programming system 
based on lambda calculus on JAM. This will be exemplified by the following 
simple embedding of Backus' FP (Backus, 1978) into flaf. The embedding of 
FP  into .qaf p re se rves  the  algebraic  s t ructure o f  FP  and at the same t ime it 
a l lows  us to e x t e n d  FP by  (i) pe rmi t t i ng  p r o g r a m s  to man ipu la te  inf ini te  
s e q u e n c e s  ( th i s  m a y  m a k e  some  app l i ca t ions  eas ier  to p rog ram) ,  (ii) 
i n c l u d i n g  in f in i t e  e x p a n s i o n s  for r e c u r s i v e l y  d e f i n e d  func t ions  into the 
a lgebra  o f  p rograms .  

F i r s t l y  c o n s i d e r  the da t a  s t ructures  o f  FP. A set  Ob of objects  is bui l t  

r e c u r s i v e l y  f r o m  a toms ,  At,  _k (the unde f ined  object)  and objects by  the n- 
a ry  list  cons t ruc to r ,  '< ... >', i.e. 

O b = A t ~  {1} t.~ {<ob I . . . . .  o b n > l o b  1 .. . . .  o b n e  Ob}. 
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W e  def ine  the embedd ing  ~ to be a b i jec t ion  f rom ob to Tup as f o l l o w s  

~( l )  = UV and e(<>) = UV, 

a(true) = T and  a(false) = F, 

a(n) = n where  n e Int and n e 9V~m, 

e(a) = a where  a e At and a e Tup is a tomic ,  

a(<ob 1 ..... obn> ) = List{n} : (e(obl), ..., e(obn)) = e(Obl) ^ ( ... ^ a(obn)... ). 

W e  e x t e n d  O b  to O i n f  b y  a d d i n g  i n f i n i t e  l i s t s  o f  o b j e c t s ,  i .e .  

O i n f =  Ob  u O i n f  c° where  O i n f  c° c a n  be r e p r e s e n t e d  by  to t a l  r e cu r s ive  
f u n c t i o n s  I n t  ~ O i n f  w h i c h  are m a p p e d  on  f u n c t i o n a l  ob jec t s  d e f i n e d  in 
Jag w h i c h  c o r r e s p o n d  to r .e.  l ists .  F o r  e x a m p l e ,  an  i n f i n i t e  l i s t  o f  al l  
F i b o n a c c i  n u m b e r s  can  be c o n s t r u c t e d  u s i n g  the  f o l l o w i n g  r e c u r s i v e  
de f in i t ion  in Ja[  

D E F  (Fib_list,  n) : m = n ^ ((Fib_list ,  m) : ( (ADD,  n) : m));  

wh ich  can be represented  by a genera tor ,  F i b _ g e n ,  d i rec t ly  d e f i n e d  in J a f a s  

DEF Fib_gen  = ( Y, S{2,3} ^{4} (T *{3} (T, A D D ) )  * (T, 0) ); 

i.e. Fib  gen : 1 = <0, 1, 1, 2, 3, 5 . . . .  >. 
N o w ,  cons ide r  an app l i ca t ion  o p e r a t i o n  in FP, ' . . . .  , w h i c h  appl ies  a FP 

f u n c t i o n  f t o  an object  oh.  W e  def ine  e (  f : o b  ) = e (  f ) : e (  o b  ) w h e r e  

e ( f )  is shown in Figure  1 and 2 and e(  ob ) is d e f i n e d  above .  

4.3. ALGEBRA OF FUNCTIONAL PROGRAMS ON JAM 

As in genera l  ma themat i c s ,  the  d i s t r ibu t iv i ty  o f  one  f u n c t i o n  o v e r  a n o t h e r  
is an i m p o r t a n t  n o t i o n  o f  the  Ja[ l a n g u a g e .  I t  p e r m i t s  c o n v e n i e n t  
represen ta t ions  o f  inf in i te  expans ions  for  r ecu r s ive ly  d e f i n e d  f u n c t i o n s  (e.g. 
c o n d i t i o n a l  e x p a n s i o n s ,  see  b e l o w ) ,  or  i t  p r o v i d e s  o p t i m i z a t i o n  
t r ans fo rmat ions  for  func t iona l  p rograms .  For  ins tance ,  it i m m e d i a t e l y  f o l l o ws  

DEF Id = I; 

DEF Hd = (Swap, S{I,2}); 

DEF T1 = (Swap, S{2,2}); 

DEF Select{i} = Hd • Selectl{i}; 

DEF Selectl{i} = T1 • Selectl{i-l}; 

DEF Selectl{l} = Id; 

DEF Appendl = Hd ^{2} (Hd • tl); 

DEF Not = Id * (T, F) * (T, T); 

DEF Eq = (T, EQU) * Hd * ( Hd • T1 ); 

/* recursive reviota */ 

DEF Rrev = Id ^{2} ( Rrev • (SUB, i) ); 

/* fixed point reviota */ 

DEF Rrev = (YUV, (T, Id) ^{3} (8{1,2} *{2} 

Fig. l. SomeFPfunctionsin]a[ 

(T, (SUB, I))) ) ;  



Functional Programming with Combinators 283 

DEF (Const, f) = (T, f); 

DEF (Bu, f, x) = f. ( (T, x) ^{2} Id); 
/* 

*/ 

DEF 
/* 

(p-> q ; r) is denoted by (if, p, q, r) where 
(if, p, q, r) : x = q : x if (p : x) evaluates to T, 
(if, p, q, r) : x = r : x if (p : x) evaluates to F, 
(if, p, q, r) : x = UV if (p : x) evaluates to UV 

(If, p, q, r) = p * q * r; 

[fl,..., fn] is denoted by (confun{n}, fl,..., fn) 
*/ 

DEF Confun{n} = S{l,n-l} ^{n+l} (T, Confun{n-l}); 
DEF Confun{l} = (T, UV); 
/* 

alfa f is denoted by (Apply_all, 
*/ 

DEF (Apply_all, f) = (f. Hd) ^{2} ((Apply_all, f) ° TI); 
STRICT Apply_all; 
/* 

/f is denoted by (Insertl, f) 
*/ 

DEF (Insertl, f)= f. (hd ^{2} ( (Insertl, 
STRICT Insertl ; 

Fig. 2. Some FP functionals in Ja[ 

f) 

f) ° TI)); 

f r o m  the  p r o p o s i t i o n  in  sec t ion  2. tha t  the f o l l o w i n g  two i m p o r t a n t  
d i s t r i b u t i v i t y  l aws  of  B a c k u s '  A l g e b r a  o f  P r o g r a ms  (Backus,  1978) are 
p re se rved  in Jar: 

(Confun{n}, fl ..... fn) * g = (Confun{n}, fl ° g ..... fn * g) 

((p * q) * g) • h = ( (p ° h) * (q ° h) ) * (g ° h). 

I t  is a s t r a igh t fo rward  p rocedure  to ver i fy  that  the whole  of  Backus '  Algebra 
o f  P r o g r a m s  is p r e s e r v e d  in Jail In fac t  we have  carried out  mos t  of  the 
p roofs  w i th  the  ass i s tance  of  JAM (Gibert ,  1984b). The algebraic roots o f  Yal 
a l low Jaf  to be used  as the meta - leve l  to prove propert ies  o f  J a / p r o g r a m s .  
T h e  EQV func t ion ,  wh ich  is used to mode l  the equal i ty  predicate o f  FP, adds 
ex t ra  p o w e r  to FP since i t  uses Jar to ver i fy  p rogram equivalences.  

N o w  we  d e m o n s t r a t e  h o w  to e x t e n d  the l aws  of  Backus '  A lgebra  o f  
P r o g r a m s  i n v o l v i n g  a cond i t i ona l  func t iona l  to inc lude  inf ini te  condi t iona l  
expans ions  (Wi l l i ams ,  1982): 

f = (P0 * q0) * (H(f)  ) = (P0 * q0) * ( (Pl * ql) * ( (P2 * q2) * "" ) ), 

whe re  H is a func t iona l  in Jar such that  for  all h 

H((Pi * qi) * h) = (Pi+l * qi+l) * (H(h)  ). 
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For example,  one of  the laws noted above can be rewri t ten as fo l lows:  

( (P0 * q0) * ( (Pl * ql) * '") ) ° h = ( (19 0 ° h) * (q0 * h) ) * ( ( (Pl ° h) * (ql ° h) ) * ...), 
because 

f ° h  = (Y, (T, p * q) *{2} H , h) 

= ( (p * c0 * (H(Y, (T, p * q) *{2} H))) ° h 

= ((19 * h) * (q * h)) * (( (191 * ql) * (H(y( (T, p * q) * {2} H ))) ) * h) 

= ((p ° h) * (q ° h)) * ( ( (Pl  ° h) * ( q l  ° h))  * ... ] 

= ((13 • h) * (q ° h)) * (H(Y, T • ((T, p * q) * {2} (T ° H))) * {2} (T, h)) 

= (Y,T,((T,p*q)*{2}T,H))*{2} (T,h)). 

4.4. IMPLEMENTATION OF JAM 

JAM(achine)  is pr incipal ly a combina to ry  graph r educ t ion  mach ine .  Jal 
e x p r e s s i o n s  are  t r ans l a t ed  into " f r e e - f r o m - b o u n d - v a r i a b l e s "  ( p u r e )  
combinatory code through an implementa t ion  of  our  abs t rac t ion  a lgor i thms 
d e s c r i b e d  in sec t ion  3. O r d i n a r y  v a r i a b l e s  are a b s t r a c t e d  u s i n g  the 
c o m b i n a t o r y  c o m p l e t e n e s s  resul t ,  and s imple  r e c u r s i v e  and m u t u a l l y  
recursive variables are abstracted using the f ixed poin t  results.  The  execut ion  
of  the code takes place through a sequence  of  graph reduct ions  that t ransform 
the Jal expressions into their meaning (the elements o f  Ccu(Fun, Tup)), 

4.4. I. EVALUATION MODES 

The standard evalua t ion  m o d e  for  a Jal express ion  is lazy (or normal 
order),  i.e. eva lua t ion  o f  an e x p r e s s i o n  is l e f t m o s t  in r e s p e c t  to the 
application operat ion,  and evaluat ion  o f  a subexpress ion  is d e l a y e d  until  it 
becomes  the leftmost. The le f tmos t  c o m p o n e n t  of  an express ion  de te rmines  
the reduction rule or the definit ion s impl i f ica t ion to be appl ied.  Al l  required 
arguments are consumed and a new express ion  which  represents  the resul t  of  
applying the part icular  rule or s impl i f ica t ion  is subs t i tu ted  in the p lace  o f  
the old expression.  If  no reduct ion or s impl i f ica t ion can be  appl ied  the lazy  
evaluat ion terminates.  

However ,  the value of  a non- le f tmos t  subexpress ion  m a y  be  requ i red  by 
JAM either during the execut ion of  a p rogram (e.g. b y  a pr imi t ive  ari thmetic 
function) or after the execut ion terminates  (for example ,  to print  a result) .  
In the first case, the normal order  evaluat ion  o f  an express ion  is p o s t p o n e d  
whi le  the a rgument  subexpres s ions  are execu ted .  I f  the resu l t s  o f  the 
evaluat ion of  subexpress ions  are of  the requi red  type  (e.g. a number )  then 
the execut ion  p roceeds ,  o therwise  the execu t ion  te rminates .  Th is  type  of  
evaluation is cal led eager (or innermost order) and is k n o w n  to be  not  safe 
semant ical ly  when  used exc lus ive ly  (E ick  & Fehr, 1983). H o w e v e r ,  i f  we 
restrict eager evaluat ion to the fo l lowing two  cases,  we  are able to preserve  
the s imple  a lgebra ic  m o d e l  and ma in t a in  e f f i c i e n c y  of  e x e c u t i o n  o f  
funct ional  programs:  (1) the execut ion  o f  strict funct ions ,  e.g. ar i thmet ic  or 
relational functions,  (2) the execut ion of  the pipe-apply operator .  

The  pipe-apply  opera tor  "%" is a func t iona l  ( m o d u l e )  c o m p o s i t i o n  
operation naturally supported by  the architecture o f / A M  which  is b rought  to 
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the l anguage  level  to al low a functional program to be built out of  simple 
combina t ions  o f  in terconnect ing subprograms, cf. Figure 3. The pipe-apply 
operator  is def ined as follows 

(fl %f2) :(al . . . . .  an)=/1 (f2(al ..... an))' 
In other  words ,  the p ipe-apply  operator  applies a function f2 to a tuple 
(a 1 ..... a n) and at the same time routes the output of  f2 to the input of  fl" In 
part icular ,  if  f2 denotes  a functional  object  (e.g. Fib_number in section 4.1) 

then  the pipe-apply operator  computes f2 before it is applied to fl.  

i> 
i> 
i> 
i> 
l> 
i> 
I> 
i> 
i> 
I> 
I> 
2> 
3> 
3> 
3> 
3> 
3> 
4> 
5> 
5> 
5> 
5> 
5> 
5> 
5> 
6> 
7> 
8> 
8> 
8> 
8> 

J-Machine 1.3 (MAY 86) - type "help;" for help 
/* 

A program which sorts stream of n numbers 

Max to left shifts greatest number of n 
numbers of a tuple to the left of the tuple 

*/ 

DEF Max to left{n} = 
GT 

*{2} ((Max to left{n-l} % S{1,2}) *{n} S{2,n}) 
*{2} ((Max to left{n-l} % S{2,2}) *{n} S{l,n}) 

DEF Max to left{l} = I; 
/* 

Many_swap shifts first element of a n-tuple 
to the last position in the tuple 

*/ 
DEF Many_swap{n} = S{2,2} *{n} S{l,n}; 
DEF Many_swap{l} = I; 
/* 

Main program 
*/ 
DEF Sort{n} = Sort{n-l] 

% Many swap{n} 
% Max to left{n} 

DEF Sort{l} = I; 
ARGS Sort{n} = n; 
/* 

Execution 
*/ 

Sort{10} : (3,1,6,5,9,2,4,8,7,0); 

(0,1,2,3,4,5,6,7,8,9) 
9> ^D 

End of session. 

Fig. 3. Exampleprogram. 
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JAM transforms a J M  expression into its full (not lazy) meaning in 
Ccu(Fun, T~p). An expression is normal order evaluated to produce a lazy 
resul .  I f  the evaluat ion  terminates,  then the resul t  is interpreted in 
Ccu(Fun, Tup). The interpretation (meaning) in CcuiF~n, Tup) is obtained by 
r e c u r s i v e l y  app ly ing  normal  order  eva lua t ion  to each immedia te  
subexpress ion of  the result of  the evaluation. 

4.4.2. EQUIVALENCE PROOFS 

JAM uses lazy  evalua t ion  when proving  equ iva lences  be tween  Jal 
expressions.  Lazy evaluation guarantees correctness of a proof. A proof  is 
p e r f o r m e d  th rough  the analysis of  symbol ic  execut ion  of  funct ional  
e x p r e s s i o n s  dur ing which compar i sons  and eva lua t ions  are appl ied 
ahernately.  Before  any evaluation takes place, the expressions are compared 
for  identity. I f  they are not identical, they are lazily evaluated. Then, the 
p r o o f  cont inues recursively while the resultant expressions are compared 
subexpress ion by subexpression. 

If  a disagreement occurs between the evaluations at any stage of  the proof, 
the data  base of equivalences is consulted. If, after using all possible 
equivalences,  the evaluations are still not equivalent then the proof fails, 
otherwise the proof continues until the evaluations fully terminate. 

J-Machine 1.3 (MAY 86) - type "help;" for help 
i> /* 
i> A simple inductive equivalence 
i >  */ 
I> DEF A{n} = A{n-l}; 
2> DEF A{I} = B; 
3> 
3> TRACE PROVE ON{i} A{i} = B; 

Induction basis: 
LHS: Start sub-reduction of ( A ) 
( A ) definition => ( B ) 
RHS: Start sub-reduction of ( B ) 

Proof completed. 
Induction hypothesis: 

LH$: 
RHS: 

Induction step: 
LHS: 
(A) 
RHS: 

Start sub-reduction of 
Start sub-reduction of 

Start sub-reduction of 
definition => 
Start sub-reduction of 

( A{i} ) 
( B ) 

( A{i+l} ) 
( A{i} ) 
( B ) 

Proof completed using induction hypothesis. 
( A{i} ) is equivalent to ( B ) 

9> ^D 
End of session. 

Fig. 4. Example of an induction proof. 
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An inductive equivalence is proved in two separate stages: the base stage and 
the induct ion stage. In the base stage the index variables of  a p r o o f  are 
assumed to have the value 1 on both sides o f  the equivalence and the p roof  
proceeds as described before. In the induction stage, the induct ion hypothes is  
is assumed as one of  equivalences,  and the index  variable o f  a p roo f  is 
substituted by its successor on both sides of  the equivalence.  Formal  indices 
are changed after  the f irst  reduct ion  to inductive formal  indices w h i c h  
cannot be further used in the execution. 

For  example ,  consider  the induct ion p roo f  in Figure  4. W h e n  J A M  
attempts to reduce A{i+ l} ,  the simplification by def in i t ion is appl ied  once 
and it results in A{i}. However ,  now the index {i} is an induct ive  fo rmal  
index,  the execut ion terminates without going into an infinite loop, and the 
proof  proceeds as described before. 

4.4.2. CODE GENERATION 

The  .qM c o m b i n a t o r y  code represent ing a func t iona l  p r o g r a m  can  be 
executed  on a sequent ia l  reduct ion machine  such as the G M D  m a c h i n e  
(Berkling, 1975) or it  can be further translated to low level code capable o f  
running on other  reduct ion  architectures, e.g. S K I M  (Clarke at. el., 1980) 
or N O R M A  SASL (Turner, 1981). 

For  execution on JAM, a flat" expression is t ranslated into a directed graph 
composed  of  two types o f  nodes. The  first type o f  node is called f unc t ion  
node and it represents a primit ive or defined Jag funct ion,  see Figure  5. The  
second type of  node is a subexp node for representing Jagsubexpress ions .  

Function binding 

Input arc 

Input ports " ' l ~ f ' " ' , ~  

Output arc 

Index binding 

Fig. 5. Node representation of a function 

Both types of nodes contain the following two pointer  fields (Figure 5): 
(1) a funct ion or subexpress ion graph binding which  points to the graph 

containing the body  o f  the corresponding funct ion  or subexpression,  
(2) an index binding which points to the global definition table entry  for a 

funct ion or subexpression, where actual indices and other local da ta  are 
kept. 

Arcs correspond to appl icat ion operat ions th rough  which  a rgumen t s  and 
results are passed between functions. Therefore a graph node cor responding  
to a .qaE funct ion has a single arc which delivers an argument  graph pointer  
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or an a r g u m e n t  s t ream, and a single arc for  the resul t  graph poin ter  or  the 
r e su l t  s t ream,  F igure  5. Howeve r ,  there  m a y  be more  than  one  input  or 
o u tpu t  por t  to a node.  Nodes  for func t ions  wi th  parameters  possess  a single 
va lue  input  por t  for  each  parameter  and a multiple value input  por t  for other  
a rgumen t s .  Ports  for a node are ordered f rom "left to r ight".  Argumen t s  are 
g a the r ed  and ass igned to parameter  ports in the order o f  arrival on  the input  
arc. A node  can  start  consuming  other  a rguments  on ly  after  all pa rame te r  
por ts  are  f i l led.  The  order  o f  results  on the output  arc is de te rmined  by  the 
order  o f  the ou tpu t  ports. 

The  ARGS def in i t ion  o f  Jag specifies the number  o f  parameters  (arity) for a 
f u n c t i o n ,  w h i c h  in turn  specif ies  the n u m b e r  of  por ts  to be u s e d  in the 
co r r e spond ing  func t ion  node. For  example,  an indexed  class o f  yagfunc t ions ,  
f{n} ( n = I , 2  .... ), with the fo l lowing  ARGS def in i t ion  

ARGS f{n} = n; 

cor responds  to the node templets  with n-1 parameter  ports plus one a rgument  
port .  Th i s  feature  gives a very fine control  over the running  of  J A M ,  because 
it m a k e s  poss ib le  to condi t ion  the execut ion  o f  func t ion  on ava i lab i l i ty  o f  
all  pa ramete rs ,  cf. Figure  3. Inf ix operators  o f  ya£, wh ich  are s ingle  nodes ,  
have  two  extra parameter  ports for the operands.  If  operands are present  then 
the operator  node  is an ordinary funct ion nodes,  cf. *{2) node in Figure 6. 

( 1 , 1 )  

~v 

Fig .  6. Graph  Represen ta t ion  of  F i b e n a c c i  F u n c t i o n  
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EXAMPLE. We will  illustrate code generation on the fo l lowing single recurs ive  
def ini t ion o f  Fibonacei  numbers:  

DEF Fib_number{n} = Fib{n} : ( 1, 1 ); 

DEF Fib{n} = (T, Fib{n-l}) *{2} ADD{2}; 

DEF Fib{l} = S{1,2}; 

A graph which is produced f rom this definit ion is shown in Figure  6. Al l  
nodes  are marked redex, and with the index n being a positive integer, e.g. 
Fib  { 5}, this is a pure data flow graph. 

4.4.3. EXECUTION 

The execut ion of  a .qa£expression on JAM is a combina t ion  o f  da ta  f low 
and reduction,  cf. (Treleaven, 1984). That is, the f low of  data i tself  does  not  
transfer control  f rom one funct ion node to another, as is the case in s tandard  
data  f low (Some nodes,  e.g. funct ions such as F ib_number [n}  de f ined  in 
sect ion 4.1, migh t  not  have input  or output  arcs). Ins tead an i n d e p e n d e n t  
con t ro l  t r ans fe r  takes  p lace  accord ing  to a g Ioba l  d e f i n i t i o n  table .  
Avai lab i l i ty  of  data  arguments  in a funct ion node is not in i tself  suf f ic ien t  
to initiate execut ion of  this node and the funct ion needs to be marked redex 
in the global  def in i t ion  table entry for this funct ion for the execu t ion  to 
proceed .  Therefore ,  JAM treats a graph as the specif icat ion of  the part ial  
ordering of  reduction sequences. 

Funct ion  nodes or subexpression g r a p h s  marked  in the global  def in i t ion  
table as redexes are executed,  the intermediate results are stored as pointers  
to new nodes or graphs, or as data values or index  values in the g lobal  
def in i t ion  table. The execut ion  of funct ions  and subexpress ions ,  and  the 
change  to cor responding  indices f rom formal  to actual  in func t ions  and 
subexpress ions  is de l ayed  until  the corresponding nodes are r equ i r ed  to 
p roduce  values .  This  t echnique  results in cons iderable  space and t ime 
improvements  over pure data  f low as it permits the immedia te  distr ibution o f  
a rguments  to any  dest inat ion in the graph, and at pract ica l ly  no cost  since 
mos t  reductions o f  ya[ expressions are s imply link manipulat ions.  Consider ,  
fo r  example ,  the "compos i t ion"  operator  "-" wh ich  has been de f ined  in 
section 2. The reduct ion o f  the y ~ e x p r e s s i o n  ( f • g ) : x is as fol lows 

(1) ( f o  g )  : x  ~ ( ( T , f ) * g ) : x  

(2) --~ ( (T , f )  : x' ) ( g  ( x ) )  

(3) 4-4 f ( g (x ) )  

Execu t ion  of  the "*" operator  in the first  step creates  a poin ter  n o d e  x' 
wh ich  points to the value o f  the data argument  x. Then  the reduct ion  o f  the 
T combina tor  in the second step destroys the l ink x'. Therefore  the who le  
reduct ion  (steps 1 to 3) does not  incur any overhead of  coping, t ransmi t t ing  
and possibly re-evaluated o f  x unnecessarily.  

4.4.4. PERFORMANCE 

W e  have  m a d e  a p ro to type  imp lemen ta t ion  o f  JAM in te rp re te r  and 
func t iona l  s imulator  in the C language under  the UNIX 4.2BSD opera t ing  
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system on VAX 11/780 at the Univers i ty  of  Melbourne  (Oibert ,  1984b).  The 
interpreter runs as a single sys tem process  but  uses a f ixed  n u m b e r  of  chi ld  
subprocesses  and pipelines with which  it emulates  paral lel  execut ion .  

The pre l iminary  pe r fo rmance  analysis  of  JAM interpreter  has been  very  
encouraging.  W e  have run a number  of  s imple  benchmarks  to c o m p a r e  the 
t ime taken by  our  interpreter (total e lapsed  t ime under  a l ight sys t em load)  
to execu te  s imple  funct ional  p rograms ,  e.g. F ibonacc i  func t ion ,  with the 
t ime taken to execute  the same programs by  a convent iona l  LISP interpreter  
(Fodera ro  at. el., 1983). W e  cons ide red  only  the execu t i on  t ime,  as the 
translation t ime in our sys tem is negl ig ible  compared  to the t ime taken to 
p e r f o r m  eva lua t i ons .  In all ca ses  ou r  i n t e rp re t e r ,  u s ing  o n l y  fou r  
subprocesses ,  was more  than one order  o f  magni tude  faster  than the LISP 
interpreter. Since our interpreter used ve ry  simple data s t ructures  and used 
the standard system-supplied process  and m e m o r y  managemen t  package  which  
forms a bot t leneck in the interpreter (up to 65% of  the p rocess ing  t ime was 
spent on process  and memory  management) ,  it compares  even  more  favorab ly  
with the LISP interpreter which  uti l izes sophis t ica ted  m e m o r y  m a n a g e m e n t  
facilities. However ,  it remains to be seen what  pe r fo rmance  can be  achieved 
for larger programs as we would  need to implement  a comple te  compi l e r  for 
tlae figures to be  meaningful.  

Conclusions 

In this paper  we aimed to cons t ruc t  an opt imal  a lgebra ic  sys t em,  which  
would  have the power  t o  accommoda te  any funct ional  p rog ramming  language 
inspired by the lambda  calculus  approach  to the t rea tment  o f  c o m p u t a b l e  
funct ions,  and which  could be  used  as a basis  for  an e f f i c i en t  mach ine  
architecture to implement  symbol ic  computa t ion .  

JAM(achine) is designed in accordance  with the a lgebraic  cons t ruc t ion  of  
our combinatory  system, the Jar algebra. This avoids an addit ional  meta leve l  
needed  for  p rov ing  proper t ies  o f  p r o g r a m s  and a l lows  J A M  to assis t  a 
p rog rammer  in carrying ou t  p roofs  and p r o g r a m  t r a n s f o r m a t i o n s .  The  
combinators  provide  for machine  instructions of  a poss ib l e  archi tec ture  but, 
at the same time, they are easi ly access ib le  to p rogrammers .  

One issue that has not  been  covered  in the paper  is that o f  f iner-grain  
parallel ism. The combina to r  code  of  a Jar  e x p r e s s i o n  a l r eady  p o s s e s s e s  
proper t ies  which  make  it poss ib l e  to use  ve ry  f ine -gra ined  pa ra l l e l i sm in 
execut ion of  functional  programs,  i.e. dis t r ibut ivi ty and f r e e d o m  f rom bound  
var iables ,  but  there  are at leas t  three ways  to fur ther  e n h a n c e  inheren t  
concur rency  o f  the combina to ry  code.  Firs t ly ,  it is pos s ib l e  to r e d u c e  all 
argument  subexpress ions  in parallel ,  w h i c h  could  be  cons ide red  as separate  
processes ,  after the analysis o f  argument  dependenc ies  b e t w e e n  combina to r s  
in the code.  For  example ,  ari thmetic (strict) operat ions  a l ready  d e m a n d  the 
eva lua t ion  of  their  a rguments  in paral le l .  S e c o n d l y ,  our  g raph ,  w h i c h  
represents  the structure of  a p rogram,  can be  eas i ly  sp read  across  m a n y  
parallel  processors  similarly to data f low approach.  Last ly ,  exp l ic i t  parallel  
control  operators  such as fork  could be in t roduced to the Ja[ language.  It is 
an interesting quest ion as to which  of  these methods  w o u l d  bes t  lead to the 
highest  degree  o f  concur rency  in func t iona l / symbo l i c  c o m p u t a t i o n .  S o m e  
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w o r k  in this d i r e c t i o n  has  a l r eady  been  s tar ted ( H u d a k  & Go ldbe rg ,  1985; 
H a l s t e a d ,  1985 ;  B u r t o n ,  1984;  M a u r e r  & O l d e h o e f t ,  1983;  M a u r e r  & 
O b e r h a u s e r ,  1985)  and  p a r a l l e l  m a c h i n e s  have  b een  bui l t  (Mag o ,  1982; 
K l u g e ,  1983;  B u c h b e r g e r ,  1984) ,  bu t  so far  the re  is no  para l le l  r educ t ion  
m a c h i n e  tha t  uses  c o m b i n a t o r s  to i m p l e m e n t  s y m b o l i c  computa t ions .  

W o r k  is c u r r e n t l y  in p r o g r e s s  a imed  at  e m u l a t i n g  a f i ne -g ra ined  paral le l  
JAM on a da t a  f l o w  c o m p u t e r .  F u r t h e r m o r e ,  r e c e n t  d e v e l o p m e n t s  in the 
h a r d w a r e  o f  da t a  f l o w  and para l le l  r edu c t i o n  mach ines  are mak ing  a pract ica l  
h a r d w a r e  i m p l e m e n t a t i o n  o f  a c o m b i n a t o r  b a s e d  s y m b o l i c  c o m p u t a t i o n  
s y s t e m  such  as ou r s  f eas ib l e  and ve ry  appeal ing.  
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