
J. Symbolic Computation (1987) 4, 269-293

Functional Programming with Combinators

JACEK GIBERT

Department of Computer Science, University of Melbourne, Par~ille, Victoria,
3052, Australia

(Received 22 October 1984; Revised 1 December 1986)

Combinators are shown to provide a very suitable basis for implementations of
functional and symbolic computation in computer architecture. A powerful
combinator reduction system is developed which meets programmers and mac~ne
requirements for (i) efficiency of representation and execution of symbolic
algorithms, and (ii) availability of algebraic manipulation needed to analyse
symbolic computations. An algebraic model is constructed to provide rigorous
semantics for the system. The reduction language of the system aims at exposing
efficient flows of data and fine-grain parallelism, and a computer architecture,
which is proposed to run the system, utilizes both sequential and parallel
processing modes in order to achieve maximum efficiency of symbolic
computation. Finally, an implementation of the interpreter and functional
simulator for the architecture is described.

1. Introduction

As a resul t o f deve lopmen t s in the design o f non von Neumann style of
p rogramming , in part icular Backus ' Functional Programming (FP), and also
in the ref inement o f novel hardware concepts such as control flow, data flow
or reduc t ion machines , p rogramming languages for symbolic computatiomre
no longer v iewed on ly as part of the theoretical foundations of programming
or as spec i f i ca t ion l anguages , bu t are also seen as pract ical tools for
programmers .

H o w e v e r at p r e s e n t it still r emains the case that mos t prac t ica l
p rog ramming languages used for symbol ic computat ion are only incomplete
vers ions o f var ious logics deve loped to deal with symbolic objects, e.g.
L ISP vs. l ambda calculus (Eick & Feb_r, 1983) or FP vs. combinatory theory
(Backus , 1978). Var ious reasons for this situation will be discussed in the
fo l lowing paragraphs.

The wel l d e v e l o p e d mathemat ica l theory of l ambda calculus provides
p o w e r f u l tools for symbol ic execut ion o f programs (McCarthy, 1960). All
l ambda-def ined functions are all computable functions and the simple axiom
schemes ¢x and [3 g ive a not ion of symbol ic computa t ion via reduction.
Howeve r , the ~ and 13 reduct ions are inefficient when performed directly by a
machine , because subst i tut ions in the presence of bound variables used in
these reduct ions are veryexpensive, and an efficient execution of a program
is ga ined at the pr ice o f incons is tencies in semantics of a programming
language (Eick & Fehr, 1983). The problem of eff iciency can be avoided by

0747-7171/87/060269+25 $03.00/0 © 1987 Academic Press Limited

270 J. Gibert

using combina to r s as a basis for a p rogramming language whi l e preserving
the comple te semantics of combinatory theory.

The recen t deve lopment in combina tory theory (Engeler , 1977; (Engeler,
1981; Enge le r 1984; Obtulowicz & Wiweger , 1981; see also M e y e r , 1982)
reveals h o w to use it as a theory o f equat ions for a class o f o rd inary
algebraic structures. In this approach algori thmic p rob lems such as "find x
such tha t F(x)" are reduced to combina to r i a l equa t i ons o f the form:
tl(X) - - t 2 (x) , where t 1 and t2 are terms over an a lgebraic s t ruc tu re . To
solve the p rob lem F s imply means to f ind an e l emen t a of t h e structure
which sa t i s f ies the equat ion, i.e. t l (a) = t2 (a) . A number o f ways for
solving such combinator ial equations are well known, one of w h i c h is the
l ambda abs t rac t ion . S imi la r ly , to solve the p r o b l e m F b y s y m b o l i c
man ipu la t ion would mean firstly, describe a as a d o s e d term (a program),
i.e. term with no free variables, secondly simplify it according to axioms of
the algebraic structure.

A c o m b i n a t o r based funct ional language such as Backus ' F P supports
"structured programming" (Backus, 1978). It offers compactness o f notation,
as s ingle combina tors express h igh ly complex opera t ions o n s t ruc tured
objects . T h e p rograms au toma t i ca l l y possess a l g e b r a i c p r o p e r t i e s o f
combinators which allow a programmer to reason about the p r o g r a m s at the
funct ion level rather then at the object level (Backus , 1981) a n d provide
simple tools for program transformation and verif ication.

Fur thermore , the combinatory approach appears to build a b r i dge between
p r o g r a m m e r s and machine requi rements for a l anguage and a mach ine
archi tec ture for symbol ic computa t ion . Mach ines to mode l c o m b i n a t o r y
systems have uncompl ica ted structures and they run ve ry e f f i c i e n t l y as
compared to l ambda calculus machines , (Turner , 1979b; H u g h e s , 1982;
Pey ton - Jones , 1982; Jones & Muchn ick , 1982; S toye e t a l . , 1984). The
absence o f env i ronmen t makes a combina to ry code ve ry a t t r a c t i v e for
i m p l e m e n t a t i o n in data driven or data f low arch i tec tures , (S l e e p 1980;
Maurer & Oldehoeft , 1983; also A m a m i y a & Hasegawa, 1984).

However the choice o f combinators seems to be a di f f icul t one . In his FP
Backus (1978) uses very high level combinators (e.g. f u n c t i o n a l s such as
apply-to-all , insert, and construction) and he restricts them to p l a y only the
role o f p rogram forming operators (PFO's). PFO's a l low h im to cons t ruc t a
simple tool for verification of FP programs: the FP Algebra o f Programs.
But in this way FP suffers in express ive power as genera l h i g h e r order
funct ions , or new PFO's cannot be defined. Moreove r , al l f u n c t i o n s and
funct ionals o f FP, except condit ional , are assumed to be strict ("unde f ined -
p re se rv ing") in order to give a s imple f ixed po in t s e m a n t i c s for the
l anguage . H o w e v e r m a n y func t iona l compu ta t i ons are e x p r e s s e d more
na tura l ly by non-str ict funct ions (Fr iedman & Wise , 1976), t h e s imples t
example o f which is the condit ional (if-then-else statement). The F P algebra
can be used to deal with recursive programs conta ining cond i t i ona l s only i f
they are o f a certain type: linear (Backus, 1978) and non l inea r "overrun-
tolerant" (Wil l iams, 1982).

The l imi t a t ions of FP can be remedied by e m b e d d i n g FP in to some
comple t e a lgebra ic combina to ry s tructure such as Bohm ' s c o m b i n a t o r y

Functional Programming with Combinators 271

monoid (Bohm, 1982) or a combinatory algebra (Gibert, 1983a) which uses
the standard combinators of Combinatory Logic. Such combina to ry
structures preserve the algebraic nature of the functional language and
provide a complete semantics for it. At the same time the standard
combinators can be viewed as simple operators which "do nothing more than
move data around", and therefore they provide for simple operat ional
semantics and a possible machine architecture.

The standard combinators such as I, S, K,]3, C and ¥ have been used for
implement ing funct ional programs by Turner (Turner, 1979b). These
combinators are attractive because of the simplicity of the abstract ion
algorithm, i.e. the transformation process from conventional funct ional
expressions into "free-from-bound-variables" combinatory code. Turner has
shown that the resulting code for a functional program generated using these
combinators is excessively long, far removed from a source program and too
ineff icient for practical applications. Although he later improved the
performance of the abstraction algorithm by using new combinators S',B', C'
(Turner, 1979a), the big gap between a combinatory code and a source
program still remained, making the understanding of a computation process
and debugging practically impossible because intermediate values during the
computation could not be tracked down.

A solution may lie in providing a collection of combinators that closely
correspond to a funct ional notation, so some in termedia te "state" of
evaluation would be easier to interpret. This approach has been taken by
Hughes (1982) with his "super-combinators", which are dynamically defined
generalized combinators (i.e. combinators defined during the elimination of
bound variables from lambda expressions). Unfortunately, the loss of a fixed
set of primitive combinators in Hughes' approach results in the costs of
interpreting virtual instructions.

We have further developed Hughes' approach o f using an unbounded
number of combinators and put combinators into classes via combinatory
schemata to obtain a limited base set of machine instructions. In (Gibert &
Shepherd, 1983) the classes have been derived directly for Backus' FP from
the equational specification of the language which has provided the basis for
design of an elegant, algebraically structured FP compiler. In (Gibert, 1983)
and (Gibert, 1984a) the classes of eombinators have been generalized in order
to serve as a basis for an eff ic ient implementa t ion of func t iona l
programming. An abstraction algorithm have been modified in such a way
that it maps a potential for parallelism in functional programs into the
combinatory code by abstracting more than one variable at a time (Abdali,
1976; Maurer & O1dehoeft, 1983; Gibert, 1983; Gibert, 1984a).

This paper demonstrates a new model for symbolic computation, based
upon combinatory theory, which: (i) has an elementary algebraic construction
that provides a natural environment for mechanical verification and analysis
of programs, (ii) allows one to express programs in complete and compact
forms which exhibits their control structures more clearly, the re fo re
permitting algebraic manipulations and efficient parallel processing.

In particular, it is shown that a partial algebra of functions Jar, def ined
here to be our model, is a consistent extension of the combinatory algebra,
and that it gives simple semantics for practical programming languages such

272 J. Gibert

as Backus ' FP. It is argued that our language, Ja£, d e v e l o p e d a long wi th the
Jaf algebra can be seen as a power fu l combina to ry reduct ion language which
is intui t ively access ib le to p rogrammers and can be i m p l e m e n t e d ef f ic ient ly
in a machine architecture, JAMachine (Gibert , 1984b). The e f f i c iency o f the
i m p l e m e n t a t i o n is ga ined f rom such p rope r t i e s o f Jal e x p r e s s i o n s as
dis t r ibut ivi ty and f reedom f rom bound var iables . These p roper t i e s s imply
mean that s u b e x p r e s s i o n s o f a Jal e x p r e s s i o n c o n t a i n all n e c e s s a r y
in format ion to be eva lua ted sepa ra t e ly in a para l le l manner . The short
descr ipt ion of the Jal language is i l lustrated by some example s of s y m b o l
manipulat ing programs.

The second sect ion reviews the defini t ion and bas ic proper t ies of the Jar
a lgebra of func t ions , o f w h i c h a p r e l i m i na ry ve r s ion was p r e s e n t e d in
(Gibert, 1983).

The third sect ion discusses programs def ined by combina to r i a l equat ions
b e t w e e n terms o f Jaf, and shows that un ique par t ia l so lu t ions o f the
equat ions can be found mechanica l ly by algebraic manipula t ions . W e prove
that the Yaf algebra is essential ly the extens ional combina to ry algebra.

The four th sec t ion presents the imp lemen ta t i on o f the Ja£ l anguage on
JAM(achine) and demonstra tes the conven ience of using it in deve lop ing a
pract ical funct ional p rogramming language by mode l l ing Backus ' FP in Jal
in a very natural way. Finally an interpreter and funct ional s imulator o f JAM
is described. JAM is designed to execute funct ional p rograms in a data f low
fashion but it can retain sequent ia l eva lua t ion for p rograms , or parts o f
them, which are inherently sequential.

2. yafAlgebra of Functions

In this sect ion we outl ine an approach to the interpretat ion o f funct ional
p r o g r a m s in c o m b i n a t o r y a lgeb ras . W e g ive an e x p l i c i t a l g e b r a i c
const ruct ion of a model for funct ional p r o g r a m m i n g in cartesian closed
universes. A ca tegory- theore t ic character iza t ion o f such m o d e l s was g iven
by Longo & Moggi (1984) and later b y Curien (1986).

W e start with a construct ion of a part ial a lgebra o f func t ions Jar over a
cartesian closed universe Ccu(Fun, Tup), where Tup is a set o f arbitrari ly long
and nested tuples o f Ccu, and Fun is a set o f funct ions of Ccu o f arbi trary
arity. W e call tuples of length one that are no t nes ted atomic. W e regard
some atomic tuples o f Tup as denot ing funct ions o f Ccu and cer ta in non-
a tomic tuples as denoting parameter izefhnct ions . W e call a set o f all such
tuples ®. Therefore let us define a pair o f functions:

~ : ® - - - ~ and 9 : ~ --~®

where ~ c Fun, ® c Tup such that

and

g((f, al an)) = f a 1 an

where f a 1 , an is a funct ion with parameters a 1 , an.

Functional Programming with Combinators 273

T h e r e are two c lasses o f p r imi t i ve func t ions in Fun:
"subs t i tu t ion" func t ions de f ined as fo l lows:

[S{i,n}:An---~ A ; A c TuP}i,n,i< n

is the class o f p ro jec t ion funct ions , where

(PRO]) S{i,n}(a 1 a i an) = a i.

"p ro j ec t ion" and

{ *{nil, g: An--> A; A c 'Tup }n

is the class o f subs t i tu t ion funct ions , where

(SUBS) *{n)f,g (a 1 a n) = f a 1 an((g, a 1 an)).

NOTATION. (i) B e c a u s e o f the complex i ty o f nota t ion, we will of ten avoid the

exp l i c i t use o f func t ions gt and P by adopt ing the conven t ion that i talic font
w i l l i nd i ca t e func t i ons o f Fun, i.e. f wil l denote g (f).
(ii) L e t S{i,n} deno te p(S{i,n}), (f *{n} g) denote p(*{n}f,g).

(iii) L e t T , F e @ s tand fo r S{1,2}, S[2,2} respec t ive ly , and I e @ stands
fo r S{1,1}. T and F are o f ten used in def ini t ions by cases since

~(T)(al, az) = s{ x,2} (el, a2) = al,

and s imi la r ly
~ ® (a l , a2) = a2,

T h e e l e m e n t T c a n also be used to def ine cons tan t funct ions T a, i.e.

Ta(b) = Ix((T, a))(b) = g(T)(a, b) = a.

T h e e l e m e n t id represents the ident i ty func t ion but only on atoms of q:
T h e equa l i t y in Tup is the ident i ty re la t ion and the equal i ty be tween the

e l e me n t s o f F is de t e rmined by the fo l lowing "extensional i ty" rule: f i g ~ Fun

(EXT) (V t e Tup, f(t) = g (t)) ~ f = g.

D E ~ O N . L e t • c Fu n and ® c Tup be f ixed and funct ions kt, p be given.
T h e above def in i t ions g ive rise to a (partial) extensional algebra of functions

Jaf-~ < Ccu(Fun, Tup), :, *{i}, S{id}, I, T, F >

w h e r e ":" is a b ina ry opera t ion of applicat ion, if (PROJ), (SUBS), (EXT) and the

f o l l o w i n g c o n d i t i o n holds for all t e Tup, (a 1 a i a n) e A n, n > 1, A c Tup:

l f t e @ then

f ~t(t)(a 1 a i an)

(APPt)

else

(aPra)

t : (a 1 a i a n) = ~ ~ (t) (a 1 a i) : (ai+ 1 an)

[~t(t)al a i a n

t : (a 1 a~ an) = (t, a 1 % ..., an).

if~(t) e [An--->Tup]

if ~(t) E [A i---) Tup]

otherwise

274 J. Gibert

NOTATION. (i) The application opera t ion ":" is a s sumed to be lef t -associa t ive ,
i .e.

t : a 1 : a 2 : ... : a n = (. . . ((t : a l) : a2) ... : a n) .

(ii) W e omit the index express ion (1} after functions, e.g. * stands for *{1 }.

REMARK. Let P = (I * I). Ja l is only a part ial a lgebra since, fo r example ,
(P : P) is inde te rmina te :

P : P = ~(l:,)(P) = *I,I (P) = s{1,1}ff ') : (I : P) = P : (I : P)

=*I,I (I :P) =s[1 ,1}(I :P): (I : (I :P))
= s{1 ,1}(P) : (I : (I : P)) = P : (I : (I : P)) = . . .

The above definit ion of the Jal algebra was chosen as the s imples t and most
eff icient one for an implementat ion in compute r architecture (refer to sect ion
4.4). A user, however , may wish to ex tend J a f b y adding new func t ions and
es tab l i sh ing a lgebra ic ident i t ies w h i c h can help de r iv ing and p r o v i n g
proper t ies of symbo l i c p rograms . Cons ide r , for e x a m p l e , the f o l l o w i n g
definitions of two functions, which we wil l find very usefu l in the fo l lowing
sect ions.

DEFINITION. Let T{n} denote S{1,n+l }. Then a "composi t ion" opera tor e{n} can
be defined as

f°{n} g = (T{n}, f) *{n} g.

Some of the a lgebraic proper t ies of the class of compos i t i on opera to rs can
be expressed, for example, by the fo l lowing equiva lences in J.

PROPOSITION. For all f, g, h e ® a n d (a 1 an) e A n,

(1) (f • g) : (a 1 an) = f ((g, a 1 an)) where f = ~t(f),

(2) (T, f) .{n} g = (T{n}, f) and (F, f) .{n} g = g,

(3) (f *{n} g) . h = f.{n} (g ° h),

(4) l f m > n then

(f*{m} g) *{n} h = (f o{n} h) *{m} (g .{n} h)
and also

(f .{m} g) *{n} h = f °{rn} (g *{n} h).

PROOF. The proofs are straightforward verif icat ion and are omit ted.

3 . C o m b i n a t o r i a l E q u a t i o n s i n Jar

At the end o f the previous section we have demons t ra ted how we can use
the J a r algebra to directly define new funct ions f rom the pr imi t ive ones. In
the fo l lowing we discuss an al ternative funct ion cons t ruc t ion mechan i sm in

Functional Programming with Combinators 275

J a i l r e c u r s i o n . R e c u r s i o n c a n b e u s e d to wr i te f u n c t i o n a l p r o g r a m s in the
f o r m o f r e c u r s i v e de f in i t ions . W e show tha t (par t ia l) canon ica l solut ions to a
f in i t e se t o f c o m b i n a t o r i a l equa t ions are d e t e r m i n e d un ique ly in Jafand can
be f o u n d in a u n i f o r m w a y b y s i m p l e abs t r ac t i on a lgo r i t hms based on the
f o l l o w i n g c o m p l e t e n e s s and f ixed p o i n t resul ts .

DEFINITION. G (v I Vm), d e n o t i n g a term o v e r Jar in v a r i a b l e s f r o m a

f i x e d set o f v a r i a b l e s {Vl Vm}, is de f i ned by induc t ion as fo l lows:

(i) v 1 v m and e l e m e n t s o f Tu.p are all t e rms ,

(i i) i f G 1, G 2 are t e r m s then G 1 : G 2 and G 1 *{i} G 2 are also terms.

DEFINITION. L e t A c T~p. A n a p p l i c a t i v e f u n c t i o n 7: An ~ A is c a l l ed
representable over Jaf i f

3 g e ® , V (at, ... , an) e A n, g : (a 1 an)=~((a 1 ,an)) .

DEFINITION. L e t A c Tup. A n a p p l i c a t i v e f u n c t i o n 7: A n --~ A is ca l l ed
a l g e b r a i c in J a f i f there is a t e rm G o v e r Ja f in var iab les f rom a f ixed set o f

v a r i a b l e s {v 1 v n} such that for a l l (a I , a n) e A n,

7(al an) = G(Vl/a 1 Vn/an),

w h e r e v/a d e n o t e s the s i m u l t a n e o u s r e p l a c e m e n t o f all o c c u r r e n c e s of the
v a r i a b l e v b y the e l e m e n t a.

I f we p o s t u l a t e that all app l i ca t ive a lgeb ra i c func t ions are r ep resen tab le in
a s y s t e m then the s y s t e m is ca l led c o m b i n a t o r y c o m p l e t e (a not ion at t r ibuted
to C u r r y (1930)) .

T H E O R E M (C o m b i n a t o r y C o m p l e t e n e s s) . The Jar algebra is combinatory
complete, i.e. i f G (v 1 Vn) is a term over J a f i n variables from a
f i xed set of variables {v 1 v n} then there exists an (extensionally

unique) element f in ® such that for all (a 1 art) ~ A n,

G(vl/a 1 Vn/an) -- f : (a 1 an).

PROOF. B y i n d u c t i o n o n the s t ruc ture o f a term.

(i) I f G con t a i n s no f r ee va r i ab les then f -- (T{n} , G), because

f : (v 1 Vn) -- ~(T{n})(G, v 1 Vn) = S{1,n+I}(G, v 1 vn) = O.

(i i) I f G is a va r i ab l e , i.e. G(v 1 v i vn) = v i then f = S{i,n] because

f : (v 1 Vn) = Ix(S {i,n})(v 1 v n) = S{i,n} (v 1 v n) = v i.

(i i i) I f O(v 1 v n) = Gl(Vl v n) : O2(v 1 v n) then b y induct ion step

Gl(Vl Vn) = fl : (Vl Vn)

02(v l Vn) = f2: (vl vn).

H e n c e f = f l *{n} f2, b e c a u s e

276 J. Gibert

f : (Vl Vn) = (fl : (Vl Vn)) : (f2: (Vl Vn))

= G l (v l vn) : O 2 (v l v n)

= C (v l

(iv) I f G(v 1 vn) = Gl(V 1 Vn) *{m} G2(v 1 Vn) then by induct ion stop,
in a similar way to above, we have f - f l *{m+n} f2.

The uniqueness of f follows directly f rom the (EXT) rule.

COROLLARY. Jar is an extensional combinatory algebra (cf. Barendregt , 1981;
Meyer, 1982).

A combina tory algebra can be constructed expl ic i t ly in Jar because it is
suff icient to isolate two dif ferent e lements K and S of Jar such that for all

a, b, c ~ A, (K : a) : b = a and ((S : a) : b) : c = (a : c) : (b : c). The
existence of elements K and S in an algebraic structure guarantees solutions
to a finite set of combinatorial equations (Barendregt, 1981), but the process
o f f inding these solutions in terms of S and K is u n a c c e p t a b l e f rom a
computat ional point of view, because it leads to a combina to r ia l growth in
the size of result ing variable free expressions (Turner, 1979a; also Burton,
1983). The above proof of the completeness theorem demonstra tes a practical
algorithm which performs abstraction on combina tory terms with respect to
all specified variables in a single step. This is possible because o f the given
defini t ion of the Jar algebra. The a lgor i thm also retains i n fo rma t ion f rom
funct ional terms within combina to ry express ions that enables a paral le l
reduct ion of the expressions. Our a lgor i thm is similar but more direct then
the one presented by Abdali (1976), and it yields compac t and a lgebraical ly
structured combinatory expressions.

A special case of a combinatorial equat ion is recursive defini t ion. One can
find the representat ion of a recurs ively def ined funct ion in Jar using f ixed
point functionals (Barendregt, 1981).

DEFINITION. A recursive definition over Jar is a finite sys tem of equat ions of
the form:

v i = G i ,

where G i is a term in n variables from the set of variables Iv 1 v i Vn}.

DEFINITION. A f i xed point func t iona l is a func t iona l 9" such that for any
function g

Y (g) = g (Y (g)),

i.e. y (g) is a fixed point of g.

TrmORFM (Fixed Point). L e t Z = S{2,2} *{21 ((S{1,2} *{2} 8{1,2})*{2} S{2,2}).

Then the e lement Y = (Z, Z) o f @ represents a f i x e d po in t f unc t iona l
Y ~ Fun.

Functional Programming with Combinators 277

PROOF. F o r any f ~ O

Y : f = g(Z) Z (f) = S{2,2} z : (f) ((,5{ 1,2} Z (f) : (S{ 1,2} Z (f))) : (S{2,2} Z (f)))
= f : ((z , z) : r) = r : (Y : f).

PROPOSITION (D o u b l e F i x e d Po in t , B a r e n d r e g t (1981)) . Consider the following
system o f equations in Yaf.

v 1 = G l (v 1, v2)

v 2 = G2(v 1, v2).

We show that there exists f l , f2 e ® such that

fl = ol (vl / f l , v2&)

f2 = G2(Vl/fl, v2/f2),
i.e.

fl = gl : (fl, f2)

f2 = g2 : (fl, f2)"

PROOF. D e f i n e X(fl) = 9"(g2 : fl) = (Y "g2) : fl so t h a t f 2 = X (f 1). T h u s

fl = gl : (fl, X(fl)) = (gl * (Y ' g2)) : fl = Y(gl * (Y "g2))
and

f2 = X (f l) = (Y " g2) : Y (g l * (Y " g 2)) .

N o w let us v e r i f y the a b o v e c h o i c e o f fl and f2

fl = Y(gl * (Y * g2)) = (gl * (Y "g2)) : Y(gl * (Y * g2)) = (gl * (Y * g2)) : fl

= gl (f l) ((Y "g2) (f l)) = gl : (fl, X(fl)) = gl : (fl, f2)

f2 = (Y ° g2) : Y(gl * (Y ° g2)) = (Y ° g2) : fl = 9"((g2, fl)) = g2 : (fl, 9,((g2, fl))

= g2 : (f l , f2)'

THEOREM (M u l t i p l e F i x e d Po in t) . There exists f l , f2 ,fn ~ e such that

fl = gl : (fl , f2 fn)

h = g2 : (f l , f2 fn)

fn --- gn : (fl, f2 fn),

where gi e ® corresponds to a term Gi(v 1 v i Vn) over flaf.

PROOF. L e t us d e f i n e

X(fl, f2 fn-1) = Y(gn: (fl, f2 fn)) = (Y *{n-l} gn) : (fl, f2 fn-1)

Z (f l , f2 fn-2) = Y((gn *{n-l} (Y ,[n-l} gn)) : (fl, f2 fn-2))

= (Y *{n-2} (gn-1 *{n-l] (Y .{n-l} gn)) : (fl, f2 fn-2)

X(fl) = Y((g2 *{2} (Y .{3) (... (Y .{n-2} (gn-1 *{n-l} (Y .{n-l} gn)))"'))) : fl)

= (Y " (g2 *{21 (Y .{3} (,.. (Y *{n-2} (gn-1 *{n-l} (Y *In-l} gn)))'"))) : fl

278 J. Gibert

so that

fn_l =

f2---

fl =

gn : (fl, f2 fn-l, fn) = X(fl, f2 fn-1)

gn-1 : (fl, f2 fn-1, X(fl, f2 fn-1))

(gn-1 *{n-i} (Y .{n-i] gn)) : (fl, f2 fn-2, fn-1)

x (f l , f2 f -2)

X(f 1)

Y(g l * (V " (.'. (Y .{n-2} (gn-1 *{n-l} (Y *{n-l} gn)))"')))'

The proofs of the above theorem demonstrate a simple mechan ica l me thod for
f inding un i fo rm represen ta t ions (f ixed points) o f func t ions de f i ned by
mutua l ly recurs ive def ini t ions. This m e t h o d is pa r t i cu la r ly sui table for
i m p l e m e n t a t i o n s o f symbo l i c c o m p u t a t i o n because e x p r e s s i o n s w h i c h
represent the f ixed points are obtained by symbol i c manipu la t ions wi thout
using any auxi l ia ry func t ions such as tup l ing (B a r e n d r e g t , 1981) or
e n v i r o n m e n t (Wil l iams, 1981). T h e y can be c o m p u t e d wh i l e r ecu r s ive
definit ions are part ial ly supplied, and the full representa t ions are obta ined
when the last mutual ly recurs ive def ini t ion is given. There fo re , any o f the
mutual ly recursive functions can be used and evaluated independen t ly o f the
others from its full f ixed point representat ion in Jar.

COROLLARY. Recursive definitions over Ja fhave (extensionally unique)
solutions (fixed points) in Jaf which can be found uniformly.

The canonical f ixed points cor respond to least f ixed points o f a structure
ordered by approximat ions (c.p.o.) (Barendregt , 1981). The re fo re , s imple
computa t ional induct ion and a lgebraic manipu la t ions can be c o m b i n e d to
infer properties o f recursively def ined functions.

Now, let us enr ich Tup by n u m e r a l s w i t h o u t w o r r y i n g a b o u t the
representa t ion o f a numera l sys tem in Jar. The ex i s t ence o f a num era l
system in Yafis guaranteed by combina tory comple teness (Barendregt , 1981)
and it can be cons t ructed in a n u m b e r of d i f f e ren t w a y s (Bunder , 1981;
van der Poel et al., 1980). We simply a d d new e lements ca l l ed numerals ,
Numc Tup, and arithmetic functions, e lements of Fun.

DEFINITION. Let numerals, Nurn~ Tup, be r e p r e s e n t e d by d i s t inc t new
elements n ~ Tup for n = 0,-1,1,-2,2 Let ADD{i} (add i t ion funct ions) ,
SUB{i) (subtract ion funct ions) , EQU (the equa l i ty test func t ion) be new

elements of Fun defined for all (n 1 , ni) ~ 9 ~ m i, i > 1, as fo l lows:

(NUM1) ADD{i](n 1 ni) = nl+ ...+ n i

(NUM2) SUB{i}(n 1 hi) = n 1- ...- n i

(NUM3) EQU(nl, n2) = T if nl= n2, o therwise F

We can now define, using recurs ive def ini t ions , and represen t , using the
fixed point operator ~ all computable funct ions in Jar (Kleene, 1936).

Functional Programming with Combinators 279

4. Implementation of JAM

This s ec t i on descr ibes an interpreter and func t iona l s imulator of a
combinator machine cal led JAMachine. JAM is based on Jar algebra defined
in sect ion 2 and it is an algebraically structured architecture (Thatcher et
al., 1981). It supports both serial and parallel processing for functional
programs that manipula te symbolic streams. A funct ional program is first
t ranslated into a combinator code using our abstraction algorithms, section
3. Combinator code is further translated into a directed graph for execution
on JAM. The execution of a graph takes place by communicat ing streams of
graph pointers , which represent argument and result subexpressions, along
graph arcs representing data dependencies between the combinators within the
combina to r code. The m e m o r y organizat ion of JAM supports sharing of
subgraphs through graph pointers, which in turn avoids re-evaluation of
separate copies of common arguments. JAM executes functional programs in
a data f low fashion but it applies sequential graph reduction for graphs, or
subgraphs, which are inherent ly sequential. This makes JAM a useful cross
between a data f low machine and graph reduction machine (Treleaven, 1984)
for the purpose of eff icient symbolic computation.

4.1. PROGRAMMING ON JAM

JAM is p r o g r a m m e d using a reduct ion language called Yaf, which is
founded on funct ional expressions that are formed using recursive definitions
or recurrence relat ions (viewed as simple iterations) over the domain of
arbitrarily long tuples (viewed as streams).

The e x p r e s s i o n s are in te rpre ted in the car tes ian c losed universe
Ccu(T~p, Fun). The elements of T~p are called functional objects, or simply
objects, and the e lements of Y~n are functions which manipulate objects.
Constant objects such as numerals and quoted character strings ("abc"), and
simple names, which are non-empty strings of symbols, are distinguished
f rom the other objects and they are called atomic objects. Simple names
that start with alphabetic characters may represent functions or objects and
s imple names that start with non-alphabet ic characters are reserved for
r e p r e s e n t i n g o p e r a t o r s . A s i m p l e n a m e m a y r e p r e s e n t a
functions~objects~operators (1) directly, e.g. the name s represents the s
funct ions, (2) through a definition, e.g. DEF True = T, or (3) by combining
both previous methods, e.g. (S{1,2}, true).

A n a m e t h a t r e p r e s e n t s a function~object~operator is ca l led
function~object~operator name, or jus t name for short. A name can be
associated with any valid Ya(expression by the definition of the form:

DEF Func_name_expression = expression;

where Func_name_expression is a JaC expression which starts with the name
of a funct ion or an object, and than may be fol lowed by variables. All .qaf
operators are infix operators, i.e. (a & b), which are defined and named in
the fol lowing general way:

OPR Opt _name_expression = expression;

280 J. Gibert

where Opr name expression is a Jal expression involv ing the name of an
operator and possibly variables.

A def in i t ion in Jal can be s i m p l e , f u n c t i o n a l or indexed. A simple
definit ion associates a Jalexpression directly to a name. If variables are used
to def ine a funct ion, object or opera tor then the de f in i t ion is cal led a
funct ional definition. For example, the fo l lowing def ini t ion

DEF (Const, x) : y = x;

specifies that Const represents a func t iona l o f ari ty one w h i c h takes its
first argument, x, to produce a constant function. An indexed def in i t ion m a y
take the form of either simple or funct ional definit ion. The d i f fe rence f rom
the o ther two types of def in i t ions is that an i ndexed de f in i t i on is an
induct ive def ini t ion which def ines an indexed class ra ther then a single
function, operator or object.

A class is indexed by index expressions in variables ranging over natural
numbers. An index expression can only be a simple ar i thmet ic express ion
over natural numbers . A simple a r i thmet ic express ion is an add i t ion or
subtract ion of a constant to / f rom a i ndexed var iable (e,g. i+1 or j-5).
However , there are the fol lowing restr ict ions: (1) the same index var iable
name cannot occur more then once on the left hand side o f the indexed
def in i t ion , (2) s imple ar i thmet ic express ions i n v o l v i n g i n d e x var iables
cannot occur on the left hand side of the def ini t ion. A name i m m e d i a t e l y
fo l lowed by an index express ions , wh ich are separa ted by c o m m a s and
enclosed in a pair of braces is called index name (e.g. Ind_nameCi+ld-5}) .

An indexed def in i t ion is usual ly combined wi th a s imple de f in i t i on to
specify the initial elements of the class. A n example of an indexed defini t ion
is a def ini t ion of an indexed class of func t iona l objects , Fib_number{ i}
(i=1,2,..), which corresponds to the cha in o f F ibonacc i n u m b e r s as they
increase with the index i:

DEF Fib_number{i} = ADD{2} : (Fibnumber{M}), Nb number{i-2});

DEF Fib_number{2} = 1;

0EF Fib number{I} = 1;

Because the Jallanguage has an associated partial algebra of funct ions Jafi t
is possible to mode l a part ial equ iva lence predicate in JaL The par t ia l
equ iva l ence f u n c t i o n E Q V appl ied to two func t ions resu l t s : T i f the
func t ions can be proved equ iva len t in Jar, F i f they can be d i sproved
equivalent in Jail and it is indeterminate otherwise.

The undefined value can be s imply represented in Jar by the e lement
UV = (Y, T). The e lement UV has a dua l purpose , for i t r ep resen t s the
undefined value as well as the everywhere-undef ined funct ion U ~ because

UV(a) = YT (a) = S{1,2}((Y, T), a) = (Y, T) = UV.

A strict funct ion f , i.e. f (UV) = UV, can now be expressed in Jaf using
EQV funct ion which tests an a rgument to be UV. For example , a strict
version of fixed point funct ional % denoted 9~/V, can be expressed in Jafas

YUV = (T, (EQV, UV)) *{2] V *{2] UV;

Functional Programming with Combinators 281

A func t ion can also be de f i ned strict by the strict definition in .qaf:

STRICT funct ion_name;

T h i s c o n c l u d e s this shor t i n t r o d u c t i o n to the .Tar l anguage . Sec t ion 4.4
descr ibes fla£ and JAM in more details.

W e end this sec t ion b y demons t ra t ing how to def ine recursive lists in .7af
w h i c h we wi l l e x t e n d in the nex t sec t ion to the comple te e m b e d d i n g of
Backus ' FP in to JM, see F igure 1 and 2.

W e def ine an i ndexed class o f pair ing operators (Church, 1941) ^{n} in the
f o l l o w i n g w a y (Gibert , 1983b):

o p R a ^Cnl b : x = (a:x) AIn-ll (b:x);

OPR a ^ b : x= x: a: b;

O n e can use these pa i r ing operators to induc t ive ly def ine finite lists and r.e.
inf ini te lists. Fo r example , if (1 ^ (2 ^ (3 A UV))) is an object that represents
the list o f three n u m b e r s "<1,2,3>" (UV represents the empty list) then the
l i s t m a n i p u l a t i n g f u n c t i o n s h e a d and tai l (Hd, T1 in Figure 1) can be
cons t ruc ted us ing the func t ion swap def ined as fol lows:

DEF Swap= S{2,2/* S{1,2};

i.e. Swap : (a, b) = (b, a). T h e n

Hd : (a ^ b) = (Swap, T) : (a ^ b) = a
and

TI : (a ̂ b) = (Swap, F) : (a ^ b) = b.

A n i nde xe d class o f cons t ruc tors for recursive lists, List{i}, i = 1,2 can be
n o w def ined as

DEF List{n} = s[1,n} ^ [n + l } (T, List{n-l}) ;

DEFLis t{1} = I ^ [2 } U V ;

i.e. List{3} : (a, b, c) = (1 ^ (2 ^ (3 ^ UV))).

4.2. FUNCTIONAL PROORAMMING ON JAM

The universality and the expressive power of the ,qaf language guarantees
that one can run efficiently any "high level" functional programming system
based on lambda calculus on JAM. This will be exemplified by the following
simple embedding of Backus' FP (Backus, 1978) into flaf. The embedding of
FP into .qaf p re se rves the algebraic s t ructure o f FP and at the same t ime it
a l lows us to e x t e n d FP by (i) pe rmi t t i ng p r o g r a m s to man ipu la te inf ini te
s e q u e n c e s (th i s m a y m a k e some app l i ca t ions eas ier to p rog ram) , (ii)
i n c l u d i n g in f in i t e e x p a n s i o n s for r e c u r s i v e l y d e f i n e d func t ions into the
a lgebra o f p rograms .

F i r s t l y c o n s i d e r the da t a s t ructures o f FP. A set Ob of objects is bui l t

r e c u r s i v e l y f r o m a toms , At, _k (the unde f ined object) and objects by the n-
a ry list cons t ruc to r , '< ... >', i.e.

O b = A t ~ {1} t.~ {<ob I o b n > l o b 1 o b n e Ob}.

282 J. Gibert

W e def ine the embedd ing ~ to be a b i jec t ion f rom ob to Tup as f o l l o w s

~(l) = UV and e(<>) = UV,

a(true) = T and a(false) = F,

a(n) = n where n e Int and n e 9V~m,

e(a) = a where a e At and a e Tup is a tomic ,

a(<ob 1 obn>) = List{n} : (e(obl), ..., e(obn)) = e(Obl) ^ (... ^ a(obn)...).

W e e x t e n d O b to O i n f b y a d d i n g i n f i n i t e l i s t s o f o b j e c t s , i .e .

O i n f = Ob u O i n f c° where O i n f c° c a n be r e p r e s e n t e d by to t a l r e cu r s ive
f u n c t i o n s I n t ~ O i n f w h i c h are m a p p e d on f u n c t i o n a l ob jec t s d e f i n e d in
Jag w h i c h c o r r e s p o n d to r .e. l ists . F o r e x a m p l e , an i n f i n i t e l i s t o f al l
F i b o n a c c i n u m b e r s can be c o n s t r u c t e d u s i n g the f o l l o w i n g r e c u r s i v e
de f in i t ion in Ja[

D E F (Fib_list, n) : m = n ^ ((Fib_list , m) : ((ADD, n) : m));

wh ich can be represented by a genera tor , F i b _ g e n , d i rec t ly d e f i n e d in J a f a s

DEF Fib_gen = (Y, S{2,3} ^{4} (T *{3} (T, A D D)) * (T, 0));

i.e. Fib gen : 1 = <0, 1, 1, 2, 3, 5 >.
N o w , cons ide r an app l i ca t ion o p e r a t i o n in FP, ' , w h i c h appl ies a FP

f u n c t i o n f t o an object oh. W e def ine e (f : o b) = e (f) : e (o b) w h e r e

e (f) is shown in Figure 1 and 2 and e(ob) is d e f i n e d above .

4.3. ALGEBRA OF FUNCTIONAL PROGRAMS ON JAM

As in genera l ma themat i c s , the d i s t r ibu t iv i ty o f one f u n c t i o n o v e r a n o t h e r
is an i m p o r t a n t n o t i o n o f the Ja[l a n g u a g e . I t p e r m i t s c o n v e n i e n t
represen ta t ions o f inf in i te expans ions for r ecu r s ive ly d e f i n e d f u n c t i o n s (e.g.
c o n d i t i o n a l e x p a n s i o n s , see b e l o w) , or i t p r o v i d e s o p t i m i z a t i o n
t r ans fo rmat ions for func t iona l p rograms . For ins tance , it i m m e d i a t e l y f o l l o ws

DEF Id = I;

DEF Hd = (Swap, S{I,2});

DEF T1 = (Swap, S{2,2});

DEF Select{i} = Hd • Selectl{i};

DEF Selectl{i} = T1 • Selectl{i-l};

DEF Selectl{l} = Id;

DEF Appendl = Hd ^{2} (Hd • tl);

DEF Not = Id * (T, F) * (T, T);

DEF Eq = (T, EQU) * Hd * (Hd • T1);

/* recursive reviota */

DEF Rrev = Id ^{2} (Rrev • (SUB, i));

/* fixed point reviota */

DEF Rrev = (YUV, (T, Id) ^{3} (8{1,2} *{2}

Fig. l. SomeFPfunctionsin]a[

(T, (SUB, I)))) ;

Functional Programming with Combinators 283

DEF (Const, f) = (T, f);

DEF (Bu, f, x) = f. ((T, x) ^{2} Id);
/*

*/

DEF
/*

(p-> q ; r) is denoted by (if, p, q, r) where
(if, p, q, r) : x = q : x if (p : x) evaluates to T,
(if, p, q, r) : x = r : x if (p : x) evaluates to F,
(if, p, q, r) : x = UV if (p : x) evaluates to UV

(If, p, q, r) = p * q * r;

[fl,..., fn] is denoted by (confun{n}, fl,..., fn)
*/

DEF Confun{n} = S{l,n-l} ^{n+l} (T, Confun{n-l});
DEF Confun{l} = (T, UV);
/*

alfa f is denoted by (Apply_all,
*/

DEF (Apply_all, f) = (f. Hd) ^{2} ((Apply_all, f) ° TI);
STRICT Apply_all;
/*

/f is denoted by (Insertl, f)
*/

DEF (Insertl, f)= f. (hd ^{2} ((Insertl,
STRICT Insertl ;

Fig. 2. Some FP functionals in Ja[

f)

f) ° TI));

f r o m the p r o p o s i t i o n in sec t ion 2. tha t the f o l l o w i n g two i m p o r t a n t
d i s t r i b u t i v i t y l aws of B a c k u s ' A l g e b r a o f P r o g r a ms (Backus, 1978) are
p re se rved in Jar:

(Confun{n}, fl fn) * g = (Confun{n}, fl ° g fn * g)

((p * q) * g) • h = ((p ° h) * (q ° h)) * (g ° h).

I t is a s t r a igh t fo rward p rocedure to ver i fy that the whole of Backus ' Algebra
o f P r o g r a m s is p r e s e r v e d in Jail In fac t we have carried out mos t of the
p roofs w i th the ass i s tance of JAM (Gibert , 1984b). The algebraic roots o f Yal
a l low Jaf to be used as the meta - leve l to prove propert ies o f J a / p r o g r a m s .
T h e EQV func t ion , wh ich is used to mode l the equal i ty predicate o f FP, adds
ex t ra p o w e r to FP since i t uses Jar to ver i fy p rogram equivalences.

N o w we d e m o n s t r a t e h o w to e x t e n d the l aws of Backus ' A lgebra o f
P r o g r a m s i n v o l v i n g a cond i t i ona l func t iona l to inc lude inf ini te condi t iona l
expans ions (Wi l l i ams , 1982):

f = (P0 * q0) * (H(f)) = (P0 * q0) * ((Pl * ql) * ((P2 * q2) * "")),

whe re H is a func t iona l in Jar such that for all h

H((Pi * qi) * h) = (Pi+l * qi+l) * (H(h)).

284 J. Gibert

For example, one of the laws noted above can be rewri t ten as fo l lows:

((P0 * q0) * ((Pl * ql) * '")) ° h = ((19 0 ° h) * (q0 * h)) * (((Pl ° h) * (ql ° h)) * ...),
because

f ° h = (Y, (T, p * q) *{2} H , h)

= ((p * c0 * (H(Y, (T, p * q) *{2} H))) ° h

= ((19 * h) * (q * h)) * (((191 * ql) * (H(y((T, p * q) * {2} H)))) * h)

= ((p ° h) * (q ° h)) * (((Pl ° h) * (q l ° h)) * ...]

= ((13 • h) * (q ° h)) * (H(Y, T • ((T, p * q) * {2} (T ° H))) * {2} (T, h))

= (Y,T,((T,p*q)*{2}T,H))*{2} (T,h)).

4.4. IMPLEMENTATION OF JAM

JAM(achine) is pr incipal ly a combina to ry graph r educ t ion mach ine . Jal
e x p r e s s i o n s are t r ans l a t ed into " f r e e - f r o m - b o u n d - v a r i a b l e s " (p u r e)
combinatory code through an implementa t ion of our abs t rac t ion a lgor i thms
d e s c r i b e d in sec t ion 3. O r d i n a r y v a r i a b l e s are a b s t r a c t e d u s i n g the
c o m b i n a t o r y c o m p l e t e n e s s resul t , and s imple r e c u r s i v e and m u t u a l l y
recursive variables are abstracted using the f ixed poin t results. The execut ion
of the code takes place through a sequence of graph reduct ions that t ransform
the Jal expressions into their meaning (the elements o f Ccu(Fun, Tup)),

4.4. I. EVALUATION MODES

The standard evalua t ion m o d e for a Jal express ion is lazy (or normal
order), i.e. eva lua t ion o f an e x p r e s s i o n is l e f t m o s t in r e s p e c t to the
application operat ion, and evaluat ion o f a subexpress ion is d e l a y e d until it
becomes the leftmost. The le f tmos t c o m p o n e n t of an express ion de te rmines
the reduction rule or the definit ion s impl i f ica t ion to be appl ied. Al l required
arguments are consumed and a new express ion which represents the resul t of
applying the part icular rule or s impl i f ica t ion is subs t i tu ted in the p lace o f
the old expression. If no reduct ion or s impl i f ica t ion can be appl ied the lazy
evaluat ion terminates.

However , the value of a non- le f tmos t subexpress ion m a y be requ i red by
JAM either during the execut ion of a p rogram (e.g. b y a pr imi t ive ari thmetic
function) or after the execut ion terminates (for example , to print a result) .
In the first case, the normal order evaluat ion o f an express ion is p o s t p o n e d
whi le the a rgument subexpres s ions are execu ted . I f the resu l t s o f the
evaluat ion of subexpress ions are of the requi red type (e.g. a number) then
the execut ion p roceeds , o therwise the execu t ion te rminates . Th is type of
evaluation is cal led eager (or innermost order) and is k n o w n to be not safe
semant ical ly when used exc lus ive ly (E ick & Fehr, 1983). H o w e v e r , i f we
restrict eager evaluat ion to the fo l lowing two cases, we are able to preserve
the s imple a lgebra ic m o d e l and ma in t a in e f f i c i e n c y of e x e c u t i o n o f
funct ional programs: (1) the execut ion o f strict funct ions , e.g. ar i thmet ic or
relational functions, (2) the execut ion of the pipe-apply operator .

The pipe-apply opera tor "%" is a func t iona l (m o d u l e) c o m p o s i t i o n
operation naturally supported by the architecture o f / A M which is b rought to

Functional Programming with Combinators 285

the l anguage level to al low a functional program to be built out of simple
combina t ions o f in terconnect ing subprograms, cf. Figure 3. The pipe-apply
operator is def ined as follows

(fl %f2) :(al an)=/1 (f2(al an))'
In other words , the p ipe-apply operator applies a function f2 to a tuple
(a 1 a n) and at the same time routes the output of f2 to the input of fl" In
part icular , if f2 denotes a functional object (e.g. Fib_number in section 4.1)

then the pipe-apply operator computes f2 before it is applied to fl.

i>
i>
i>
i>
l>
i>
I>
i>
i>
I>
I>
2>
3>
3>
3>
3>
3>
4>
5>
5>
5>
5>
5>
5>
5>
6>
7>
8>
8>
8>
8>

J-Machine 1.3 (MAY 86) - type "help;" for help
/*

A program which sorts stream of n numbers

Max to left shifts greatest number of n
numbers of a tuple to the left of the tuple

*/

DEF Max to left{n} =
GT

*{2} ((Max to left{n-l} % S{1,2}) *{n} S{2,n})
*{2} ((Max to left{n-l} % S{2,2}) *{n} S{l,n})

DEF Max to left{l} = I;
/*

Many_swap shifts first element of a n-tuple
to the last position in the tuple

*/
DEF Many_swap{n} = S{2,2} *{n} S{l,n};
DEF Many_swap{l} = I;
/*

Main program
*/
DEF Sort{n} = Sort{n-l]

% Many swap{n}
% Max to left{n}

DEF Sort{l} = I;
ARGS Sort{n} = n;
/*

Execution
*/

Sort{10} : (3,1,6,5,9,2,4,8,7,0);

(0,1,2,3,4,5,6,7,8,9)
9> ^D

End of session.

Fig. 3. Exampleprogram.

286 J. Gibert

JAM transforms a J M expression into its full (not lazy) meaning in
Ccu(Fun, T~p). An expression is normal order evaluated to produce a lazy
resul . I f the evaluat ion terminates, then the resul t is interpreted in
Ccu(Fun, Tup). The interpretation (meaning) in CcuiF~n, Tup) is obtained by
r e c u r s i v e l y app ly ing normal order eva lua t ion to each immedia te
subexpress ion of the result of the evaluation.

4.4.2. EQUIVALENCE PROOFS

JAM uses lazy evalua t ion when proving equ iva lences be tween Jal
expressions. Lazy evaluation guarantees correctness of a proof. A proof is
p e r f o r m e d th rough the analysis of symbol ic execut ion of funct ional
e x p r e s s i o n s dur ing which compar i sons and eva lua t ions are appl ied
ahernately. Before any evaluation takes place, the expressions are compared
for identity. I f they are not identical, they are lazily evaluated. Then, the
p r o o f cont inues recursively while the resultant expressions are compared
subexpress ion by subexpression.

If a disagreement occurs between the evaluations at any stage of the proof,
the data base of equivalences is consulted. If, after using all possible
equivalences, the evaluations are still not equivalent then the proof fails,
otherwise the proof continues until the evaluations fully terminate.

J-Machine 1.3 (MAY 86) - type "help;" for help
i> /*
i> A simple inductive equivalence
i > */
I> DEF A{n} = A{n-l};
2> DEF A{I} = B;
3>
3> TRACE PROVE ON{i} A{i} = B;

Induction basis:
LHS: Start sub-reduction of (A)
(A) definition => (B)
RHS: Start sub-reduction of (B)

Proof completed.
Induction hypothesis:

LH$:
RHS:

Induction step:
LHS:
(A)
RHS:

Start sub-reduction of
Start sub-reduction of

Start sub-reduction of
definition =>
Start sub-reduction of

(A{i})
(B)

(A{i+l})
(A{i})
(B)

Proof completed using induction hypothesis.
(A{i}) is equivalent to (B)

9> ^D
End of session.

Fig. 4. Example of an induction proof.

Functional Programming with Combinators 287

An inductive equivalence is proved in two separate stages: the base stage and
the induct ion stage. In the base stage the index variables of a p r o o f are
assumed to have the value 1 on both sides o f the equivalence and the p roof
proceeds as described before. In the induction stage, the induct ion hypothes is
is assumed as one of equivalences, and the index variable o f a p roo f is
substituted by its successor on both sides of the equivalence. Formal indices
are changed after the f irst reduct ion to inductive formal indices w h i c h
cannot be further used in the execution.

For example , consider the induct ion p roo f in Figure 4. W h e n J A M
attempts to reduce A{i+ l} , the simplification by def in i t ion is appl ied once
and it results in A{i}. However , now the index {i} is an induct ive fo rmal
index, the execut ion terminates without going into an infinite loop, and the
proof proceeds as described before.

4.4.2. CODE GENERATION

The .qM c o m b i n a t o r y code represent ing a func t iona l p r o g r a m can be
executed on a sequent ia l reduct ion machine such as the G M D m a c h i n e
(Berkling, 1975) or it can be further translated to low level code capable o f
running on other reduct ion architectures, e.g. S K I M (Clarke at. el., 1980)
or N O R M A SASL (Turner, 1981).

For execution on JAM, a flat" expression is t ranslated into a directed graph
composed of two types o f nodes. The first type o f node is called f unc t ion
node and it represents a primit ive or defined Jag funct ion, see Figure 5. The
second type of node is a subexp node for representing Jagsubexpress ions .

Function binding

Input arc

Input ports " ' l ~ f ' " ' , ~

Output arc

Index binding

Fig. 5. Node representation of a function

Both types of nodes contain the following two pointer fields (Figure 5):
(1) a funct ion or subexpress ion graph binding which points to the graph

containing the body o f the corresponding funct ion or subexpression,
(2) an index binding which points to the global definition table entry for a

funct ion or subexpression, where actual indices and other local da ta are
kept.

Arcs correspond to appl icat ion operat ions th rough which a rgumen t s and
results are passed between functions. Therefore a graph node cor responding
to a .qaE funct ion has a single arc which delivers an argument graph pointer

288 J. Gibert

or an a r g u m e n t s t ream, and a single arc for the resul t graph poin ter or the
r e su l t s t ream, F igure 5. Howeve r , there m a y be more than one input or
o u tpu t por t to a node. Nodes for func t ions wi th parameters possess a single
va lue input por t for each parameter and a multiple value input por t for other
a rgumen t s . Ports for a node are ordered f rom "left to r ight". Argumen t s are
g a the r ed and ass igned to parameter ports in the order o f arrival on the input
arc. A node can start consuming other a rguments on ly after all pa rame te r
por ts are f i l led. The order o f results on the output arc is de te rmined by the
order o f the ou tpu t ports.

The ARGS def in i t ion o f Jag specifies the number o f parameters (arity) for a
f u n c t i o n , w h i c h in turn specif ies the n u m b e r of por ts to be u s e d in the
co r r e spond ing func t ion node. For example, an indexed class o f yagfunc t ions ,
f{n} (n = I , 2 ), with the fo l lowing ARGS def in i t ion

ARGS f{n} = n;

cor responds to the node templets with n-1 parameter ports plus one a rgument
port . Th i s feature gives a very fine control over the running of J A M , because
it m a k e s poss ib le to condi t ion the execut ion o f func t ion on ava i lab i l i ty o f
all pa ramete rs , cf. Figure 3. Inf ix operators o f ya£, wh ich are s ingle nodes ,
have two extra parameter ports for the operands. If operands are present then
the operator node is an ordinary funct ion nodes, cf. *{2) node in Figure 6.

(1 , 1)

~v

Fig . 6. Graph Represen ta t ion of F i b e n a c c i F u n c t i o n

Functional Programming with Combinators 289

EXAMPLE. We will illustrate code generation on the fo l lowing single recurs ive
def ini t ion o f Fibonacei numbers:

DEF Fib_number{n} = Fib{n} : (1, 1);

DEF Fib{n} = (T, Fib{n-l}) *{2} ADD{2};

DEF Fib{l} = S{1,2};

A graph which is produced f rom this definit ion is shown in Figure 6. Al l
nodes are marked redex, and with the index n being a positive integer, e.g.
Fib { 5}, this is a pure data flow graph.

4.4.3. EXECUTION

The execut ion of a .qa£expression on JAM is a combina t ion o f da ta f low
and reduction, cf. (Treleaven, 1984). That is, the f low of data i tself does not
transfer control f rom one funct ion node to another, as is the case in s tandard
data f low (Some nodes, e.g. funct ions such as F ib_number [n} de f ined in
sect ion 4.1, migh t not have input or output arcs). Ins tead an i n d e p e n d e n t
con t ro l t r ans fe r takes p lace accord ing to a g Ioba l d e f i n i t i o n table .
Avai lab i l i ty of data arguments in a funct ion node is not in i tself suf f ic ien t
to initiate execut ion of this node and the funct ion needs to be marked redex
in the global def in i t ion table entry for this funct ion for the execu t ion to
proceed . Therefore , JAM treats a graph as the specif icat ion of the part ial
ordering of reduction sequences.

Funct ion nodes or subexpression g r a p h s marked in the global def in i t ion
table as redexes are executed, the intermediate results are stored as pointers
to new nodes or graphs, or as data values or index values in the g lobal
def in i t ion table. The execut ion of funct ions and subexpress ions , and the
change to cor responding indices f rom formal to actual in func t ions and
subexpress ions is de l ayed until the corresponding nodes are r equ i r ed to
p roduce values . This t echnique results in cons iderable space and t ime
improvements over pure data f low as it permits the immedia te distr ibution o f
a rguments to any dest inat ion in the graph, and at pract ica l ly no cost since
mos t reductions o f ya[expressions are s imply link manipulat ions. Consider ,
fo r example , the "compos i t ion" operator "-" wh ich has been de f ined in
section 2. The reduct ion o f the y ~ e x p r e s s i o n (f • g) : x is as fol lows

(1) (f o g) : x ~ ((T , f) * g) : x

(2) --~ ((T , f) : x') (g (x))

(3) 4-4 f (g (x))

Execu t ion of the "*" operator in the first step creates a poin ter n o d e x'
wh ich points to the value o f the data argument x. Then the reduct ion o f the
T combina tor in the second step destroys the l ink x'. Therefore the who le
reduct ion (steps 1 to 3) does not incur any overhead of coping, t ransmi t t ing
and possibly re-evaluated o f x unnecessarily.

4.4.4. PERFORMANCE

W e have m a d e a p ro to type imp lemen ta t ion o f JAM in te rp re te r and
func t iona l s imulator in the C language under the UNIX 4.2BSD opera t ing

290 J, Gibert

system on VAX 11/780 at the Univers i ty of Melbourne (Oibert , 1984b). The
interpreter runs as a single sys tem process but uses a f ixed n u m b e r of chi ld
subprocesses and pipelines with which it emulates paral lel execut ion .

The pre l iminary pe r fo rmance analysis of JAM interpreter has been very
encouraging. W e have run a number of s imple benchmarks to c o m p a r e the
t ime taken by our interpreter (total e lapsed t ime under a l ight sys t em load)
to execu te s imple funct ional p rograms , e.g. F ibonacc i func t ion , with the
t ime taken to execute the same programs by a convent iona l LISP interpreter
(Fodera ro at. el., 1983). W e cons ide red only the execu t i on t ime, as the
translation t ime in our sys tem is negl ig ible compared to the t ime taken to
p e r f o r m eva lua t i ons . In all ca ses ou r i n t e rp re t e r , u s ing o n l y fou r
subprocesses , was more than one order o f magni tude faster than the LISP
interpreter. Since our interpreter used ve ry simple data s t ructures and used
the standard system-supplied process and m e m o r y managemen t package which
forms a bot t leneck in the interpreter (up to 65% of the p rocess ing t ime was
spent on process and memory management) , it compares even more favorab ly
with the LISP interpreter which uti l izes sophis t ica ted m e m o r y m a n a g e m e n t
facilities. However , it remains to be seen what pe r fo rmance can be achieved
for larger programs as we would need to implement a comple te compi l e r for
tlae figures to be meaningful.

Conclusions

In this paper we aimed to cons t ruc t an opt imal a lgebra ic sys t em, which
would have the power t o accommoda te any funct ional p rog ramming language
inspired by the lambda calculus approach to the t rea tment o f c o m p u t a b l e
funct ions, and which could be used as a basis for an e f f i c i en t mach ine
architecture to implement symbol ic computa t ion .

JAM(achine) is designed in accordance with the a lgebraic cons t ruc t ion of
our combinatory system, the Jar algebra. This avoids an addit ional meta leve l
needed for p rov ing proper t ies o f p r o g r a m s and a l lows J A M to assis t a
p rog rammer in carrying ou t p roofs and p r o g r a m t r a n s f o r m a t i o n s . The
combinators provide for machine instructions of a poss ib l e archi tec ture but,
at the same time, they are easi ly access ib le to p rogrammers .

One issue that has not been covered in the paper is that o f f iner-grain
parallel ism. The combina to r code of a Jar e x p r e s s i o n a l r eady p o s s e s s e s
proper t ies which make it poss ib l e to use ve ry f ine -gra ined pa ra l l e l i sm in
execut ion of functional programs, i.e. dis t r ibut ivi ty and f r e e d o m f rom bound
var iables , but there are at leas t three ways to fur ther e n h a n c e inheren t
concur rency o f the combina to ry code. Firs t ly , it is pos s ib l e to r e d u c e all
argument subexpress ions in parallel , w h i c h could be cons ide red as separate
processes , after the analysis o f argument dependenc ies b e t w e e n combina to r s
in the code. For example , ari thmetic (strict) operat ions a l ready d e m a n d the
eva lua t ion of their a rguments in paral le l . S e c o n d l y , our g raph , w h i c h
represents the structure of a p rogram, can be eas i ly sp read across m a n y
parallel processors similarly to data f low approach. Last ly , exp l ic i t parallel
control operators such as fork could be in t roduced to the Ja[language. It is
an interesting quest ion as to which of these methods w o u l d bes t lead to the
highest degree o f concur rency in func t iona l / symbo l i c c o m p u t a t i o n . S o m e

Functional Programming with Combinators 291

w o r k in this d i r e c t i o n has a l r eady been s tar ted (H u d a k & Go ldbe rg , 1985;
H a l s t e a d , 1985 ; B u r t o n , 1984; M a u r e r & O l d e h o e f t , 1983; M a u r e r &
O b e r h a u s e r , 1985) and p a r a l l e l m a c h i n e s have b een bui l t (Mag o , 1982;
K l u g e , 1983; B u c h b e r g e r , 1984) , bu t so far the re is no para l le l r educ t ion
m a c h i n e tha t uses c o m b i n a t o r s to i m p l e m e n t s y m b o l i c computa t ions .

W o r k is c u r r e n t l y in p r o g r e s s a imed at e m u l a t i n g a f i ne -g ra ined paral le l
JAM on a da t a f l o w c o m p u t e r . F u r t h e r m o r e , r e c e n t d e v e l o p m e n t s in the
h a r d w a r e o f da t a f l o w and para l le l r edu c t i o n mach ines are mak ing a pract ica l
h a r d w a r e i m p l e m e n t a t i o n o f a c o m b i n a t o r b a s e d s y m b o l i c c o m p u t a t i o n
s y s t e m such as ou r s f eas ib l e and ve ry appeal ing.

Acknowledgements

Valuable suggestions by Bruno Buchberger and thoughtful comments from the referees have
materially improved the presentation and the content of this work from the initial manuscript,
and are gratefully acknowledged. Thanks to Dianne McKerrow who has helped greatly with
preparation of the manuscript.

References

Abdali, S. K. (1976). An Abstraction Algorithm for Combinatory Logic. Journal of Symbolic
Logic 41, 1, pp. 222-224.

Amamiya, M., Hasegawa, R. (1984). Dataflow Computing and Eager and Lazy Evaluations. New
Generation Computing 2, pp. 105-129.

Backus, J, (1978). Can Programming Be Liberated from the yon Neumann Style? A Functional
Style and Its Algebra of Programs. CACM 21, 8, pp. 613-641.

Backus, J. (1981). The Algebra of Functional Programs: Function level reasoning, linear
equations and extended definitions. Proceedings of the International Symposium on the
Formalization of Programming, Peniscola, Spain, April 1981. Lecture Notes in Computer
Science 107, Springer Verlag, pp. 1-43.

Barendregt, H. P. (1981). The Lambda Calculus, Its Syntax and Semantics. Studies in Logic 103,
North-Holland.

Berkling, K. I. (1975) Reduction Languages for Reduction Machines. Proceedings of the IEEE
International Symposium on Computer Architecture, January 1975, pp. 133-140.

Bohm, C. (1982) Combinatory Foundation of Functional Programming. ACM Symposium on
Lisp and Functional Programming, June 1982.

Buchberger, B. (1984) The Present State of the L-Network Project. Proceedings of Mini and
Microcomputers and their Applications 84, Acta Press, Anaheim, pp. 178-181.

Bunder, M. W. (198I) Natural Numbers in Illative Combinatory Logic. Proceedings of the 5th
Latin American Symposium on Mathematical Logic, Bogota, Lecture Notes in Pure and
Applied Mathematics, Springer-Verlag.

Burton, F. W. (1983) A Linear Space Translation of Functional Programs to Turner Combhaators.
IPL 14, 5, pp. 201-204.

Burton, F. W. (1984) Annotations to Control Parallelism and Reduction Order in the Distributed
Evaluation of Functional Programs. TOPLAS 6, 2, pp. 159-174.

Church, A. (1941) The Calculi of Lambda Conversion to Metamathematics, Princeton University
Press, Princeton.

Clarke, T. J. W., Gladstone, P. ft. S., MacLean, C. D., Norman, A. C. (1980) SKIM - The S,K,I
Reduction Machine. Proceedings of the 1980 ACM Symposium on Lisp and Functional

292 J. Gibert

Programming, August 1980, pp. 128-135.
Curien, P. (1986) Categorical Combinators. Information and Control69, pp. 188-254.
Curry, H. B. (1930) Grundlagen der kombinatorishen Logik, American Journal of Mathematics

52.
Eick, A., Fehr, E. (1983) Inconsistencies of Pure LISP, Proceedings of 6th G1-Conference on

Theoretical Computer Science, Lecture Notes in Computer Science 145, Springer Verlag,
pp. 101-110.

Engeler, E. (1977) A New Type of Models of Computation. Proceedings of the Sixth Symposium
on the Mathematical Foundations of Computer Science, Tatranska Lominea, Czechoslovakia,
September 1977, Lecture Notes in Computer Science 53, Springer Verlag, pp. 52-58.

Engeler, E. (1981) Algebras and Combinators. Algebra Universalis 13, pp. 398-392.
Engeler, E. (1981) Equations in Combinatory Algebras. Lecture Notes in Computer Science 164,

Springer Verlag, pp. 193-205.
Foderaro, J. K., Sklower, K., Layer, K. (1983) The Franz Lisp Manual. Unix Distribution,

University of California.
Friedman, D. P., Wise, D. S. (1976) CONS Should not Evaluate its Arguments. Proceedings of

the Third International Colloqium on Automata, Languages and Programming, July 1976,
Edinburgh University Press, Scotland, pp. 257-284.

Gibert, J., Shepherd, J. A. (1983) From Algebra to Compiler: A Combinator-Based
Implementation of Functional Programming, Proceedings of the Third Conference on
Foundations of Software Technology and Theoretical Computer Science, Bangalore, India,
December 1983, pp, 290-314.

Gibert, J. (1983) An Elementary Model for Functional Programming with Infinite Objects.
Technical Report 37, Monash University, Clayton, Australia, May 1983.

Gibert, J. (1984a) Functional Programming with Combinators, Proceedings of the Logic and
Computation Conference, Monash University, Australia, January 1984,

Gibert, J. (1984b) J-Machine Users' Manual. Technical Report 84/10, University of Melbourne,
Parkville, Australia, September 1984.

Halstead, R. H. (1985) Multilisp: A Language for Concurrent Symbolic Computation. TOPLAS 7,
4, pp. 501-538.

Hudak, P., Goldberg, B. (1985) Serial Comblnators: "Optimal" Grains of Parallelism.
Proceedings of Functional Programming Languages and Computer Architectures, September
1985, Lecture Notes in Computer Science 201, Springer Verlag.

Hughes, R. J. M. (1982) Super-Combinators: A New Implementation Technique for Applicative
Languages. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Pittsburg, PA, June 1982, pp. 1-10.

Jones, N. D., Muchnick, S. S. (1982) A Fixed-Program Machine for Combinator Expression
Evaluation. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Pittsburg, PA, June 1982, pp. 11-20.

Kleene, S. C. (1936) Lambda Definability and Recursiveness. Duke Mathematical Journal 2.
Kluge, W. E. (1983) Cooperating Reductions Machines. IEEE Transactions on Computers32,

11, November 1983.
Longo, G., Moggi, E. (1984) Godel Numberings, Principal Morphisms, Combinatory Algebras.

Lecture Notes in Computer Science 176, pp. 397-406.
Mago, G. (1982) Data Sharing in an FFP Machine. Proceedings of the 1982 ACM Symposium

on LISP and Functional Programming, Pittsburg, PA, June 1982, pp. 201-207.
Maurer, P. M., Oldehoeft, A. E, (1983) The Use of Combinators in Translating a Purely

Functional Language to Low Level Data Flow Graphs, Journal of Computer Languages 8, 1,
pp. 27-45, June 1983.

Functional Programming with Combinators 293

Maurer, D., Oberhauser, H. (1985) Ein Simulator fur die paralMe Reduktion yon Kombinatorcode.
SFB 124-C1, Universitat Saarbruecken,September 1985.

McCarthy, J. (1960) Recursive Functions of Symbol Expressions and their Computation by
Machine. Communications of the ACM 3, 4, PP. 184-194.

Meyer, A. R. (1982) What is a Model of the Lambda Calculus? Information and Control 52, 1.
Obtulowlez, A., Wiweger, A. (1981) Functional Interpretation of Lambda Terms. Colloquia

Mathematica Societatis Janos Bolyai26, Mathematical Logic in Computer Science,
Hungary, 1978, North-Holland.

Peyton-Jones, S. L. (1982) An Investigation of the Relative Efficiencies of Combinators and
Lambda Expressions. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Pittsburg, PA, June 1982, PP. 150-158.

Sleep, M. R. (1980) Applicative Languages, Dataflow and Pure Combinatory Code. Proceedings
of COMPCON, Spring 1980, pp.112-115.

Stoye, W. R., Clarke, T. J. W., Norman, A. C. (1984) Some Practical Methods for Rapid
Comblnator Reduction. Proceedings of the 1984 ACM Symposium on Lisp and Functional
Programming, August 1984, pp.159-166.

Thatcher, J. W., Wagner, E. O., Wright, J. B. (1981) More on Advice on Structuring Compilers
and Proving Them Correct. Theoretical Computer Science 15.

Treleaven, P. C. (1984) Decentralised Computer Architecture. New Computer Architectures,
International Lecture Series in Computer Science, Academic Press, pp. 1-55.

Turner, D. A. (1979a) Another Algorithm for Bracket Abstraction. Journal of Symbolic Logic
44, 2.

Turner, D. A. (1979b) A New Implementation Technique for Applicative Languages. Software
Practice and Experience 9.

Turner, D. A. (1981) Reeursion Equations as a Programming Language. Functional Programming
and its Applications (An Advanced Course), July 1981, University of Newcastle-upon-Tyne,
Cambridge University Press, pp. 1-28 ; NORMA SASL, Burroughs Corp., October 1985.

van der Poel, W. L., Schaap, C. E., van der Mey, G. (1980) New Arithmetical Operators in the
Theory of Combinators (Parts I, II,III). lndag. Math. 42, pp. 271-325.

Williams, J. H. (1981) Formal Representations for Recursively Defined Functional Programs.
Proceedings of the International Symposium on the Formalization of Programming,
Pertlscola, Spain, April 1981, Lecture Notes in Computer Science 107, Springer Verlag, pp.
460-470.

Williams, L H. (1982) Oft the Development of the Algebra of Functional Programs. ACM
Transactions on Programming Languages and Systems 4.

