J. Symbolic Computation (1987) 4, 269-293

Functional Programming with Combinators

JACEK GIBERT

Department of Computer Science, University of Melbourne, Parkville, Victoria,
3052, Australia

(Received 22 October 1984; Revised 1 December 1986)

Combinators are shown to provide a very suitable basis for implementations of
functional and symbolic computation in computer architecture. A powerful
combinator reduction system is developed which meets programmers and machine
requirements for (i) efficiency of representation and execution of symbolic
algorithms, and (ii) availability of algebraic manipulation needed to analyse
symbolic computations. An algebraic model is constructed to provide rigorous
semantics for the system. The reduction language of the system aims at exposing
efficient flows of data and fine-grain parallelism, and a computer architecture,
which is proposed to run the system, utilizes both sequential and parallel
processing modes in order to achieve maximum efficiency of symbolic
computation. Finally, an implementation of the interpreter and functional
simulator for the architecture is described.

1. Introduction

As a result of developments in the design of non von Neumann style of
programming, in particular Backus' Functional Programming (FP), and also
in the refinement of novel hardware concepts such as control flow, data flow
or reduction machines, programming languages for symbolic computatiomre
no longer viewed _only as part of the theoretical foundations of programming
or as specification languages, but are also seen as practical tools for
programmers.

However at present it still remains the case that most practical
programming languages used for symbolic computation are only incomplete
versions of various logics developed to deal with symbolic objects, e.g.
LISP vs. lambda calculus (Eick & Fehr, 1983) or FP vs. combinatory theory
(Backus, 1978). Various reasons for this situation will be discussed in the
following paragraphs.

The well developed mathematical theory of lambda calculus provides
powerful tools for symbolic execution of programs (McCarthy, 1960). All
lambda-defined functions are all computable functions and the simple axiom
schemes o and B give a notion of symbolic computation via reduction.
However, the o and B reductions are inefficient when performed directly by a
machine, because substitutions in the presence of bound variables used in
these reductions are veryexpensive, and an efficient execution of a program
is gained at the price of inconsistencies in semantics of a programming
language (Eick & Fehr, 1983). The problem of efficiency can be avoided by

0747-7171/87/060269 +25 $03.00/0 © 1987 Academic Press Limited

270 J. Gibert

using combinators as a basis for a programming language while preserving
the complete semantics of combinatory theory.

The recent development in combinatory theory (Engeler, 1977; (Engeler,
1981; Engeler 1984; Obtulowicz & Wiweger, 1981; see also Meyer, 1982)
reveals how to use it as a theory of equations for a class of ordinary
algebraic structures. In this approach algorithmic problems such as "find x
such that F(x)" are reduced to combinatorial equations of the form:
t1(x) = 15(x), where t; and t2 are terms over an algebraic structure. To

solve the problem F simply means to find an element g of the structure
which satisfies the equation, i.e. ti(a) = t2(a). A number of ways for
solving such combinatorial equations are well known, one of which is the
lambda abstraction. Similarly, to solve the problem F by symbolic
manipulation would mean firstly, describe a as a closed term (a program),
i.e. term with no free variables, secondly simplify it according to axioms of
the algebraic structure.

A combinator based functional language such as Backus' FP supports
"structured programming"” (Backus, 1978). It offers compactness of notation,
as single combinators express highly complex operations on structured
objects. The programs automatically possess algebraic properties of
combinators which allow a programmer {0 reason about the programs at the
function level rather then at the object level (Backus, 1981) and provide
simple tools for program transformation and verification.

Furthermore, the combinatory approach appears to build a bridge between
programmers and machine requirements for a language and a machine
architecture for symbolic computation. Machines to model combinatory
systems have uncomplicated structures and they run very efficiently as
compared to lambda calculus machines, (Turner, 1979b; Hughes, 1982;
Peyton-Jones, 1982; Jones & Muchnick, 1982; Stoye et al., 1984). The
absence of environment makes a combinatory code very attractive for
implementation in data driven or data flow architectures, (Sleep 1980;
Maurer & Oldehoeft, 1983; also Amamiya & Hasegawa, 1984).

However the choice of combinators seems to be a difficult one. In his FP
Backus (1978) uses very high level combinators (e.g. functionals such as
apply-to-all, insert, and construction) and he restricts them to play only the
role of program forming operators (PFO's). PFO's allow him to construct a
simple tool for verification of FP programs: the FP Algebra of Programs.
But in this way FP suffers in expressive power as general higher order
functions, or new PFO's cannot be defined. Moreover, all functions and
functionals of FP, except conditional, are assumed to be strict ("undefined-
preserving") in order to give a simple fixed point semantics for the
language. However many functional computations are expressed more
naturally by non-strict functions (Friedman & Wise, 1976), the simplest
example of which is the conditional (if-then-else statement). The FP algebra
can be used to deal with recursive programs containing conditionals only if
they are of a certain type: linear (Backus, 1978) and nonlinear "overrun-
tolerant” (Williams, 1982).

The limitations of FP can be remedied by embedding FP into some
complete algebraic combinatory structure such as Bohm's combinatory

Functional Programming with Combinators 271

monoid (Bohm, 1982) or a combinatory algebra (Gibert, 1983a) which uses
the standard combinators of Combinatory Logic. Such combinatory
structures preserve the algebraic nature of the functional language and
provide a complete semantics for it. At the same time the standard
combinators can be viewed as simple operators which "do nothing more than
move data around", and therefore they provide for simple operational
semantics and a possible machine architecture.

The standard combinators such as I, S, K, B, C and Y have been used for
implementing functional programs by Turner (Turner, 1979b). These
combinators are attractive because of the simplicity of the abstraction
algorithm, i.e. the transformation process from conventional functional
expressions into "free-from-bound-variables" combinatory code. Turner has
shown that the resulting code for a functional program generated using these
combinators is excessively long, far removed from a source program and too
inefficient for practical applications. Although he later improved the
performance of the abstraction algorithm by using new combinators S',B', C'
(Turner, 197%a), the big gap between a combinatory code and a source
program still remained, making the understanding of a computation process
and debugging practically impossible because intermediate values during the
computation could not be tracked down.

A solution may lie in providing a collection of combinators that closely
correspond to a functional notation, so some intermediate "state" of
evaluation would be easier to interpret. This approach has been taken by
Hughes (1982) with his "super-combinators”, which are dynamically defined
generalized combinators (i.e. combinators defined during the elimination of
bound variables from lambda expressions). Unfortunately, the loss of a fixed
set of primitive combinators in Hughes' approach results in the costs of
interpreting virtual instructions.

We have further developed Hughes' approach of using an unbounded
number of combinators and put combinators into classes via combinatory
schemata to obtain a limited base set of machine instructions. In (Gibert &
Shepherd, 1983) the classes have been derived directly for Backus' FP from
the equational specification of the language which has provided the basis for
design of an elegant, algebraically structured FP compiler. In (Gibert, 1983)
and (Gibert, 1984a) the classes of combinators have been generalized in order
to serve as a basis for an efficient implementation of functional
programming. An abstraction algorithm have been modified in such a way
that it maps a potential for parallelism in functional programs into the
combinatory code by abstracting more than one variable at a time (Abdali,
1976; Maurer & Oldehoeft, 1983; Gibert, 1983; Gibert, 1984a).

This paper demonstrates a new model for symbolic computation, based
upon combinatory theory, which: (i) has an elementary algebraic construction
that provides a natural environment for mechanical verification and analysis
of programs, (ii) allows one to express programs in complete and compact
forms which exhibits their control structures more clearly, therefore
permitting algebraic manipulations and efficient parallel processing.

In particular, it is shown that a partial algebra of functions Jaf, defined
here to be our model, is a consistent extension of the combinatory algebra,
and that it gives simple semantics for practical programming languages such

272 J. Gibert

as Backus' FP. It is argued that our language, Jaf, developed along with the
Jaf algebra can be seen as a powerful combinatory reduction language which
is intunitively accessible to programmers and can be implemented efficiently
in a machine architecture, JAMachine (Gibert, 1984b). The efficiency of the
implementation is gained from such properties of Jal expressions as
distributivity and freedom from bound variables. These properties simply
mean that subexpressions of a Jal expression contain all necessary
information to be evaluated separately in a parallel manner. The short
description of the 7af language is illustrated by some examples of symbol
manipulating programs.

The second section reviews the definition and basic properties of the Jaf
algebra of functions, of which a preliminary version was presented in
(Gibert, 1983).

The third section discusses programs defined by combinatorial equations
between terms of Jaf, and shows that unique partial solutions of the
equations can be found mechanically by algebraic manipulations. We prove
that the Jaf algebra is essentially the extensional combinatory algebra.

The fourth section presents the implementation of the Jaf language on
JAM(achine) and demonstrates the convenience of using it in developing a
practical functional programming language by modelling Backus' FP in Jaf
in a very natural way. Finally an interpreter and functional simulator of JAM
is described. JAM is designed to execute functional programs in a data flow
fashion but it can retain sequential evaluation for programs, or parts of
them, which are inherently sequential.

2. Jaf Algebra of Functions

In this section we outline an approach to the interpretation of functional
programs in combinatory algebras. We give an explicit algebraic
construction of a model for functional programming in cartesian closed
universes. A category-theoretic characterization of such models was given
by Longo & Moggi (1984) and later by Curien (1986).

We start with a construction of a partial algebra of functions Jaf over a
cartesian closed universe Ceu(Fun, Tup), where Tup is a set of arbitrarily long
and nested tuples of Ccu, and Fun is a set of functions of Ccu of arbitrary
arity. We call tuples of length one that are not nested aromic. We regard
some atomic tuples of Tup as denoting functions of Ccu and certain non-
atomic tuples as denoting parameterizefiinctions. We call a set of all such

tuples ©. Therefore let us define a pair of functions:
we® -@® and p:® —» O
where ® < Fun, ® < Tup such that
Lo p = idg,
and
W 21, 8)) = a3

where fa, . a, is2 function with parameters ap, ..., a,.

Functional Programming with Combinators 273

There are two classes of primitive functions in Fun: "projection” and
"substitution" functions defined as follows:

{Slin}: B> A AC Tip) p,i<n
is the class of projection functions, where

(PROT) Slin}(ag, v A, o) = 8.

{ *{n}f,g: AL 2 2c Tup),

is the class of substitution functions, where

(SUBS} *{n}f‘g (a]_a seey a-n) =fa1, e an((g’ 15 veey an))

NOTATION. (i) Because of the complexity of notation, we will often avoid the
explicit use of functions { and p by adopting the convention that italic font
will indicate functions of Fun, i.e. £ will denote p (£).

(ii) Let S{i,n} denote p(S{i,n}), (f *{n} g) denote p(*{n}f,g).

(iii) Let T, F ¢ ® stand for S{1,2}, S{2,2} respectively, and I € ® stands
for S{1,1}. T and F are often used in definitions by cases since

W(TH(ay, ag) = 5(1,2} (a3, 29) =2y,
and similarly
WF)ay, ag) = ay.

The element T can also be used to define constant functions 7, i.e.

Ty®)=p((T,a))}(b) =p(T)(a, b) =a.

The element id represents the identity function but only on atoms of T
The equality in Tup is the identity relation and the equality between the

elements of ¥ is determined by the following "extensionality" rule: f,ge Fun

(EXT) (Ve Tup, f(=g1))= f=4.

DEFINITION. Let @ < Fun and ® < Tup be fixed and functions i, p be given.
The above definitions give rise to a (partial) extensional algebra of functions

Jaf = < Cow(Fun, Tup), 3, *{i}, S{ij}, LT,F >

where ™" is a binary operation of application, if (PROJ), (SUBS), (EXT) and the
following condition holds for allte Tup, (a1, .., 8, ., 8) € AL n21, Ac Tup

Ifte © then
[1) (@g, - 8y, .oor) ifu(t) e [A7 Tup)
(APPL) t:(ay, ..., Ajy vvr Ay) = { w)ag, - a) 1 (8jp1, 0 8n) ifp() e [4 Tip)

{ Wy, ey . ay otherwise
else
(APP2) t:(a(, .., 8p s 8) = (L, 47, ooy 8, vy 8p).

274 J. Gibert

NOTATION. (i) The application operation ":" is assumed to be left-associative,
i.e.
trajiag:..ian=(.((trap:ap) ..t ay).

(ii) We omit the index expression {1} after functions, e.g. * stands for *{1}.

REMARK. Let P = (I * I). 7af is only a partial algebra since, for example,
(P:P) is indeterminate:

P:P =p@)P) =*1 @ =S11)@®):(I:P)=P:(1:P)
=¥1(1:P)=S{LIN(I:P): (1:(1:P))
=S5{L1}P):(1:(1:P))=P:(I:(I:P))=...

The above definition of the 7af algebra was chosen as the simplest and most
efficient one for an implementation in computer architecture (refer to section
4.4). A user, however, may wish to extend 9af by adding new functions and
establishing algebraic identities which can help deriving and proving
properties of symbolic programs. Consider, for example, the following
definitions of two functions, which we will find very useful in the following
sections.

DEFINITION. Let T{n} denote S{1,n+1}. Then a "composition" operator «{n} can
be defined as

fe{n} g=(T{n},) *(n} g.

Some of the algebraic properties of the class of composition operators can
be expressed, for example, by the following equivalences in 7.

PROPOSITION. For all f, g, h € ® and (ay, ..., a,) € A",
) (feg):(ay, ... ap) =f((g ay,....a)) where f=u(f),
)] (T,f)o{n) g=(T(n},f) and (F,De(n}g=g,
€) (f o{n} g)eh=1fe(n} (g h),
(4) If m > n then

(f*{m} g) o{n} h=(f ¢{n} h) *{m} (g e{n) h)
and also
(f o{m} g) *{n} h =1 ¢{m} (g *{n) h).

PrROOF. The proofs are straightforward verification and are omitted.

3. Combinatorial Equations in Jaf

At the end of the previous section we have demonstrated how we can use
the Jaf algebra to directly define new functions from the primitive ones. In
the following we discuss an alternative function construction mechanism in

Functional Programming with Combinators 275

Jaf, recursion. Recursion can be used to write functional programs in the
form of recursive definitions. We show that (partial) canonical solutions to a
finite set of combinatorial equations are determined uniquely in 7af and can
be found in a uniform way by simple abstraction algorithms based on the
following completeness and fixed point results.

DEFINITION. G(Vy, ... » Vpy), denoting a term over Jaf in variables from a
fixed set of variables {vy, ..., vy,], is defined by induction as follows:

(i) Vi, . » Vpyy and elements of Tup are all terms,
(ii) if Gy, Gy are terms then G, : Gy and Gy *{i} G, are also terms.

DEFINITION. Let 2 < Tup. An applicative function y: 4% — 2 is called
representable over Jafif

dge 0,V (ag,..,a)e A giag, .. ag) =A@y ., a9)

DEFINITION. Let 2 ¢ Tup. An applicative function v: 4% — 2 is called
algebraic in Jaf if there is a term G over Jaf in variables from a fixed set of

variables {vj, ..., vy} such that for all(ay, ... , a,) € 2%,
'Y(al, ey an) = G(Vl/aI) ovry vn/an):

where v/a denotes the simultaneous replacement of all occurrences of the
variable v by the element a.

If we postulate that all applicative algebraic functions are representable in
a system then the system is called combinatory complete (a notion attributed
to Curry (1930)).

THEOREM (Combinatory Completeness). The Jaf algebra is combinatory
complete, i.e. if G(vqy, .., vy)is a term over Jafin variables from a
fixed set of variables (v{, ..., vy} then there exists an (extensionally

unique) element f in ® such that for all(aq, ... , 84,) € 4",
G(vi/ay, ... Vpfay) = £ (ay, .., ay).

PROOF. By induction on the structure of a term.
(1) If G contains no free variables then f = (T'{n}, G), because
£10vq, s V) = (T DG, vys oy V) = S(1041)}(G, vy, .., V) = G
(1) If G is a variable, i.e. G(vVy, ., vy, .0, V) = Vi then f = §{i,n} because
£1(vq, oy V) = REENVY, o, V) = SE (VY e, V) = Vg

(iii) If G(vy, wn) V) = G1(V1s oo s V) 1 Golvy, ..., Vy) then by induction step
G1(vis s Vo) =111 (V] o0 s V)
Go(V1s e s V) =y 2 (V1 e, V).

Hence f = f; *{n} f;, because

276 J. Gibert

f: (Vl, ves Vn) = (fl . (Vl, ey Vn)) . (f2 . (Vl, vee y Vn))
= G1(V{s e s V) 1 Go(Ves oo s V)
= G(Vl, vee y Vn).

(iv) If G(vy, o V) = Gy(ve, o, V) *{m) Gy(vy, ..., V) then by induction step,
in a similar way to above, we have f = f; *{m+n} f5.

The uniqueness of f follows directly from the (EXT) rule.

COROLLARY. Jaf is an extensional combinatory algebra (cf. Barendregt, 1981;
Meyer, 1982).

A combinatory algebra can be constructed explicitly in Jaf because it is
sufficient to isolate two different elements K and S of Jaf such that for all
a,b,ce 4, K:a):b=aand ((S:a):b):c=(:¢c):(b:c) The
existence of elements K and S in an algebraic structure guarantees solutions
to a finite set of combinatorial equations (Barendregt, 1981), but the process
of finding these solutions in terms of S and K is unacceptable from a
computational point of view, because it leads to a combinatorial growth in
the size of resulting variable free expressions (Turner, 1979a; also Burton,
1983). The above proof of the completeness theorem demonstrates a practical
algorithm which performs abstraction on combinatory terms with respect to
all specified variables in a single step. This is possible because of the given
definition of the Jaf algebra. The algorithm also retains information from
functional terms within combinatory expressions that enables a parallel
reduction of the expressions. Our algorithm is similar but more direct then
the one presented by Abdali (1976), and it yields compact and algebraically
structured combinatory expressions.

A special case of a combinatorial equation is recursive definition. One can
find the representation of a recursively defined function in Jaf using fixed
point functionals (Barendregt, 1981).

DEFRINITION, A recursive definition over Jaf is a finite system of equations of
the form:
Vi = G

where G; is a term in n variables from the set of variables {vq, ..., v;, ..., Vp}.

i

DEFINITION. A fixed point functional is a functional o such that for any
function g4

Y(g)=g(2(4))
i.e. (g) is a fixed point of g,

THEOREM (Fixed Point). Ler Z = S{2,2) *{2) ((S(1,2) *{2) S({1,2)) *{2) S{2,2}).
Then the elementY = (Z, Z) of @ represents a fixed point functional
Ye Fun.

Functional Programming with Combinators 271

PROOF. For any f € @
Y:if =u@)z (£)=5(22)7: (£) ((5(1.2}7 (£): (S(1.2)7z (£))) : (5(2.2)7 (£)))
=f:(@Z,Z):f)=£f:(Y:f).
PropPOSITION (Double Fixed Point, Barendregt (1981)). Consider the following
system of equations in Jaf
vy = Gq(vy, vg)
vy = Go(vy, Vo).
We show that there exists f1, o € © such that
£; = G1(vq/fy, vo/fy)
£ = Go(vy/fy, vo/fy),

ie.
f]_ =gq . (fl’ fQ)

f2 =89 (fl, f2)

PROOF. Define X(f;)=(gy: 1) = (Y ¢ gy): f] so thatfy = X(f;). Thus

fr=gp: (. X(fy D =(* Y eg):fy=7(g* (Y o)
and
fp=x(f1)=(Y g :7(g * (Y *g))
Now let us verify the above choice of f and f;
fl=0@ *Yegp)=(1*(Yeg):X(g*Yeog))=(g1* Yeg):fy
=g1(f) (Y« g2) (F1)) =gy (1, X(£1)) =8 : (f1.)
fa=(Yog):o(@*(Yeg))=(Yeg): fi=0(0(gf1)) =8 & 7))
= go 1 (f1, fy).

THEOREM (Multiple Fixed Point). There exists f1, fy,f, € @ such that
fi =g (f1, £ . 1)
fo =gt (fy, fp e)
fn =8n: (fl’ fz, [T fn),

where g; € © corresponds to a term Gi(vy, ..., Vi, ..., V) over Jaf.

PrOOF. Let us define
.X(fl, fz, e fn—l) = Q’(gn : (flf f2, vy fn)) = (Y ¢(n-1} gn) (B £h1)
X (€1, B0 ooy £r9) = 7 ({gy *n-1} (Y o(n-1} g)) : (f1. f, i £19))
= (Y o{n-2} (€y_1 *{n-1) (Y o{n-1} g,)) : (f1, £y, ..., £1.9)

X(f1) =7 ((gp*{2} (Y ¢(3) (.. (Y #{n-2} (gn.1 *{n-1} (Y o{n-1} g)))..) : f1)
= (Y o (g *(2} (Y o3} (.. (Y ¢{n-2) (8nq *{n-1} (Y ofn-1} g)))..0)) i fy

278 J. Gibert

50 that
fn =g (fl, f2, NS AR fn) = X(fl, f2, ey fn-l)
fn1= gn.1 ¢ (fp o, ey fyoge X (B, B s £01))
= (gp.1 *¥{n-1} (Y o{n-1} g,)) : (£, 5, oo fr0n £10)
= X(fl, fz, s fn_z)

fi =708 % (Y o (. (Y o(n-2} (g1 *{n-1) (Y o{n-1} gp)))..))).

The proofs of the above theorem demonstrate a simple mechanical method for
finding uniform representations (fixed points) of functions defined by
mutually recursive definitions. This method is particularly suitable for
implementations of symbolic computation because expressions which
represent the fixed points are obtained by symbolic manipulations without
using any auxiliary functions such as tupling (Barendregt, 1981) or
environment (Williams, 1981). They can be computed while recursive
definitions are partially supplied, and the full representations are obtained
when the last mutually recursive definition is given. Therefore, any of the
mutually recursive functions can be used and evaluated independently of the
others from its full fixed point representation in Jaf.

COROLLARY. Recursive definitions over Jaf have (extensionally unique)
solutions (fixed points) in Jaf which can be found uniformly.

The canonical fixed points correspond to least fixed points of a structure
ordered by approximations (c.p.o.) (Barendregt, 1981). Therefore, simple
computational induction and algebraic manipulations can be combined to
infer properties of recursively defined functions.

Now, let us enrich Tup by numerals without worrying about the
representation of a numeral system in Jgf. The existence of a numeral
system in 7Jaf is guaranteed by combinatory completeness (Barendregt, 1981)
and it can be constructed in a number of different ways (Bunder, 1981;
van der Poel er al., 1980). We simply add new elements called numerals,

Npm <« Tup, and arithmetic functions, elements of Fun.

DEFINITION. Let numerals, Num < Tup, be represented by distinct new
elements n € Zup for n = 0,-1,1,-2,2,... . Let 2D2D{i} (addition functions),
SUB{i} (subtraction functions), EQU (the equality test function) be new

elements of Fun defined for all (ny, ., n) € Aumi, 1> 1, as follows:

(NUMD) ADD{i}(ny, o, My) = Nyt Wk I
(NUMZ) .S‘UﬂB{i}(nl, ‘e ﬂi> =N~ -0y
(NUM3) EQU(ny, ny) = T if ny= ny, otherwise F

We can now define, using recursive definitions, and represent, using the
fixed point operator 9; all computable functions in Jaf (Kleene, 1936).

Functional Programming with Combinators 279

4, Implementation of JAM

This section describes an interpreter and functional simulator of a
combinator machine called JAMachine. JAM is based on Jaf algebra defined
in section 2 and it is an algebraically structured architecture (Thatcher et
al., 1981). It supports both serial and parallel processing for functional
programs that manipulate symbolic streams. A functional program is first
translated into a combinator code using our abstraction algorithms, section
3. Combinator code is further translated into a directed graph for execution
on JAM. The execution of a graph takes place by communicating streams of
graph pointers, which represent argument and result subexpressions, along
graph arcs representing data dependencies between the combinators within the
combinator code. The memory organization of JAM supports sharing of
subgraphs through graph pointers, which in turn avoids re-evaluation of
separate copies of common arguments. JAM executes functional programs in
a data flow fashion but it applies sequential graph reduction for graphs, or
subgraphs, which are inherently sequential. This makes JAM a useful cross
between a data flow machine and graph reduction machine (Treleaven, 1984)
for the purpose of efficient symbolic computation.

4.1. PROGRAMMING ON JAM

JAM is programmed using a reduction language called fJaf, which is
founded on functional expressions that are formed using recursive definitions
or recurrence relations (viewed as simple iterations) over the domain of
arbitrarily long tuples (viewed as streams).

The expressions are interpreted in the cartesian closed universe
Ceuw(Tup, Fun). The elements of Tup are called functional objects, or simply
objects, and the elements of Fun are functions which manipulate objects.
Constant objects such as numerals and quoted character strings ("abc"), and
simple names, which are non-empty strings of symbols, are distinguished
from the other objects and they are called atomic objects. Simple names
that start with alphabetic characters may represent functions or objects and
simple names that start with non-alphabetic characters are reserved for
representing operators. A simple name may represent a
functions/objects/operators (1) directly, e.g. the name s represents the s
functions, (2) through a definition, e.g. DEF True = T, or (3) by combining
both previous methods, e.g. (S{1,2}, true).

A name that represents a function/object/operator is called
function/object/operator name, or just rname for short. A name can be
associated with any valid Jaf expression by the definition of the form:

DEF Func_name_expression = expression;

where Func_name_expression is a Jaf expression which starts with the name
of a function or an object, and than may be followed by variables. All Jaf
operators are infix operators, i.e. (a & b), which are defined and named in
the following general way:

OPR Opr_name_expression = expression;

280 J. Gibert

where Opr_name_expression is a Jal expression involving the name of an
operator and possibly variables.

A definition in 9af can be simple, functional or indexed. A simple
definition associates a Jaf expression directly to a name. If variables are used
to define a function, object or operator then the definition is called a
functional definition. For exarple, the following definition

DEF (Const, X) ' y = X;

specifies that Const represents a functional of arity one which takes its
first argument, x, to produce a constant function., An indexed definition may
take the form of either simple or functional definition. The difference from
the other two types of definitions is that an indexed definition is an
inductive definition which defines an indexed class rather then a single
function, operator or object.

A class is indexed by index expressions in variables ranging over natural
numbers. An index expression can only be a simple arithmetic expression
over natural numbers. A simple arithmetic expression is an addition or
subtraction of a constant to/from a indexed variable (e.g. i+1 or j-5).
However, there are the following restrictions: (1) the same index variable
name cannot occur more then once on the left hand side of the indexed
definition, (2) simple arithmetic expressions involving index wvariables
cannot occur on the left hand side of the definition. A name immediately
followed by an index expressions, which are separated by commas and
enclosed in a pair of braces is called index name (e.g. Ind_name{i+1,j-5}).

An indexed definition is usually combined with a simple definition to
specify the initial elements of the class. An example of an indexed definition
is a definition of an indexed class of functional objects, Fib_number{i}
(i=1,2,..), which corresponds to the chain of Fibonacci numbers as they
increase with the index i:

DEF Fib_number{i} = ADD{(2} : (Fib_number{i-1}), Fib_number{i-2});
DEF Fib_number{2} = 1;
DEF Fib_number{1} = 1;

Because the Jaf language has an agsociated partial algebra of functions Jafit
is possible to model a partial equivalence predicate in Jaf. The partial
equivalence function EQY applied to two functions results: T if the
functions can be proved equivalent in Jaf, F if they can be disproved
equivalent in Jaf, and it is indeterminate otherwise.

The undefined value can be simply represented in Jaf by the element
UV =(Y,T). The element UV has a dual purpose, for it represents the
undefined value as well as the everywhere-undefined function U7, because

Uura) = o7 (a) = ${1.2}((Y, T), &) = (Y, T) = UV.

A strict function # ie. # (UV) = UV, can now be expressed in Jaf using
£Q7 function which tests an argument to be UV, For example, a strict
version of fixed point functional 9, denoted 97/, can be expressed in Jaf as

YUV = (T, (EQV,UV)) *(2] Y *{2} UV;

Functional Programming with Combinators 281

A function can also be defined strict by the strict definition in Jal:
STRICT function_name;

This concludes this short introduction to the f9af language. Section 4.4
describes Jaf and JAM in more details.

We end this section by demonstrating how to define recursive lists in Jaf
which we will extend in the next section to the complete embedding of
Backus' FP into jaf, see Figure 1 and 2.

We define an indexed class of pairing operators (Church, 1941) A{n} in the
following way (Gibert, 1983b):

OPRaAn)b:x =(ax) Mn-1} (b:x);
OPRaAb:x=x:a:b;

One can use these pairing operators to inductively define finite lists and r.e.
infinite lists. For example, if (1 # (2 A (3 A~ UV))) is an object that represents
the list of three numbers "<1,2,3>" (UV represents the empty list) then the
list manipulating functions head and tail (Hd, Tl in Figure 1) can be
constructed using the function swap defined as follows:

DEF Swap = §{2,2} * ${1,2};
i.e. Swap : (a, b) = (b, a). Then
Hd:(@@arb)=(Swap, T):(a*b)=a

and
Tl:(@*b)=(Swap,F): (a*b)=b.

An indexed class of constructors for recursive lists, List{i},i=1,2,..., can be
now defined as

DEF List{n} = s{1,n} A{n+1} (T, List{n-1});

DEF List{1} =IA{2}1UV;
ie.List{3} : (a, b, c)=(1 A2 2AG AUV))).

]

4.2, FUNCTIONAL PROGRAMMING ON JAM

The universality and the expressive power of the Jal language guarantees
that one can run efficiently any "high level” functional programming system
based on lambda calculus on JAM. This will be exemplified by the following
simple embedding of Backus' FP (Backus, 1978) into Jaf The embedding of
FP into fJaf preserves the algebraic structure of FP and at the same time it
allows us to extend FP by (i) permitting programs to manipulate infinite
sequences (this may make some applications easier to program), (ii)
including infinite expansions for recursively defined functions into the
algebra of programs.

Firstly consider the data structures of FP. A set Ob of objects is built
recursively from atoms, At¢, L (the undefined object) and objects by the n-
ary list constructor, '< .. >, i.e.

Ob=Arv {1}Yu {<oby, .., oby>10by,..,0bye Ob).

282 J. Gibert

We define the embedding & to be a bijection from 06 to Tup as follows
g(L)=UV and e(<>) =TV,
e(true) =T and e(false) =F,
e(n)=n wherene Intandne Awm,
g(@)=a where ae Arand ae Tupis atomic,
g(<oby, ..., 0by>) = List(n} : (e(0b1), ..., &(oby)) = £(0bq) A (... A £(obp)...).

We extend Ob to Oinf by adding infinite lists of objects, i.e.

Oinf=0b v Oinf® where Oinf® can be represented by total recursive
functions Int — Oinf which are mapped on functional objects defined in
Jal which correspond to r.e. lists, For example, an infinite list of all
Fibonacci numbers can be constructed using the following recursive
definition in Jal
DEF (Fib_list, n) : m = n A ((Fib_list, m) : ((ADD, n) : m));
which can be represented by a generator, Fib_gen, directly defined in Jal as
DEF Fib_gen = (Y, ${2,3) M4} (T *{3} (T, ADD)) * (T, 0));

ie. Fib_gen : 1 =<0, 1, 1, 2, 3, 5, ..>.

Now, consider an application operation in FP, ": ", which applies a FP
function fto an object ob. We define e(f: o0b)=¢€(f) : €(0ob) where
e(f) is shown in Figure 1 and 2 and &(0b) is defined above.

4.3. ALGEBRA OF FUNCTIONAL PROGRAMS ON JAM

As in general mathematics, the distributivity of one function over another
is an important notion of the Jaf language. It permits convenient
representations of infinite expansions for recursively defined functions (e.g.
conditional expansions, see below), or it provides optimization
transformations for functional programs. For instance, it immediately follows

DEF Id = I;
DEF Hd = (Swap, S{1,2}):
DEF Tl = (Swap, S{2,2}):

DEF Select{i} = Hd ¢ Selectl{i};

DEF Selectl{i} = Tl e Selectl{i-1}:

DEF Selectl{l} = Id;

DEF Appendl = Hd ~{2} (Hd » tl);

DEF Not = Id * (T, F) * (T, T);

DEF Eq = (T, EQU) * Hd * (Hd « Tl);

/* recursive reviota */

DEF Rrev = Id ~{2} (Rrev e (SUB, 1)):

/* fixed point reviota */

DEF Rrev = (YUV, (T, Id) ~{3} (s{1,2} *{2} (T, (SUB, 1)))):

Fig. 1. Some FP functions in Jal

Functional Programming with Combinators 283

DEF (Const, £)

i

(T, £):

DEF (Bu, £, x)

i

Feo ((T,) ~{2} Id):

/*
(p => g ; r) is denoted by (if, p, g, r) where
(if, p, g,) : x =g : x if (p : x) evaluates to T,
(1f, p, 9, r) + x=1xr : x 1f (p : x) evaluates to F,
(if, p, g,) x = UV if (p : ®) evaluates to UV
*/
DEF (If, p, q, x) =p* q* r;
/*
(£l,..., £n] is denoted by (confun{n}, fl,..., £fn)
*/

DEF Confun{n} ${1,n~-1} *{n+l} (T, Confun{n-1});

o

DEF Confun{l} (T, UV);
/*

alfa f is denoted by (Apply all, f)
*/

DEF (Apply all, f) = (£ ¢ HA) {2} ((Apply all, £) s Tl);
STRICT Apply all;
/*

/f 1s denoted by (Insertl, f)
*/
DEF (Insertl, £) = £ ¢ (hd "{2} ((Insertl, f) e T1));
STRICT Insertl;

Fig. 2. Some FP functionals in Jaf

from the proposition in section 2. that the following two important
distributivity laws of Backus' Algebra of Programs (Backus, 1978) are
preserved in Jaf:

(Confun{n}, fy, ..., f) ¢ g = (Confun(n}, f; o g, ..., £, * g)
(P* *g)eh=((peh)*(qeh))*(geh).

It is a straightforward procedure to verify that the whole of Backus' Algebra
of Programs is preserved in Jaf. In fact we have carried out most of the
proofs with the assistance of JAM (Gibert, 1984b). The algebraic roots of Jaf
allow Jaf to be used as the meta-level to prove properties of Jaf programs.
The EQW function, which is used to model the equality predicate of FP, adds
extra power to FP since it uses Jaf to verify program equivalences.

Now we demonstrate how to extend the laws of Backus' Algebra of
Programs involving a conditional functional to include infinite conditional
expansions (Williams, 1982):

f=(po* qp) * (H®)) =g * q) * (P *a) * ((P2* qx) * .))
where # is a functional in Jaf such that for all h
HP:* g * 1) = (i1 * qi) * (H (D).

284 J. Gibert

For example, one of the laws noted above can be rewritten as follows:

(Po*qp) * (Pr*qp*..))eh=(oem)*(qoeM)* ((Preh)*(gyeh))*..),
because
feh = (Y,(T,p*q) *(2} Heh)

= (@** HY,(T,p**{2} H))) +h

= (@em)*(@em)* (@ *q)* H@((T,p*@ *{2)H))))h)

= (@eM*@emM*((pre)*(qeh)*..]

= (@D * Qo) * (HY, Te((T,p*q *(2} (T H))*(2) (T, h))

= (Y, Te((T,p*q) *{2) TeH)) *(2) (T,h)).

4.4, IMPLEMENTATION OF JAM

JAM(achine) is principally a combinatory graph reduction machine. Jal
expressions are translated into "free-from-bound-variables" (pure)
combinatory code through an implementation of our abstraction algorithms
described in section 3. Ordinary variables are abstracted using the
combinatory completeness result, and simple recursive and mutually
recursive variables are abstracted using the fixed point results. The execution
of the code takes place through a sequence of graph reductions that transform
the Jal expressions into their meaning (the elements of Ceu{Fun, Tup)).

44.1. EVALUATION MODES

The standard evaluation mode for a Jal expression is lazy (or normal
order), ie. evaluation of an expression is leftmost in respect to the
application operation, and evaluation of a subexpression is delayed until it
becomes the leftmost. The leftmost component of an expression determines
the reduction rule or the definition simplification to be applied. All required
arguments are consumed and a new expression which represents the result of
applying the particular rule or simplification is substituted in the place of
the old expression. If no reduction or simplification can be applied the lazy
evaluation terminates.

However, the value of a non-leftmost subexpression may be required by
JAM either during the execution of a program (e.g. by a primitive arithmetic
function) or after the execution terminates (for example, to print a result).
In the first case, the normal order evaluation of an expression is postponed
while the argument subexpressions are executed. If the results of the
evaluation of subexpressions are of the required type (e.g. a number) then
the execution proceeds, otherwise the execution terminates. This type of
evaluation is called eager (or innermost order) and is known to be not safe
semantically when used exclusively (Eick & Fehr, 1983). However, if we
restrict eager evaluation to the following two cases, we are able to preserve
the simple algebraic model and maintain efficiency of execution of
functional programs: (1) the execution of strict functions, e.g. arithmetic or
relational functions, (2) the execution of the pipe-apply operator.

The pipe-apply operator "%" is a functional (module) composition
operation naturally supported by the architecture of YJAM which is brought to

Functional Programming with Combinators 285

the language level to allow a functional program to be built out of simple

combinations of interconnecting subprograms, cf. Figure 3. The pipe-apply
operator is defined as follows

%t (@, wna)=s (Hg, .8,)
In other words, the pipe-apply operator applies a function f; to a tuple
(a1, ..., ay) and at the same time routes the output of £, to the input of £. In
particular, if f; denotes a functional object (e.g. Fib_number in section 4.1)
then the pipe-apply operator computes f, before it is applied to £.

J-Machine 1,3 (MAY 86) =~ type "help;" for help
1> /*

1> A program which sorts stream of n numbers

1>

1> Max to_left shifts greatest number of n

1> numbers of a tuple to the left of the tuple

1> =/

1> DEF Max_to left{n} =

1> GT

1> *{2} ((Max to left{n-1} % S{1,2}) *{n} S{2,n})
1> *{2} ((Max to left{n-1} % S{2,2}) *{n} S{i,n})
1> '

2> DEF Max_to left{l} =

3> /%

3> Many swap shifts first element of a n—tuple

3> £o the last position in the tuple

3> */

3> DEF Many swap{n}
4> DEF Many swap{l}
5> /*

5> Main program
5> */

5> DEF Sort{n} = Sorti{n-1l}

5> % Many swap{n}
5> % Max to_left{n}
5>

6> DEF Sort{l} =

7> ARGS Sort{n} =

8> /*

8> Execution

8> */

8> Sort{10} : (3,1,6,5,9,2,4,8,7,0);

§5{2,2} *{n} S{1,n};
I;

It

(0,1,2,3,4,5,6,7,8,9)
9> ~D
End of session.

Fig. 3. Example program.

286 J. Gibert

JAM transforms a Jal expression into its full (not lazy) meaning in
CeulFun, Tup). An expression is normal order evaluated to produce a lazy
resul. If the evaluation terminates, then the result is interpreted in
Ceu(Fun, Tup). The interpretation (meaning) in Ceu(Fun, Tup) is obtained by
recursively applying normal order evaluation to each immediate
subexpression of the result of the evaluation.

4.4.2, EQUIVALENCE PROOFS

JAM uses lazy evaluation when proving equivalences between faf
expressions. Lazy evaluation guarantees correctness of a proof. A proof is
performed through the analysis of symbolic execution of functional
expressions during which comparisons and evaluations are applied
alternately. Before any evaluation takes place, the expressions are compared
for identity. If they are not identical, they are lazily evaluated. Then, the
proof continues recursively while the resultant expressions are compared
subexpression by subexpression.

If a disagreement occurs between the evaluations at any stage of the proof,
the data base of equivalences is consulted. If, after using all possible
equivalences, the evaluations are still not equivalent then the proof fails,
otherwise the proof continues until the evaluations fully terminate.

J-Machine 1.3 (MAY 86) - type "help;" for help
1> /*

1> A simple inductive equivalence
1> =/

1> DEF A{n} = A{n~1};

2> DEF A{l} = B;

3>
3> TRACE PROVE ON{i} A{i} = B;
Induction basis:
LHS: Start sub-reduction of (
(A) definition => (
RHS: Start sub-reduction of (
Proof completed.
Induction hypothesis:
LES: Start sub-reduction of (A{i})
RHS: Start sub-reduction of (B)
Induction step:
LHS: Start sub-reduction of (
(A) definition => (A{i})
(

ww P

RHS: Start sub-reduction of B)
Proof completed using induction hypothesis.
(A{i}) is equivalent to (B)

9> ~D
End of session.

Fig. 4. Example of an induction proof.

Functional Programming with Combinators 287

An inductive equivalence is proved in two separate stages: the base stage and
the induction stage. In the base stage the index variables of a proof are
assumed to have the value 1 on both sides of the equivalence and the proof
proceeds as described before. In the induction stage, the induction hypothesis
is assumed as one of equivalences, and the index variable of a proof is
substituted by its successor on both sides of the equivalence. Formal indices
are changed after the first reduction to inductive formal indices which
cannot be further used in the execution.

For example, consider the induction proof in Figure 4. When JAM
attempts to reduce A{i+1}, the simplification by definition is applied once
and it results in A{i}. However, now the index (i} is an inductive formal
index, the execution terminates without going into an infinite loop, and the
proof proceeds as described before.

4.4.2. CODE GENERATION

The 7af combinatory code representing a functional program can be
executed on a sequential reduction machine such as the GMD machine
(Berkling, 1975) or it can be further translated to low level code capable of
running on other reduction architectures, e.g. SKIM (Clarke ar. el., 1980)
or NORMA SASL (Turner, 1981).

For execution on JAM, a Jaf expression is translated into a directed graph
composed of two types of nodes. The first type of node is called function
node and it represents a primitive or defined 7af function, see Figure 5. The
second type of node is a subexp node for representing Jal subexpressions.

Input arc ‘

Input ports - -

Function binding Index binding

v~ - Qutput ports
L Output arc

Fig. 5. Node representation of a function

Both types of nodes contain the following two pointer fields (Figure 5):

(1) a function or subexpression graph binding which points to the graph
containing the body of the corresponding function or subexpression,

(2) an index binding which points to the global definition table entry for a
function or subexpression, where actual indices and other local data are
kept.

Arcs correspond to application operations through which arguments and

results are passed between functions. Therefore a graph node corresponding

to a Jaf function has a single arc which delivers an argument graph pointer

288 J. Gibert

or an argument stream, and a single arc for the result graph pointer or the
result stream, Figure 5. However, there may be more than one input or
output port to a node. Nodes for functions with parameters possess a single
value input port for each parameter and a multiple value input port for other
arguments. Ports for a node are ordered from "left to right". Arguments are
gathered and assigned to parameter ports in the order of arrival on the input
arc. A node can start consuming other arguments only after all parameter
ports are filled. The order of results on the output arc is determined by the
order of the output ports.

The ARGS definition of Jal specifies the number of parameters (arity) for a
function, which in turn specifies the number of ports to be used in the
corresponding function node. For example, an indexed class of Jalfunctions,
f{n} (n=1,2,...), with the following ARGS definition

ARGS f{n} =n;

corresponds to the node templets with n-1 parameter ports plus one argument
port. This feature gives a very fine control over the running of JAM, because
it makes possible to condition the execution of function on availability of
all parameters, cf. Figure 3. Infix operators of Jaf, which are single nodes,
have two extra parameter ports for the operands. If operands are present then
the operator node is an ordinary function nodes, cf. *{2} node in Figure 6.

(1,1)

Fig. 6. Graph Representation of Fibonacci Function

Functional Programming with Combinators 289

ExaMPLE. We will illustrate code generation on the following single recursive
definition of Fibonacc¢i numbers:

DEF Fib_number{n} =Fib{n}: (1, 1);
DEF Fib{n] = (T, Fib{n-1}) *{2} ADD{2};
DEF Fib{1} = ${1,2};

A graph which is produced from this definition is shown in Figure 6. All
nodes are marked redex, and with the index n being a positive integer, e.g.
Fib{5s}, this is a pure data flow graph.

4.4 3. EXECUTION

The execution of a Jalexpression on JAM is a combination of data flow
and reduction, cf. (Treleaven, 1984). That is, the flow of data itself does not
transfer control from one function node to another, as is the case in standard
data flow (Some nodes, e.g. functions such as Fib_number(n} defined in
section 4.1, might not have input or output arcs). Instead an independent
control transfer takes place according to a global definition table.
Availability of data arguments in a function node is not in itself sufficient
to initiate execution of this node and the function needs to be marked redex
in the global definition table entry for this function for the execution to
proceed. Therefore, JAM treats a graph as the specification of the partial
ordering of reduction sequences. ’

Function nodes or subexpression graphs marked in the global definition
table as redexes are executed, the intermediate results are stored as pointers
to new nodes or graphs, or as data values or index values in the global
definition table. The execution of functions and subexpressions, and the
change to corresponding indices from formal to actual in functions and
subexpressions is delayed until the corresponding nodes are required to
produce values. This technique results in considerable space and time
improvements over pure data flow as it permits the immediate distribution of
arguments to any destination in the graph, and at practically no cost since
most reductions of Jal expressions are simply link manipulations. Consider,
for example, the “"composition" operator "e" which has been defined in
section 2. The reduction of the Jalexpression (feg): x is as follows

€9 (feg):x — ((TH*g):x
(2) = ((TH:x)(g &)
3) — (g)

Execution of the "*" operator in the first step creates a pointer node x'
which points to the value of the data argument x. Then the reduction of the
T combinator in the second step destroys the link x'. Therefore the whole
reduction (steps 1 to 3) does not incur any overhead of coping, transmitting
and possibly re-evaluated of x unnecessarily.

4.4.4, PERFORMANCE

We have made a prototype implementation of JAM interpreter and
functional gimulator in the C language under the UNIX 4.2BSD operating

290 J. Gibert

system on VAX 11/780 at the University of Melbourne (Gibert, 1984b). The
interpreter runs as a single system process but uses a fixed number of child
subprocesses and pipelines with which it emulates parallel execution.

The preliminary performance analysis of JAM interpreter has been very
encouraging. We have run a number of simple benchmarks to compare the
time taken by our interpreter (total elapsed time under a light system load)
to execute simple functional programs, e.g. Fibonacci function, with the
time taken to execute the same programs by a conventional LISP interpreter
(Foderaro at. el., 1983). We considered only the execution time, as the
translation time in our system is negligible compared to the time taken to
perform evaluations. In all cases our interpreter, using only four
subprocesses, was more than one order of magnitude faster than the LISP
interpreter. Since our interpreter used very simple data structures and used
the standard system-supplied process and memory management package which
forms a bottleneck in the interpreter (up to 65% of the processing time was
spent on process and memory management), it compares even more favorably
with the LISP interpreter which utilizes sophisticated memory management
facilities. However, it remains to be seen what performance can be achieved
for larger programs as we would need to implement a complete compiler for
the figures to be meaningful.

Conclusions

In this paper we aimed (o construct an optimal algebraic system, which
would have the power to accommodate any functional programming language
inspired by the lambda calculus approach to the treatment of computable
functions, and which could be used as a basis for an efficient machine
architecture to implement symbolic computation.

JAM(achine) is designed in accordance with the algebraic construction of
our combinatory system, the Jaf algebra. This avoids an additional metalevel
needed for proving properties of programs and allows JAM to assist a
programmer in carrying out proofs and program transformations. The
combinators provide for machine instructions of a possible architecture but,
at the same time, they are easily accessible to programmers.

One issue that has not been covered in the paper is that of finer-grain
parallelism. The combinator code of a Jaf expression already possesses
properties which make it possible to use very fine-grained parallelismn in
execution of functional programs, i.e. distributivity and freedom from bound
variables, but there are at least three ways to further enhance inherent
concurrency of the combinatory code. Firstly, it is possible to reduce all
argument subexpressions in parallel, which could be considered as separate
processes, after the analysis of argument dependencies between combinators
in the code. For example, arithmetic (strict) operations already demand the
evaluation of their arguments in parallel. Secondly, our graph, which
represents the structure of a program, can be easily spread across many
parallel processors similarly to data flow approach. Lastly, explicit parallel
control operators such as fork could be introduced to the 7af language. It is
an interesting question as to which of these methods would best lead to the
highest degree of concurrency in functional/symbolic computation. Some

Functional Programming with Combinators 291

work in this direction has already been started (Hudak & Goldberg, 1985;
Halstead, 1985; Burton, 1984; Maurer & Oldehoeft, 1983; Maurer &
Oberhauser, 1985) and parallel machines have been built (Mago, 1982;
Kluge, 1983; Buchberger, 1984), but so far there is no parallel reduction
machine that uses combinators to implement symbolic computations.

Work is currently in progress aimed at emulating a fine-grained parallel
JAM on a data flow computer. Furthermore, recent developments in the
hardware of data flow and parallel reduction machines are making a practical
hardware implementation of a combinator based symbolic computation
system such as ours feasible and very appealing.

Acknowledgements

Valuable suggestions by Bruno Buchberger and thoughtful comments from the referees have
materially improved the presentation and the content of this wark from the initial manuscript,
and are gratefully acknowledged. Thanks to Dianne McKerrow who has helped greatly with
preparation of the manuscript,

References

Abdali, S. K. (1976). An Abstraction Algorithm for Combinatory Logic. Journal of Symbolic
Logic 41,. 1, pp. 222-224,

Amamiya, M., Hasegawa, R, (1984). Dataflow Computing and Eager and Lazy Evaluations. New
Generation Computing 2, pp. 105-129,

Backus, I, (1978). Can Programming Be Liberated from the von Neumann Style? A Functjonal
Style and Its Algebra of Programs. CACM 21, 8, pp. 613-641.

Backus, J. (1981). The Algebra of Functional Programs: Function level reasoning, linear
equations and extended definitions. Proceedings of the International Symposium on the
Formalization of Programming, Peniscola, Spain, April 1981. Lecture Notes in Computer
Science 107, Springer Verlag, pp. 1-43.

Barendregt, H. P. (1981). The Lambda Calculus, Its Syntax and Semantics. Studies in Logic 103,
North-Holland.

Berkling, K. J. (1975) Reduction Languages for Reduction Machines. Proceedings of the IEEE
International Symposium on Computer Architecture, January 1975, pp. 133-140.

Bohm, C. (1982) Combinatory Foundation of Functional Programming. ACM Symposium on
Lisp and Functional Programming, June 1982,

Buchberger, B. (1984) The Present State of the L-Network Project. Proceedings of Mini and
Microcomputers and their Applications 84, Acta Press, Anaheim, pp. 178-181,

Bunder, M. W. (1981) Natural Numbers in Illative Combinatory Logic. Proceedings of the Sth
Latin American Symposium on Mathematical Logic, Bogota, Lecture Notes in Pure and
Applied Mathematics, Springer-Verlag.

Burton, F. W. (1983) A Linear Space Translation of Functional Programs to Turner Combinators.
IPL 14, 5, pp. 201-204.

Burton, F. W, (1984) Amnotations to Control Parallelism and Reduction Order in the Distributed
Evaluation of Functional Programs. TOPLAS 6, 2, pp. 159-174.

Church, A. (1941) The Calculi of Lambda Conversion to Metamathematics, Princeton University
Press, Princeton.

Clarke, T. J. W., Gladstone, P. J. 8., MacLean, C. D., Norman, A. C. (1980) SKIM - The §,K,I
Reduction Machine. Proceedings of the 1980 ACM Symposium on Lisp and Functional

292 J. Gibert

Programming, August 1980, pp. 128-135.

Curien, P. (1986) Categorical Combinators. Information and Control 69, pp. 188-254.,

Curry, H. B. (1930) Grundlagen der kombinatorishen Logik. American Journal of Mathematics
52.

Eick, A., Fehr, E. (1983) Inconsistencies of Pure LISP, Proceedings of 6th GI-Conference on
Theoretical Computer Science, Lecture Notes in Computer Science 145, Springer Verlag,
pp. 101-110.

Engeler, E. (1977) A New Type of Models of Computation. Proceedings of the Sixth Symposium
on the Mathematical Foundations of Computer Science, Tatranska Lominca, Czechoslovakia,
September 1977, Lecture Notes in Computer Science 53, Springer Verlag, pp. 52-58.

Engeler, E. (1981) Algebras and Combinators. Algebra Universalis 13, pp. 398-392,

Engeler, E. (1981) Equations in Combinatory Algebras, Lecture Notes in Computer Science 164,
Springer Verlag, pp. 193-205.

Foderaro, J. K., Sklower, K., Layer, K. (1983) The Franz Lisp Manual. Unix Distribution,
University of California,

Friedman, D. P., Wise, D. S. (1976) CONS Should not Evaluate its Arguments. Proceedings of
the Third International Collogium on Automata, Languages and Programming, Tnly 1976,
Edinburgh University Press, Scotland, pp. 257-284.

Gibert, I., Shepherd, J. A. (1983) From Algebra to Compiler: A Combinator-Based
Implementation of Functional Programming. Proceedings of the Third Conference on
Foundations of Software Technology and Theoretical Computer Science, Bangalore, India,
December 1983, pp, 290-314.

Gibert, J. (1983) An Elementary Model for Functional Programming with Infinite Objects.
Technical Report 37, Monash University, Clayton, Australia, May 1983.

Gibert, J. (1984a) Functional Programming with Combinators. Proceedings of the Logic and
Computation Conference, Monash University, Anstralia, January 1984,

Gibert, I. (1984b) J-Machine Users' Manual. Technical Report 84/10, University of Melbourne,
Parkville, Australia, September 1984,

Halstead, R. H. (1985) Multilisp: A Language for Concurrent Symbolic Computation. TOPLAS 7,
4, pp. 501-538.

Hudak, P., Goldberg, B. (1985) Serial Combinators: "Optimal" Grains of Parallelism,
Proceedings of Functional Programming Languages and Computer Architectures, September
1985, Lecture Notes in Computer Science 201, Springer Verlag,

Hughes, R. . M. (1982) Super-Combinators: A New Implementation Technique for Applicative
Languages. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Pittsburg, PA, June 1982, pp. 1-10.

Jones, N. D., Muchnick, S. S. (1982) A Fixed-Program Machine for Combinator Expression
Evaluation. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Piusburg, PA, June 1982, pp. 11-20.

Kleene, S. C. (1936) Lambda Definability and Recursiveness. Duke Mathematical Journal 2.

Kluge, W. E. (1983) Cooperating Reductions Machines. JEEE Transactions on Computers 32,
11, November 1983,

Longo, G., Moggi, E. (1984) Godel Numberings, Principal Morphisms, Combinatory Algebras.
Lecture Notes in Computer Science 176, pp. 397-406.

Mago, G. (1982) Data Sharing in an FFP Machine. Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, Pittsburg, PA, June 1982, pp. 201-207.

Maurer, P. M., Oldehoeft, A. E, (1983) The Use of Combinators in Translating a Purely
Functional Language to Low Level Data Flow Graphs, Journal of Computer Languages8, 1,
pp. 27-45, JTune 1983,

Functional Programming with Combinators 293

Maurer, D., Oberhauser, H. (1985) Ein Simulator fur die parallele Reduktion von Kombinatorcode.
SFB 124-C1, Universitat Saarbruecken,September 1985.

McCarthy, J. (1960) Recursive Functions of Symbol Expressions and their Computation by
Machine. Communications of the ACM 3, 4, PP. 184-194,

Meyer, A, R. (1982) What is a Model of the Lambda Calculus? Information and Control 52, 1.

Obtulowicz, A., Wiweger, A. (1981) Functional Interpretation of Lambda Terms. Colloguia
Mathematica Societatis Janos Bolyai 26, Mathematical Logic in Computer Science,
Hungary, 1978, North-Holland.

Peyton-Jones, S. L. (1982) An Investigation of the Relative Efficiencies of Combinators and
Lambda Expressions. Proceedings of the 1982 ACM Symposium on LISP and Functional
Programming, Pittsburg, PA, June 1982, PP. 150-158.

Sleep, M. R. (1980) Applicative Languages, Dataflow and Pure Combinatory Code. Proceedings
of COMPCON, Spring 1980, pp.112-115.

Stoye, W. R., Clarke, T. J. W., Norman, A. C. (1984) Some Practical Methods for Rapid
Combinator Reduction. Proceedings of the 1984 ACM Symposium on Lisp and Functional
Programming, August 1984, pp.159-166.

Thatcher, J. W., Wagner, E. G., Wright, J. B. (1981) More on Advice on Structuring Compilers
and Proving Them Correct. Theoretical Computer Science 185.

Treleaven, P. C. (1984) Decentralised Computer Architecture. New Computer Architectures,
International Lecture Series in Computer Science, Academic Press, pp. 1-55.

Turner, D. A. (1979a) Another Algorithm for Bracket Abstraction. Journal of Symbolic Logic
44, 2,

Turer, D. A. (1979b) A New Implementation Technique for Applicative Languages. Software
Practice and Experience 9.

Turner, D. A. (1981) Recursion Equations as a Programming Language. Functional Programming
and its Applications (An Advanced Course), JTuly 1981, University of Newcastle-upon-Tyne,
Cambridge University Press, pp. 1-28 ; NORMA SASL, Burroughs Corp., October 1985.

van der Poel, W. L., Schaap, C. E., van der Mey, G. (1980) New Arithmetical Operators in the
Theory of Combinators (Parts LILIIT). Indag. Math. 42, pp. 271-325.

Williams, J. H. (1981) Formal Representations for Recursively Defined Functional Programs.
Proceedings of the International Symposium on the Formalization of Programming,
Peniscola, Spain, April 1981, Lecture Notes in Computer Science 107, Springer Verlag, pp.
460-470.

Williams, J. H. (1982) On the Development of the Algebra of Functional Programs. ACM
Transactions on Programming Languages and Systems 4.

