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SUMMARY

a Helices are a basic unit of protein secondary struc-
ture and therefore the interaction between helices
is crucial to understanding tertiary and higher-order
folds. Comparing subtle variations in the structural
and sequence motifs between membrane and solu-
ble proteins sheds light on the different constraints
faced by each environment and elucidates the
complex puzzle of membrane protein folding. Here,
we demonstrate that membrane and water-soluble
helix pairs share a small number of similar folds
with various interhelical distances. The composition
of the residues that pack at the interface between
corresponding motifs shows that hydrophobic re-
sidues tend to be more enriched in the water-
soluble class of structures and small residues in
the transmembrane class. The latter group facili-
tates packing via sidechain- and backbone-medi-
ated hydrogen bonds within the low-dielectric mem-
brane milieu. The helix-helix interactome space, with
its associated sequence preferences and accompa-
nying hydrogen-bonding patterns, should be useful
for engineering, prediction, and design of protein
structure.

INTRODUCTION

The a helix is by far the most common regular secondary struc-

ture element. In water-soluble proteins approximately 35% of all

protein residues are in the a-helical conformation (Martin et al.,

2005). Moreover, membrane proteins are almost exclusively

a-helical bundles, with the exception of the b barrels found in
Structure 23,
the outer membrane of Gram-negative bacteria and mitochon-

dria. More than 30% of the homologous superfamilies described

in CATH are composed mainly or entirely of a helices (Greene

et al., 2007). These domains are found in both soluble (SOL)

and transmembrane (TM) proteins, and carry out a wide range

of biological functions.

While SOL domains are well studied, TM domains have

only recently begun to be elucidated. Since the first TM

protein structure was solved in 1984 (Deisenhofer et al.,

1984), the folding mechanism of these proteins has gradu-

ally become clearer (Bowie, 2005), yet much remains to

be discovered. These proteins are estimated to make up

20%–30% of open reading frames in known genomes (Wallin

and von Heijne, 1998), and are overwhelmingly a-helical, con-

taining one or multiple membrane-spanning helices. Specific

interaction patterns between helices play a critical role in

the function, assembly, and oligomerization of these proteins

(Langosch et al., 2010; Shai, 2001). Likewise, membrane

protein misassembly can contribute to a myriad of disease

states (Ng et al., 2012). However, due to experimental chal-

lenges in crystallization, TM proteins represent only 2% of

deposited structures (White, 2009). Despite this shortage,

deep computational and bioinformatics-based analyses of

helix-helix interactions will accelerate our understanding the

folding behavior of helical TM proteins (Nugent and Jones,

2012) and facilitate their design (Ghirlanda, 2009; Perez-Agui-

lar and Saven, 2012).

Consequently, the study of basic principles underlying the

fold space of the helix-helix interactome, namely understanding

the packing of helices, is intrinsic to understanding proteins.

For example, in 1977 Chothia, Levitt, and Richardson pre-

sented simple helix-helix packing rules as determinants of

protein structure (Chothia et al., 1977). An open question is

whether helices from TM and SOL proteins are similar in the

way they interact with each other and contribute to the overall

protein structure. A small subset of SOL helix-helix pairs were
527–541, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 527

mailto:william.degrado@ucsf.edu
mailto:ilan.samish@weizmann.ac.il
http://dx.doi.org/10.1016/j.str.2015.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2015.01.009&domain=pdf


shown to be structurally homologous to TM pairs presenting

similar properties, even though the overall distributions for

SOL dimers are quite different from those of TM dimers (Gim-

pelev et al., 2004). Here, we investigate the range of currently

known SOL helix-helix interactions and compare them with

those found in TM proteins, focusing on the interplay between

sequence and structure. To do this, we extend the approach

used previously for characterizing TM dimers (Walters and De-

Grado, 2006) to a larger database of TM dimers with stricter

criteria, and compare the results with dimers from water-solu-

ble proteins.

Analysis of sequences derived from helix-helix dimers propels

our understanding of helix-helix interactions. The most exten-

sively studied TM helix dimer is glycophorin A (GpA), a common

model system (Lemmon et al., 1992; MacKenzie et al., 1997).

Each helix of GpA contains two Gly separated by three amino

acids, known as the GxxxG motif (Lemmon et al., 1994), which

plays a key role in dimerization. The GxxxG motif is highly over-

represented in the sequences of TMproteins (Senes et al., 2000),

and has been well-characterized structurally. GxxxG-containing

dimers tend to have a parallel, right-handed geometry, compact

helix-helix packing, and stabilizing interhelical backbone-medi-

ated hydrogen bonds (MacKenzie et al., 1997; Mueller et al.,

2014; Senes et al., 2001).

Comprehensive characterization via a variety of biophysical

and biochemical methods has established the GxxxG motif as

an important framework of TM helix-helix interaction (Russ and

Engelman, 2000). Gly can be commonly replaced by another

small residue, such as Ala or Ser in this motif (Mueller et al.,

2014; Russ and Engelman, 2000; Senes et al., 2000). The Ala

coil (Gernert et al., 1995) andGxxxxxxGmotif are other prevalent

sequence motifs found in membrane protein families (Liu et al.,

2002). Additional sequence motifs have been identified, which

depend on hydrogen bonds or weak polar interactions, and

include derivatives of the small-residue motifs mentioned above

(Adamian and Liang, 2002; Bowie, 2005; Gratkowski et al., 2002;

Han et al., 2011; Hedin et al., 2011; Herrmann et al., 2009; Lan-

gosch and Arkin, 2009; Lawrie et al., 2010; Liang, 2002; Sal-Man

et al., 2007; Unterreitmeier et al., 2007; Varriale et al., 2010; Wei

et al., 2011; Zhou et al., 2001)

However, a systematic study of sequence-structure rela-

tionships on the scale of the whole protein structure database

using structural bioinformatics is still lacking. Here we extract

helix-helix pairs from high-resolution, non-homologous TM

and SOL proteins from the PDB, and cluster them based on

sequence-independent geometric similarity. We contrast the

relative frequencies of each cluster in both environments and

identify specific conformations that are unique to one or the

other. Notably, sequence profiles can differ between the TM

and SOL data sets, even for geometrically identical clusters.

We also analyze the sidechain- and backbone-level interheli-

cal hydrogen-bonding interactions of residues in seven clus-

ters of TM helix dimers and in their structural counterparts,

namely, SOL dimers, extending an early analysis of Adamian

and Liang (2002). Characterization of these sequence, struc-

tural, and interaction motifs contribute to our understanding

of the folding of helical proteins and aid both in structure pre-

diction (Barth et al., 2009) and de novo design (Samish et al.,

2011).
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RESULTS

Clustering of TM Helical Pairs
Previously, Walters and DeGrado (2006) clustered the helical

pairs culled from the existing crystal structures of membrane

proteins to define distinct geometries for TM helical pairs, desig-

nated here as the WD analysis. Since then, the database has

increased roughly 4-fold, allowing us to use more stringent

criteria for clustering and resolve additional clusters. In our

earlier work, we clustered a library of 455 pairs using a greedy

clustering algorithm and a 1.5 Å cutoff, and found that 90%

fell within geometric clusters. Here, as we hoped to find addi-

tional geometries, we used a more generous criterion for inclu-

sion of helical pairs in the database but a more stringent cutoff

of 1.25 Å as the clustering criterion. We again used greedy clus-

tering and examined clusters with at least 25 members (repre-

senting 1.4% of the pairs, 16 in total). Clusters with fewer mem-

bers are not considered here. Now we find 16 clusters (1,290

pairs), which comprise 48% of the pair library of 2,694 dimers

(Figure 1). This coverage is smaller than the 90% seen previously

(455 pairs in the library) for several reasons. We increased

the minimal size of clusters to 25 members, so rare clusters

are now excluded from the analysis. Secondly, the increased

geometric stringency (root-mean-square deviation [RMSD]

% 1.25 Å) caused some of the WD clusters (RMSD % 1.5 Å) to

split into two clusters that did not separately meet the size

threshold for inclusion in the analysis. Finally, and most impor-

tantly, we used different geometric criteria to define pairs, allow-

ing large interhelical distances (up to 14 Å), whereas the previous

study required that pairs should have an interhelical distance

%12 Å. In the present study, most of these pairs with large in-

terhelical distances did not fall within well-defined clusters,

presumably because their geometries are determined by inter-

actions with other portions of the protein. When we use a cutoff

of 0.065 Å�1 for the dimer mean inverse distance (see Experi-

mental Procedures) we find that 67% of these more stringently

defined pairs are in the 16 clusters. Moreover, 70% of the clus-

tered dimers lie in the first seven clusters, each of which has

more than 70 members. In summary, the geometries of most

tightly interacting helices are well represented by the centroids

of clusters 1–7 (Figure 2), which we discuss in detail below. Inter-

estingly, Joo et al. (2012) mined the data sets of residues that

contact each other and computed the crossing angles of the cor-

responding helices. Plotting the histogram distribution of these

angles results in discrete peaks corresponding to the packing

states described here (Figure 2). Similar crossing angle distribu-

tions have also recently been computed for membrane proteins

(Lo et al., 2011).

Highly populated clusters of 70 members or more have been

defined in the present analysis, even though the increased

stringency split some of the previously defined clusters into

two. The overall division between antiparallel and parallel and

left- and right-handed clusters, i.e. the percentages of members

in each class of cluster, is strikingly similar between the water-

soluble and TM helix-helix interactome clusters (Figures 1A

and 1B, inset). Yet the relative weight of helix-helix distances

among these clusters displays differences (Figure 1). For

example, as seen in Figure 1C, the largest cluster in the previous

WD analysis (Walters and DeGrado, 2006) now splits into two
ts reserved



Figure 1. Similarities between the TM and

SOL Helix-Helix Clusters

(A and B) Description of the 16 TM (A) and 15 SOL

(B) clusters in respect of their crossing angle and

interhelical distance. Helix-helix crossing angle is

color coded by 90� segments as in the WD study

(Walters and DeGrado, 2006) to Antileft (red), Par-

right (yellow), Parleft (green), and Antiright (blue) with

the percentage of each group (inset pie graph) and

each cluster (pie graph on left) shown.

(C) The RMSD similarity of the top seven TM

clusters relative to their SOL structural counter-

parts are measured on the 12-residue windows

on the centroids with the smallest RMSDs along

the most populated 15-residue regions. The cor-

responding cluster number from the WD study is

depicted.
clusters (clusters 1 and 6), which we define as Antileft(int) and

Antileft(close), respectively (Figure 1A). In this nomenclature,

Antileft(int) refers to an antiparallel dimer with a left-handed

crossing angle and an interhelical distance that is intermediate

between the other two major antiparallel left-handed clusters

with close and far interhelical distances. Other than Antileft,

major clusters include Parleft(int), Antiright(close), Antiright(int)
Structure 23, 527–541, March 3, 2015
and Parright(close). There are other less

populated clusters that have, for ex-

ample, closer and greater interhelical dis-

tances than Parleft(int), but they did not

reach the criterion of 70 members that

we have set for more in-depth structural

analysis (Table S1).

The Most Prevalent Water-Soluble
Helical Pairs Have Geometries
Closely Related to Their Membrane
Counterparts
A total of 5,085 water-soluble helical pairs

were extracted from a database of pre-

dominantly helical proteins, and clustered

using the same methods as for the TM

pairs, yielding a total of 15 clusters,

ranging in size from 754 to 55 members

(Figure 1A; Tables S1 and S2). Together

this set comprises 52% of the total pairs.

The TM and SOL helix pair clusters are

geometrically highly similar with most

being antiparallel (70% and 68% for the

SOL and TM data sets, respectively) and

left-handed pairs (58.8% and 59.0% for

the SOL and TM data sets, respectively).

Although these cluster groups also share

similar interhelical distances (Table S1),

they differ in the relative abundance of

interhelical distances within each cluster

(Figure 1).

The top seven SOL clusters (Figure 2B)

include 74.0% of the clustered helix pairs.

With the exception of the Antiright(close)

motif, these are highly similar to the top seven TM helical clusters

(Ca RMSD % 1.3 Å, Figure 1B). Thus, the differences between

SOL and TM centroids are generally within the same range as

the RMSD between members of a given cluster (up to 1.25 Å).

Often there is a one-to-one relationship between the clusters,

although this is not always the case. Three notable exceptions

from this rule are: (1) the Antileft(close) motif found in TM pairs
ª2015 Elsevier Ltd All rights reserved 529



Figure 2. Description of the Seven Frequent TM and SOL Clusters

Average values of interhelical distance and crossing angle for the clusters are measured on the most populated 12-residue windows of the clusters colored in

orange in the centroids, and SDs are shown in parentheses. The top ten members in the clusters with the closest RMSD to the centroid are overlapped on the

lower panels.
is not among the top seven SOL clusters and is rare in the water-

soluble database (cluster 15, see Table S2); (2) a motif in the sol-

uble data set that is relatively close in geometry to the Antileft(int)

motif (RMSD = 0.6 Å for the centroids), and somewhat more

distant from the Antileft(close) motif (RMSD = 1.2 Å); (3) the

Antileft(far) motif shows high similarity to two different clusters

of related geometry in the water-soluble database (Table S2).

Helices tend to pack more tightly and have shorter interhelical

distances in membrane proteins compared with water-soluble
530 Structure 23, 527–541, March 3, 2015 ª2015 Elsevier Ltd All righ
proteins (Eilers et al., 2002; Oberai et al., 2009; Senes et al.,

2004; Zhang et al., 2009). For example, the TM Antiright(close)

and Parright(close) motifs have a closer interhelical distance

than the corresponding water-soluble motifs by 0.9 and 0.5 Å,

respectively. This tightening of the interhelical distance is well

documented in previous studies of helix-helix packing of mem-

brane proteins (Cross et al., 2013; Javadpour et al., 1999).

Indeed, while the packing energetics of TM and SOL proteins

is similar (Joh et al., 2009), TM proteins bury more residues,
ts reserved



Figure 3. Profiles of the Nearest Ca-Ca Distance, Average Hydrophobicity, Hydrogen-Bonding Fractions, and Propensity of Small-Residue

GAS on Structurally Matched Windows between TM and SOL Clusters

Residues at the interhelical interface are highlighted by orange dashed lines (B and D). The designation of positions in the heptad and tetrad repeats is shown at

the top (A and C).
which are smaller on average, compared with SOL residues

(Oberai et al., 2009), thus facilitating this phenomenon. In sum-

mary, the SOL and TM helix-helix interactomes display similar

structural fold space with a small bias towards tighter helix-helix

distances in the TM motifs.

Correlations between Interhelical Distance,
Hydrophobicity, Interhelical Hydrogen Bonding, and
Residue Preferences in Aligned Sequences of TM and
SOL Helical Pairs
We investigated possible similarities between the nearest Ca-Ca

distances, the average hydrophobicity, the hydrogen-bonding

fraction, and the sequence propensities for each position along

the aligned windows of the top seven TM and SOL clusters

(Figures 3 and 4; Figure S1). The structural resemblance of

TM and SOL clusters is manifested in the highly similar patterns

of the nearest Ca-Ca distance of their centroids. The periodicity

of the nearest Ca-Ca distance tends to display the heptad and

tetrad repeats for left- and right-handed helix dimers, respec-

tively (Figure 3), confirmed by least squares fitting of a sinusoi-

dal function to the data (Table S3). When helices cross with a

left-handed crossing angle, the interaction pattern resembles

that seen in classically left-handed coiled coils over a limited
Structure 23,
length of the chain (10–15 residues). We therefore denoted these

positions using the classical coiled-coil heptad nomenclature,

abcdefg (Crick, 1953a, 1953b; Sodek et al., 1972; Talbot and

Hodges, 1982). By contrast, the interaction pattern between

right-handed helix crossing approximately repeats each four

residues, denoted abcd. In both cases, the positions a and

d are at the interhelical interface.

Sequence profiles of the interhelical distance, hydrophobicity,

interhelical hydrogen bond frequency, and the propensity for

a position to be occupied by a small residue, Gly, Ala, or Ser

(termed herein as GAS) provide information concerning the

driving force for the assembly of helical pairs in different environ-

ments. Figure 3C presents data for the two helices in the TM

Antileft(close) motif, and its closest counterpart in the SOL data-

base, the Antileft(int) motif; the profiles for the TM and water-sol-

uble helices are colored black and red, respectively. Focusing

first on the interhelical distance profile, one can see that the

water-soluble distances tend to be very similar to that of

the TM at one end of the bundle, but diverge by about 2–3 Å at

the C terminus of helix A and the N terminus of helix B in the anti-

parallel motif. We also see a clear 180� phase shift between the

interhelical distance and the mean hydrophobicity at the corre-

sponding position in water-soluble proteins. This relationship
527–541, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 531



reflects the tendency of water-soluble proteins to have apolar

residues in buried positions and polar residues at water-acces-

sible positions. This tendency to place hydrophobic residues at

the a and d positions is reflected by different degrees of sinusoi-

dal hydrophobicity propensities in practically all SOL clusters

(Figure 4) and in propensities of the individual amino acids (Fig-

ure 5; Figure S2). By contrast, the hydrophobicity profile of the

TM is uniformly high, reflecting the overall hydrophobic nature

of TM helices. Hydrogen bonds are frequently observed along

the interfacial a and d positions of the water-soluble Antileft(int)

pair, but are highly restricted to the a positions in the correspond-

ing TM Antileft(close) motif. The difference reflects the closer

approach of the helices in the TM motif resulting in shorter inter-

helical distances at the a position. Finally, the TM Antileft(close)

motif has a very high propensity for GAS residues at only position

a of the motif, a tendency that is not present in the water-soluble

counterpart. The notable exception is of the significant prefer-

ence for His at Antileft(close) at a and d positions (p > 0.01, Fig-

ure 4). Upon further investigation, we found this to be due to

26 helical pairs (18.4% of Antileft(int)) derived from chlorophyll

binding proteins, which use His to coordinate metals (Braun

et al., 2011). Meanwhile, a similar TM motif Antileft(int) contains

only 3% of pairs from such proteins. Otherwise, we observed a

strong tendency to place small residues (Gly, Ala, or Ser) at

these positions (Figure 5A), a phenomenon seen also for the

TM Antiright(close) (Figure 5D; Figure S2F) and Parright(close) (Fig-

ure 5F; Figure S2H).

In parallel, bulky and b-branched amino acids are underrepre-

sented in these close TM motifs yet are more abundant in their

water-soluble counterparts, especially with increasing interheli-

cal distance (Figure 5). Thus, the presence of small residues fa-

cilitates close helix-helix packing reflected by closer interhelical

distances. In summary, themost striking difference in the profiles

lies in the strong hydrophobic periodicity seen for the water-sol-

uble pair, reflecting the hydrophobic driving force for assembly in

water. In contrast, the TM (close) motifs show a strong period-

icity in the GAS propensity, reflecting the strong driving force

for folding in membranes associated with the packing of small

residues along one face of a TM helix (Eilers et al., 2002; Oberai

et al., 2009; Senes et al., 2004; Zhang et al., 2009).

The interhelical distance of related helical pairs is affected by

the composition of the residues at the interface, as reflected in

the profiles for the Antileft(close), Antileft(int), and Antileft(far) motifs

(Figures 4A–4C). A comparison of the interhelical distance pro-

files for these three left-handed antiparallel motifs shows that

the TM and water-soluble motifs are essentially superimposable

for the intermediate and far motifs (correlations, all R2 > 0.71;

periods shown in Table S3). The repeated pattern of hydropho-

bicity remains strong for all three SOL motifs, while the TM

pairs remain uniformly hydrophobic. Conversely, the hydrogen-

bonding profiles are only similar between the water-soluble

and TM motifs for the Antileft(int) and Antileft(far) motifs (R2 =

0.55 for Antileft(far) helix A, but R2 > 0.67 for the others; Figures

4B and 4C). However, for the Antileft(close) motif, the frequency

of interhelical hydrogen bonds at interfacial positions is 2- to 3-

fold higher for water-soluble helices than for TM helices. This

finding may reflect the relative paucity of polar residues to form

hydrogen bonds in TM helices (Figure 4), rather than the favor-

ability of their formation in an apolar environment (Senes et al.,
532 Structure 23, 527–541, March 3, 2015 ª2015 Elsevier Ltd All righ
2004). As the helices become increasingly distant in progressing

from the Antileft(close) to Antileft(far) motifs, the propensity for

GAS residues decreases, becoming unfavorable for Antileft(far)

for both water-soluble and TM motifs.

A comparison of the antiparallel right-handed motifs with the

left-handed motifs (Figure 4 left versus right halves of the figure)

shows precisely the same trends, although the periodicity of the

profiles is shifted closer to 4-residues from the 3.5-residue period

seen for the left-handed motifs. The water-soluble Antiright(close)

motif shows a systematic increase in the interhelical distance at

one end of the pair while this divergence is not seen for the corre-

sponding TM motif. The TM Antiright(close) also shows a strong

GAS propensity at the a and d positions where the helices make

their closest contact. A strong GAS propensity is not seen in the

corresponding SOL motifs, possibly reflecting the hydrophobic

core (relative to hydrophilic surrounding) found only in the latter

motifs (Figure 4). Also, as seen for the Antileft motifs, the geometry

of the interacting helices became identical at intermediate

interhelical distances for both the water-soluble and TM motifs.

GpAwasanearly exampleof aGxxxGmotif.Geometrically, the

Parright(close) is similar to the GpA structure, and the RMSD be-

tween GpA and the centroid of the Parright(close) cluster is 1.5 Å

(by overlapping a window of 16 residues in the TM helix pairs).

The GxxxG motif is rare in this analysis of multispan proteins,

representing 11.9% of the top seven TM clusters. A possible

explanation is that GpA is an anchor to a constitutively dimeric

glycoprotein rather than a dynamically functioning protein, as is

the case for most TM proteins. Interestingly, our sequence anal-

ysis shows the GAS propensity is stronger at one of the two heli-

ces. This finding matches recent results from mutagenesis

analysis of the strengths of dimerization of integrin TM helices,

which display an asymmetric GxxxG packingmotif (Berger et al.,

2010). Peaks in the GAS propensity are also seen in one of the

two helices in the water-soluble Parright(close) motifs (Figure 4F).

The Clusters Have a Distinct Hydrogen-Bonding
Connectivity Network
Antiparallel helices can form interhelical hydrogen bonds be-

tween residues from interacting helices. Depending on the

sidechains and the interhelical geometry, a number of hy-

drogen-bonding patterns or ‘‘connectivities’’ are possible. For

antiparallel left-handed helical motifs hydrogen bonding is

geometrically feasible between a and a0, d and d0, a and d0,
d and g0, or a and e0. However, these do not occur with equal fre-

quencies. Classically, a-to-d0 hydrogen bonding has been exten-

sively studied and used in protein design (McClain et al., 2001,

2002; Oakley and Kim, 1998). However, this interaction pattern

is the exception rather than the rule for antiparallel helices. For

the motifs for which there are at least 25 observations of

hydrogen bonds, a-to-a0 and d-to-d0 hydrogen bonding generally

predominates over other hydrogen-bonding connectivities; this

is particularly striking for the TM Antileft(close) motif (Figure 4A),

in which the proportion of a-a0, a-d0, and a-e0 is 87:11:1 (Fig-

ure 6A). As the interhelical distance increases within a motif,

the preference for a-a0 andd-d0 becomes less striking (Figure 6A),

presumably because the greater interhelical distance provides

greater flexibility for sidechain interactions. Interestingly, pre-

cisely the same preferences for a-a0 and d-d0 connectivities are

seen in the antiparallel right-handed motifs (Figure 6C).
ts reserved



Figure 4. Comparisons of Interhelical Distances, Average Hydrophobicity, Hydrogen-Bonding Fractions, and Propensity of Small-Residue

GAS for Structurally Matched TM and SOL Motifs

(A–F) The 12-residue window of each TM centroid that contains the most cluster members was chosen as a representative sample for analysis. These and the

matching windows on each corresponding SOL cluster were analyzed together. Residues at the interhelical interface are highlighted by orange dashed lines. The

interhelical distances refer to the closest distance at a given Ca for one helix to a Ca in the neighboring helix. This figure is continued for additional pairs in

Figure S1.
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Figure 5. Propensities of Amino Acids in Different Positions at the Interhelical Interface

In A–F, residues labeled by asterisks or triangles are statistically overrepresented or underrepresented, respectively, as determined by the p value of a binomial

test (p < 0.05 or p < 0.01), relative to the expected amino acid frequency as described in Experimental Procedures (Table S4). This figure is continued for additional

pairs in Figure S2.
The hydrogen-bonding connectivities seen in parallel left-

handed hydrogen-bonding patterns follow the familiar patterns

expected from parallel coiled-coil motifs (Grigoryan and De-

Grado, 2011). The preferred hydrogen bonding at a positions

involves a-a0 connectivities. By contrast, d-d0 is rare, due to the

geometry of the coiled coil. Instead, d residues tend to hydrogen

bond to e0 of a neighboring helix (Figure 6B).

The only right-handed parallel cluster with sufficient num-

bers of interhelical hydrogen bonds to merit analysis was the

water-soluble Parright(close) motif (Figure 6D). In this case,
534 Structure 23, 527–541, March 3, 2015 ª2015 Elsevier Ltd All righ
a-d0 greatly outnumbered the a-a0 or d-d0 interactions. As

mentioned above, the opposite was true for right-handed anti-

parallel motifs.

The hydrogen-bonding connectivity maps also shed light on

the conformational specificity of TM and SOL helical bundles.

Firstly, in prototypical parallel coiled coils, buried hydrogen

bonds typically form between small polar residues in the same

register of the heptad repeats (Woolfson, 2005). In antiparallel

SOL coiled coils, strong a-d0 and d-a0 interactions are anticipated
(Mason and Arndt, 2004), and this was observed in many cases.
ts reserved



Figure 6. Hydrogen-Bonding Connectivity Networks for the Clusters with Different Geometry
(A–D) The number of hydrogen bonds is the arithmetic summation of those on the most populated position a or d from both chains. The percentage of each

contact type, e.g. a-e0, is the fraction of the sum on that position, i.e. sum on an a or d.
However, in Antileft(int), there is a strong preference to form a-a0

and d-d0 hydrogen bonds, and a tendency to form a-e0 and d-g0

interactions. Hydrogen-bonding connectivity maps should help

guide the design of complex SOL and TM helical bundles (Tatko

et al., 2006).

TM and SOL Clusters Utilize Different Residues for
Hydrogen Bonding
Next, we examined differences and similarities between the in-

terhelical sidechain-to-sidechain and sidechain-to-backbone

interhelical hydrogen bonding in the TM versus the SOL helix

dimers. In this nomenclature, e.g. sidechain-to-backbone, the

first helix of the pair has a residue in which the sidechain par-

ticipates in a hydrogen bond and the second helix of the pair

has a backbone atom, which participates in the bond. Due to

low number of counts for hydrogen bonds in the individual

TM clusters, the hydrogen bonds of the top seven TM clusters

are summed.
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An expected major difference between TM and SOL clusters

is the relative abundance of backbone-mediated interhelical

hydrogen bonds expected. In the TM clusters, sidechain-to-

sidechain and sidechain-to-backbone hydrogen bonds com-

prise 56% and 44% of the total, respectively, while in the

SOL clusters sidechain-to-sidechain and sidechain-to-back-

bone hydrogen bonds have a population of 80% and 20%,

respectively. Consistent with previous surveys of hydrogen

bonding (Baker and Hubbard, 1984), the majority of sidechain-

to-backbone hydrogen bonds is from sidechain donors to the

backbone carbonyl hydrogen bond acceptors, with a portion

of 93% and 94% in the TM and SOL clusters, respectively.

Therefore, we analyze only sidechain-to-backbone carbonyl

hydrogen bonds herein.

In the sidechain-to-sidechain hydrogen-bonding interactions

among TM clusters (Figures 7 and 8), Ser is the largest contrib-

utor to hydrogen bonding, accounting for 25.4% of occurrences,

and showing a significantly high propensity (p <0.001) for these
527–541, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 535



Figure 7. Propensity of Residues in the Top Seven TM and SOL Clusters to Donate or Accept an Interhelical Hydrogen Bond of Different

Types

(A) Interhelical hydrogen-bonding propensity of residues participating in sidechain-to-sidechain hydrogen bonds.

(B) Interhelical hydrogen-bonding propensity of residues that donate a sidechain hydrogen bond to the backbone carbonyl on the helical pair.

(legend continued on next page)
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interactions even relative to the high abundance of Ser in TM he-

lices (Figure 7A). The other three residues with high propensity

(p <0.01) are Asn, His, and Asp, which have a much lower fre-

quency in distribution (Table S4). Interestingly, Asn has a 4-fold

preference to engage in hydrogen bonds in right-handed cross-

ings, and His has a 4-fold preference in left-handed crossings

(data not shown). Each of the other polar residues occurs in

less than 12% of hydrogen bonds. The predominance of Ser

among sidechain-to-sidechain interactions in the membrane

environment is consistent with a previous report by Adamian

and Liang (2002). Ser-Thr, Ser-Tyr, Ser-Ser, and Thr-Thr are

the most common sidechain-to-sidechain hydrogen-bonding

contributors, shown in Figure 8.

In the top seven SOL clusters, Arg displays a very high side-

chain-to-sidechain hydrogen-bonding propensity (Figure 7A).

The most frequent residues of this hydrogen-bonding class are

Arg (19.8%), Glu (19.5%), and Asp (12.3%): Arg-Glu (19.0%),

Arg-Asp (12.6%), and Lys-Glu (6.9%) are the three most com-

mon pairs of hydrogen-bonding partners (Figure 8B).

In the sidechain-to-backbone hydrogen bonds of the TM

clusters (Figures 7B and 8C), Ser and Cys are overrepresented

as hydrogen-bonding donors, with frequencies of 31.8% and

11.0%, respectively. Small residues Ala, Gly, and Ser are the

major backbone carbonyl hydrogen-bonding acceptors, with

25.9%, 12.4% and 11.4% of the occurrences, respectively. The

small residues may facilitate tight interactions, as found in the

case of the Parright(close) model protein GpA (Figure 7B, inset).

In contrast to the TMclusters, the SOL clusters have Arg as the

main sidechain-to-backbone hydrogen-bonding donor (29.1%),

with Gln (13.3%), Ser (11.5%), and Lys (10.9%) next (Figure 8D),

but only Arg is overrepresented (Figure 7B). Aliphatic residues

without b-branching, namely Leu (18.8%) and Ala (16.4%), are

the two major backbone carbonyl hydrogen-bonding acceptors

(Figure 7C). It is interesting to note the important role of Arg res-

idues in forming both sidechain-to-sidechain and sidechain-to-

backbone carbonyl interactions in water-soluble helical pairs.

This finding agrees with experimental studies, which showed

that this residue is unique among the polar residues in terms of

its ability to contribute largely to conformational stability and

specificity (Acharya et al., 2006; Borders et al., 1994).

DISCUSSION

This work provides the most extensive analysis of TM and SOL

helical interactions, providing a library of helical motifs and their

corresponding sequence preferences. Moreover, the present

study provides information concerning the pattern and positions

of hydrogen-bonding residues and how they may provide spec-

ificity supporting different helical packing interaction motifs. This

work also provides the first extensive comparison of geometri-

cally similar TM and water-soluble helical pairs.

Comparing the helix-helix interactome of TM and water-solu-

ble proteins leads to key differences, one of which lies in the
(C) Interhelical hydrogen-bonding propensity of residues that accept a hydrogen

example, the TMParright(close) motif adopts configuration shown in the inset. Posi

one-sided small-residue positions are labeled by GAS. The N termini of the helic

Residues labeled by asterisks or triangles are statistically overrepresented or und

the p value of a binomial test (p < 0.05 or p < 0.01).
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greater abundance of tightly interacting helical pairs in TM

compared with water-soluble proteins. Water-soluble structures

tend to have more interhelical hydrogen bonds and utilize larger

andmore charged residues for this task. On one hand, thewater-

soluble helix-helix interactome generally displays a sinusoidal

pattern of hydrophobicity. On the other hand, the TM helix-

helix interactome displays a significantly more pronounced

abundance of small residues at the helix-helix interface, which

facilitate backbone-mediated interhelical hydrogen-bonding

interactions. This contrasts with the old view that membrane

proteins are inside-out versions of water-soluble proteins.

Instead, the requirements to maintain membrane proteins within

a low-dielectric transmembrane environment, or the require-

ments associated with helix insertion via the translocon, select

for TM helices that are highly hydrophobic and do not necessarily

use hydrogen bonds for stability asmuch as their soluble-protein

counterparts. Nevertheless, small-residue sidechain- and back-

bone-mediated hydrogen bonds in the membrane milieu may

guide helix-helix assembly and direct dynamic functionality

(Bowie, 2011).

Helix-helix association is also affected by other factors, e.g.

hydrophobic mismatch between a TM helix and the membrane

(Benjamini and Smit, 2012). Investigation of the clusters will

help greatly our understanding of the folding and structure of

helical proteins, quantifying broad structural trends that will be

useful in structure prediction and design.

EXPERIMENTAL PROCEDURES

Data Set Selection

The Orientation of Proteins in Membranes (OPM) database (Lomize et al.,

2012) was used as the source for helical TM proteins. We obtained a list

of all structures available as of September 26, 2014. To ensure accurate

analysis, structures with X-ray resolution lower than 3.2 Å were removed

from consideration. From the remaining structures, we used the PISCES

server (Wang and Dunbrack, 2003) to cull at the PDB ID level for a maximum

sequence homology of 30%. This resulted in a list of 139 representative

structures, from which helix-helix pairs were derived. For the soluble data-

base, a query was executed on the PDB as of February 9, 2012 for all struc-

tures classified in CATH (Greene et al., 2007) as ‘‘mainly a’’ and containing

only protein. These were matched against the PDB-TM database (Tusnady

et al., 2005), and any TM proteins were removed. This list was also culled

using the PISCES server to a maximum of 30% sequence identity. To

keep the size of the data set computationally tractable, only structures

with a maximum resolution of 2.0 Å were kept, resulting in 765 proteins.

For all soluble structures, the biological unit was downloaded from the

PDB. The lists of TM and SOL structure covered for analysis are included

in a spreadsheet file in the Supplemental Information.

We extracted the helical regions from the selected structures using the

definitions of the TM segments in the OPM or the HELIX records in the PDB

header information for soluble proteins. To ensure that these definitions

were correct, the annotated regions were filtered to exclude helical breaks

or sharp kinks (defined with a loose cutoff: �130� < 4 < �20� and �90� <

c < 30�). They were also extended by up to four residues on both the N- and

C-terminal sides if the positions met a stricter definition of helicity (�90� <

4 < �35�; �70� < c < 0�). This helped to join soluble helices that otherwise

might have been counted separately.
bond via the backbone carbonyl to the sidechains of their helical pair. As an

tions a and b are represented by yellow andmagenta spheres, respectively. The

es are labeled.

errepresented as hydrogen bond participants, respectively, as determined by
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Figure 8. Number of Interhelical Hydrogen Bonds between the Sidechains of Residues and between Sidechain and theBackboneCarbonyl in

the Top Seven TM and SOL Clusters

(A and B) Number of interhelical hydrogen bonds between the sidechains of residues. The numbers in the grids are the arithmetic summations of the numbers of

specific sidechain-to-sidechain hydrogen bonds in the top seven clusters from each category (TM in A; SOL in B).

(C and D) Number of interhelical hydrogen bonds between sidechain and the backbone carbonyl (TM in C; SOL in D). The numbers of hydrogen bonds denote

those from the sidechain of the residue on the column to the backbone carbonyl on the residue on the row.
Creating the Pair Library

Two heuristic criteria were used to determine whether a given pair of heli-

ces was interacting. First, the minimum distance between the helical axes

was required to be no more than 14 Å; second, the mean inverse distance

was required to be at least 0.065 Å�1 over a 12-residue window (see Win-

dow Selection and Alignment below for a definition of this quantity). Both of

these were intended to be generous, as low specificity would merely result

in a larger fraction of dimers which cannot be clustered, while low sensi-
538 Structure 23, 527–541, March 3, 2015 ª2015 Elsevier Ltd All righ
tivity would negatively affect our ability to detect and characterize real

trends.

Although the overall structural libraries were filtered to reduce sequence ho-

mology, individual proteins often contain multiple copies of one or more sub-

units, resulting in several identical helix pairs. To remove this additional source

of redundancy, polypeptide chains with identical sequences were assigned to

a ‘‘chain group,’’ which allowed us to identify and remove duplicate dimers.

Two helices can come from the same chain, different chains, the same chain
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group, or separate chains that also belong to disparate chain groups. The final

helix pair library contains 2,694 TM dimers and 5,085 soluble dimers.

Window Selection and Alignment

To be able to align pairs, we used a distance map representation of each

dimer. In brief, the inverse distance between each Ca atom on one helix and

every Ca atom on the other is stored in a matrix. (Residues more than 25 Å

apart are given a value of 0.) We selected a 12-residue segment from each he-

lix, chosen so that we captured the maximum amount of interaction for a given

pair. Interaction strength was determined by averaging the interfacial distance

map over a 12-residue window on each helix, as calculated using Equation 1:

M=
1

n2

Xa+ n�1

i = a

Xb+ n�1

j =b

xij ; (Equation 1)

whereM is the mean inverse distance, or interaction strength, n is the window

size (here 12 residues), a and b are the starting residues of the window on each

helix, respectively, and xij is the value of the distance map for residues i and j,

i.e. the inverse of the distance between the Ca atoms of residues i and j (in ang-

stroms) or zero if they are more than 25 Å apart.Mwas maximized by varying a

and b over all possible values, from 1 to L � n + 1, where L is the length of the

particular helix. Since residues that are closer together in three dimensions

have a larger entry in the distance map, this picks out the 12 residues on

one helix that are closest to 12 residues on the other. Moreover, because of

the inverse weighting, this emphasizes each residue’s nearest neighbors,

with the distances between the end of one helix and the far end of the other

being less important.

We used MaDCaT (Zhang and Grigoryan, 2013) to conduct all-versus-all

searches of the two dimer libraries. Interactions are not always symmetrical

along the length of a helix, with six residues on either side of the point of closest

approach: some are V-shaped rather than X-shaped. Thus had we merely

compared the 12-residue windows with each other directly, we would have

missed pairs that otherwise have the same geometry. We therefore searched

each query window against the library of whole pairs, as extracted above. We

limited the searches to a maximum of 10,000 hits each, which in practice ex-

hausted all possible alignments within our clustering threshold.

Structural Clustering

Examining the alignments calculated by MaDCaT, we chose a 1.25 Å RMSD

cutoff for clustering as an appropriate balance between sensitivity and spec-

ificity. We used the same 12-residue windows described above; windows

which overlapped by six residues or more on either helix were considered

identical and clustered together, while windows with smaller overlaps were

treated separately. This allows the total number of alignments to be greater

than the number of unique pairs. To cluster the pairs, we computed all possible

subthreshold alignments to eachwindow. The windowwith the largest number

of alignments from unique, previously unclustered pairs was selected as the

next centroid. All matching windows were assigned to that cluster and

removed from consideration for further rounds. This process was then

repeated until none of the remaining windows matched at least �1% of the

associated database (25 pairs for TM and 55 pairs for SOL).

We found 16 TM clusters and 15 SOL clusters of helix pairs. Geometrical

properties, including crossing angle and interhelical distance of the aligned

windows in each cluster, were determined by HELANAL (Bansal et al., 2000)

implemented by MSL (Kulp et al., 2012). Mean geometric properties (Figure 2;

Tables S1 and S2) of each cluster were determined by the subset of pairs that

fall within the most populated 12-residue window on the centroid. These same

windows were those used to cluster, and are the subject of sequence, hydro-

phobicity, and hydrogen-bonding analysis (Figures 3, 4, 5, 6, and 7). The

detailed information for TM and SOL clusters about the structural composition,

RMSD to the centroids, interhelical distance, and crossing angle is provided as

two spreadsheet files in the Supplemental Information.

Comparing Clusters

For each centroid, we determined the 15-residue window that is most popu-

lated by members of that cluster. To compare clusters, we then used MaDCaT

to find the best possible alignment of 12 residues between each pair of cen-

troids approximate to those regions. This information allowed us to identify
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the most closely related clusters from different sets. The centroid of each clus-

ter was fit to a sinusoidal curve using non-linear regression to estimate the

cluster’s periodicity. A two-tailed Student’s t test assuming equal variances

was performed to confirm that periods within the matching windows between

TM and SOL were not significantly different.

Sequence Analysis

We used the structural alignments generated by MaDCaT for each cluster to

create sequence alignments. In brief, each centroid pair was renumbered so

that the C-terminal residue of the centroid window would be residue 100.

Each member of a cluster was then renumbered to match the centroid

numbering, such that residues with the same number corresponded in the

structural alignment. The numbers of observations for every amino acid

type were computed for each position in each cluster and normalized to fre-

quencies by dividing by the total number of observations at that position. The

frequencies were compared with the expected frequencies of amino acids in

helical regions of TM or SOL proteins that form interacting helical pairs using

a binomial distribution. We derived the expected frequency of TM amino

acids from the percent distribution of amino acids observed at helical, TM

residues in the subset of our TM protein data set that formed interacting

pairs. Likewise, only a-helical residues from the analogous SOL subset,

determined by the DSSP Program (Kabsch and Sander, 1983), were

observed in deriving the SOL amino acid distribution. These background fre-

quencies are listed in Table S4. The propensity is defined as the ratio be-

tween the observed and expected (or background) frequencies. Significant

overrepresentation or underrepresentation of an amino acid at a given posi-

tion, relative to the expected frequency, was determined by the p value of

respective one-tailed directional binomial tests. The counts of observation,

frequency, and propensity for each amino acid on the positions with at least

25 and 55 total counts of observation for TM and SOL clusters, respectively,

are provided as two spreadsheet files in the Supplemental Information. Hy-

drophobicity profiles were calculated based on the normalized consensus

scale (Eisenberg et al., 1984).

Hydrogen-Bonding Analysis

Hydrogen bonds were determined by the HBPLUS program (McDonald and

Thornton, 1994) with default parameters. Weak Ca-H-O hydrogen bonds are

not included. Two set of hydrogen bond data on positions a and d on the

most populated region from each helix were used to calculate the hydrogen-

bonding fraction, which is defined as the ratio between the numbers of resi-

dues forming interhelical hydrogen bonds and of the population accumulated

on the four positions both for a and d. The hydrogen-bonding connectivity was

calculated by assigning the interhelically hydrogen-bonded residues in the

heptad or tetrad repeats from the most populated positions a and d from

both chains. The sidechain-to-sidechain interhelical hydrogen-bonding pro-

pensity is calculated as the ratio between the fraction of Arg, Asn, Asp, Cys,

Gln, Glu, His, Lys, Ser, Thr, Trp, and Tyr to make sidechain-to-sidechain

hydrogen bonds and their fraction in the subset of background distribution (Ta-

ble S4). Significant overrepresentation or underrepresentation of an amino

acid to participate in a hydrogen bond was determined by the binomial test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables, two figures, and five supple-
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