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Abstract A numerical model is presented to study the effects of temperature-dependent viscosity

and variable thermal conductivity on mixed convection problem. Two important types of wall heat-

ing conditions namely, prescribed surface temperature and prescribed wall heat flux which arise in

polymer industries are considered. The problem is solved numerically by using the fifth-order Run-

ge–Kutta Fehlberg method with shooting technique. It is found that the Prandtl number is to

decrease the skin friction coefficient, local Nusselt number and local Sherwood number. The effects

of non-uniform heat source/sink and porous parameter are analyzed on velocity, temperature, skin

friction co-efficient, Nusselt and Sherwood numbers.
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1. Introduction

In recent years considerable attention has been shown on the
study of thermal convection in porous media due to its rapid
growth in the fluid mechanics research and its importance in

petroleum and geothermal processes such as extrusion of
3 261029.
m (D. Pal), hiranmoymondal@
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plastic sheets, spinning of fibers, polymer sheet extruded

continuously from a die and the cooling of metallic sheets in
cooling bath. In mixed convection heat transfer takes place
under conditions when there are large temperature differences

within the fluid, it becomes necessary to consider variable fluid
properties in such studies. Sparrow and Lee [1] analyzed the
problem of mixed convection about a horizontal circular

cylinder. Ali [2] considered the effect of temperature-dependent
viscosity on mixed convection heat transfer along a moving
surface. The effect of temperature-dependent viscosity and
thermal radiation on MHD forced convection over a non-iso-

thermal wedge was investigated by Pal and Mondal [3]. Many
applications of convection in porous medium are provided in
an excellent book by Nield and Bejan [4]. Abel and Mahesha
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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Nomenclature

A parameters of temperature distribution on the

stretching surface
B parameter of mass distribution on the stretching

surface
b stretching parameter

B
!

transverse magnetic field
B0 uniform transverse magnetic field
C concentration of the species

Cf local skin-friction coefficient
Cp Specific heat at constant pressure
D mass diffusion coefficient

E
!

electric field
Ec Eckert number
E0 uniform electric field
E1 local electromagnetic parameter

F* local inertia-coefficient
g acceleration due to gravity
Ha Hartmann number

k permeability of the porous medium
k1 porous parameter
Nr thermal radiation parameter

Pr Prandtl number
qs radiative heat flux in the y-direction
Rex local Reynolds number

Sc Schmidt number

Shx local Sherwood number

T temperature of the fluid
Tw stretching sheet temperature
T1 temperature far away from the stretching sheet
u velocity of the fluid in the x-direction

v velocity of the fluid in the y-direction
x flow directional coordinate along the stretching

sheet

y distance normal to the stretching sheet

Greek symbols
h non-dimensional temperature parameter
bT co-efficient of thermal expansion

bC volumetric co-efficient of expansion with concen-
tration

g similarity variable

m kinematic viscosity
q density of the fluid
j thermal conductivity

d solutal buoyancy parameter
r magnetic permeability
rs Stefan-Boltzmann constant
k buoyancy parameter or mixed convection parame-

ter
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[5] analyzed the heat transfer in MHD viscoelastic fluid flow
over a stretching sheet with variable thermal conductivity,

non-uniform heat source and radiation.
In many cases, porous media with high permeability, the

viscous effects due to frictional drag at the boundary and the

inertia effects within a porous medium become significant
(see Chen and Lin [6]). Tong and Subramanium [7] considered
Brinkmann-extended Darcy model to examine the buoyancy
effects on free convection in a vertical cavity. Tien and Hunt

[8] analyzed non-Darcian effects for a boundary layer flow
and heat transfer in porous beds. Singh and Tewari [9] ana-
lyzed the effects of thermal stratification on free convection

flow in order to study the effects of inertia by considering
non-Darcy model. Kazem et al. [10] improved analytical solu-
tions to a stagnation-point flow past a porous stretching sheet

with heat generation. Uddin and Kumar [11] analyzed the ef-
fect of temperature– dependent properties on MHD free con-
vection flow and heat transfer near the lower stagnation point
of a porous isothermal cylinder. The unsteady convective

boundary layer flow of a viscous fluid at a vertical surface with
variable fluid properties was studied by Vajravelu et al. [12].
The effects of thermal radiation and variable fluid viscosity

on stagnation point flow past a porous stretching sheet was
studied by Mukhopadhyay [13]. Recently, Mahantesh et al.
[14] analyzed the MHD flow and heat transfer over a stretch-

ing surface with variable thermal conductivity and partial slip.
A considerable interest has been shown in the study of ther-

mal radiation on convection for heat and mass transfer in flu-

ids due to its significant effects in the surface heat transfer.
Further, thermal radiation effects on flow and heat transfer
processes are of major importance in the space technology
and high temperature processes. Also, the effect of thermal
radiation play a significant role in controlling heat transfer
in the production of quality product as it depends on the heat

controlling factor. Ali et al. [15] have examined natural convec-
tion-radiation interaction in boundary layer flow over semi-
infinite horizontal surface. Pal [16] investigated heat and mass

transfer in stagnation-point flow in viscous fluid over a stretch-
ing vertical sheet by considering buoyancy force and thermal
radiation. Bataller [17] studied the effects of thermal radiation
on the Blasius flow. Later, Magyari and Pantokratoras [18]

examined the effect of thermal radiation using in the linearized
Rosseland approximation on the heat transfer characteristics
in boundary layer flow. Pal and Mondal [19] analyzed com-

bined effects of thermal radiation and heat generation on con-
vection heat transfer of an optically dense viscous
incompressible fluid over a vertical surface embedded in a fluid

saturated porous medium of variable porosity. EL-Kabeir [20]
studied Soret and Dufour effects on heat and mass transfer
mixed convection over a vertical surface saturated porous
medium. The convective radiation effect from a continuously

moving fin of variable thermal conductivity analyzed by Abdul
Aziz and Khani [21]. The effect of variable viscosity on mixed
convection heat transfer along a vertical moving surface ana-

lyzed by Mohamed Ali [22]. Hussain et al. [23] studied the radi-
ation effects on the thermal boundary layer flow of a
micropolar fluid towards a permeable stretching sheet.

Mohamed Abd El-Aziz [24] studied the temperature dependent
viscosity and thermal conductivity effects on combined heat
and mass transfer in MHD three-dimensional flow over a

stretching surface with Ohmic heating. Ramesh et al. [25] stud-
ied the MHD flow of a dusty fluid near the stagnation point
over a permeable stretching sheet with non-uniform source/
sink. Sivaraj and Rushi Kumar [26] analyzed the viscoelastic
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fluid flow over a moving vertical cone and flat plate with var-
iable electric conductivity.

The main purpose of this study is to examine the effects of

non-uniform heat source/sink, temperature-dependent viscos-
ity and variable thermal conductivity on mixed convection
boundary layer flow, heat and mass transfer over a stretching

sheet in a porous medium in the presence of thermal radiation,
and Ohmic heating due to magnetic field as well as electric
field. We have adopted two different types of boundary heat-

ing conditions namely, the prescribed surface temperature
(PST) and the prescribed surface heat flux (PHF), respectively.
The non-linearity governing basic equations have led us to
adopt numerical solution of the coupled ordinary differential

equations. The Darcy–Forchheimer model is used to describe
the fluid flow in the porous medium. Highly non-linear
momentum and heat transfer equations are solved numerically

using fifth-order Runge–Kutta Fehlberg method with shooting
technique (Na, [27]). The effects of Prandtl number, porous
parameter and non-uniform heat source/sink are analyzed on

the velocity, temperature and concentration profiles as well
as on local skin-friction co-efficient, local Nusselt number
and local sherwood number are presented in graphical and

in tabular form. It is hoped that the results obtained from
the present investigation will provide useful information for
various industrial applications. Moreover, the temperature
profiles decreases with the increase in the variable viscosity

parameter, while it decreases with the increase in variable ther-
mal conductivity parameter.

2. Mathematical formulations

We have considered two-dimensional steady incompressible
electrically conducting fluid flow over a continuous stretching

sheet embedded in a porous medium. The flow region is ex-
posed under uniform transverse magnetic fields
B0
�! ¼ ð0;B0; 0Þ and uniform electric field E

!¼ ð0; 0;�E0Þ.
Since such imposition of electric and magnetic fields stabilizes
the boundary layer flow. It is assumed that the flow is gener-
ated by stretching of an elastic sheet from a slit by imposing

two equal and opposite forces in such a way that velocity of
the sheet is of linear order of the flow direction. (see Fig. 1).
We know from Maxwell’s equation that r:B!¼ 0 and
r� E

!¼ 0. When magnetic field is not so strong then electric

field and magnetic field obey Ohm’s law J
!¼ rðE!þ~q� B

!Þ,
where J

!
is the Joule current. The induced magnetic field is as-

sumed to be small. The viscous dissipation and velocity of the

fluid far away from the plate are assumed to be negligible. The
fluid properties are assumed to be isotropic and constant, ex-
cept for the fluid viscosity l which is assumed to vary as an in-
Figure 1 Boundary layer over stretching sheet.
verse linear function of temperature T, in the form (see Lai and
Kulacki [28]):

1

l
¼ 1

l1
½1þ cðT� T1Þ� ð1Þ

or

1

l
¼ aðT� TrÞ ð2Þ

where

a ¼ c
l1

and Tr ¼ T1 �
1

c
ð3Þ

Both a and Tr are constant and their values depend on the ref-
erence state and the thermal property of the fluid, i.e. c. In gen-
eral, a > 0 for liquids and a < 0 for gases. Consider the

uniform flow of fluid with velocity Uw through a porous med-
ium bounded by a semi-infinite flat plate parallel to the flow.
Also, hr is a constant which is defined by

hr ¼
Tr � T1
Tw � T1

¼ � 1

cðTw � T1Þ
ð4Þ

It is worth mentioning here that for c fi 0, i.e. l = l1
(constant) then hr fi1. It is also important to note that hr
is negative for liquids and positive for gases.

The flow model is based on the assumption that the flow is

steady, incompressible, laminar and the fluid viscosity which is
assumed to be an inverse linear function of temperature. The
fluid is assumed to be Newtonian and its property variations

due to temperature are limited to density and viscosity. We take
into account of uniformmagnetic field as well as electric field ef-
fects in the momentum and thermal boundary layer equations.

Under the usual boundary layer approximation, the governing
equations describing the conservation of mass, momentum, en-
ergy and concentration in the presence of radiation magnetic
field and non-uniform heat source/sink can be written as [19]:

Continuity equation:

@u

@x
þ @v
@y
¼ 0 ð5Þ

Momentum equation:

1

/2
u
@u

@x
þ v

@u

@y

� �
¼ 1

q1/
@

@y
l
@u

@y

� �
þ r

q1
E0B0 � B2

0u
� �

� m
k
u� Cbffiffiffi

k
p u2 þ gtbTðT� T1Þ

þ gtbCðC� C1Þ ð6Þ

Energy equation:

q1Cp u
@T

@x
þ v

@T

@y

� �
¼ @

@y
j
@T

@y

� �
þ q000 � @qs

@y

þ rðuB0 � E0Þ2 ð7Þ

Conservation of species:

u
@C

@x
þ v

@C

@y
¼ D

@2C

@y2
ð8Þ

where u and v are the velocity components in the x and y direc-
tions, respectively; m1 is the kinematic viscosity; gt is the accel-
eration due to gravity; q1 is the density of the fluid; bT is the

coefficient of thermal expansion; bC is the volumetric coefficient
of expansion with concentration, T is the temperature of the
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fluid inside the thermal boundary layer and T1 is the fluid

temperature in the free stream. k is the permeability of the
porous medium; / is the porosity of the porous medium; Cb

is the form of drag coefficient which does not depends on the

viscosity and other physical properties of the fluid depends on
the geometry of the medium. T is the temperature of the liquid,
C is the concentration of the species, D is the diffusion coeffi-
cient, q is the density of the liquid, Cp is the specific heat at con-

stant pressure and j is the thermal conductivity. Thermal
boundary layer takes into account the Ohmic dissipation due
to the magnetic and electric fields. The thermal conductivity j is

assumed to vary linearly with temperature which is of the form

j ¼ j1½1þ �hðgÞ� in PST case;

and j ¼ j1½1þ �gðgÞ� in PHF case

where

hðgÞ ¼ gðgÞ ¼ T� T1
Tw � T1

; and HðgÞ ¼ C� C1
Cw � C1

ð9Þ

and e is a small parameter. The non-uniform heat source/sink
q000 is modeled as

q000 ¼ jUwðxÞ
xm

½AsðTw � T1Þe�g þ ðT� T1ÞBs�; ð10Þ

where As and Bs are the coefficients of space and temperature-
dependent heat source/sink, respectively. Here we make a note
that, the case As > 0, Bs > 0 corresponds to internal heat gen-

eration and that As < 0, Bs < 0 corresponds to internal heat
absorption. Following Rosseland approximation the radiative
heat flux qs is modeled as,

qs ¼ �
4rs

3ks

@T4

@y
; ð11Þ
where rs is the Stefan–Boltzmann constant and ks is the mean

absorption coefficient. Let us introduce the wall temperature
excess ratio parameter hw ¼ Tw

T1
(Pal and Mondal [29]). Thus

using (9), T4 may be expressed as

T4 ¼ T4
1f1þ ðhw � 1Þhg4 ð12Þ

The following appropriate boundary conditions on velocity
are employed to include the effect of stretching of the bound-
ary surface causing flow in the x-direction as

u ¼ UwðxÞ ¼ bx; v ¼ 0 at y ¼ 0

u ¼ 0 as y!1
ð13Þ
To solve the governing boundary layer Eqs. (3), (4) and (10)
the following similarity transformations are introduced

u ¼ bxf0ðgÞ; v ¼ �
ffiffiffiffiffiffiffiffi
bm1

p
fðgÞ g ¼

ffiffiffiffiffiffi
b

m1

s
y ð14Þ
Substitution of Eq. (14) in Eq. (6) results in a third-order non-

linear ordinary differential equation of the following form

f000 þ 1

hr � h
h0f00 � /k1f

0

þ 1� h
hr

� �
ff00

/
� f02

/
þ /fHa2ðE1 � f0Þ � F�f02 þ khþ dHg

� 	
¼ 0

ð15Þ

where k1 ¼ m1
kb

is the porous parameter, Ha ¼
ffiffiffiffiffiffi

r
q1b

q
B0 is Hart-

mann number, E1 ¼ E0

B0bx
is the local electric parameter,

F� ¼ Cbffiffi
k
p x is the local inertia-coefficient, k ¼ Grx

Re2x
is the buoyancy
or mixed convection parameter, Grx ¼ gtbTðTw�T1Þx3
m21

is the local

Grashof uumber, d ¼ Grc
Re2x

is the buoyancy or mixed convection

parameter with species, Grc ¼ gtbcðC�C1Þ
b2 l

is solutal Grashof

number, / is the porosity of the porous medium and

Rex ¼ Uwx
m1

is the local Reynolds number.

In view of the above similarity transformations, the bound-
ary conditions (13) take the following form:

fð0Þ ¼ 0; f0ð0Þ ¼ 1; f0ð1Þ ¼ 0: ð16Þ
The important physical quantities of interest are the skin-fric-
tion coefficient, Cf, which is defined as

Cf ¼
sw

qU2
w=2

; ð17Þ

and wall sharing stress sw appeared in Eq. (17) is given by

sw ¼ l
@u

@y

� �
y¼0
: ð18Þ

After using the non-dimensional variables given by (14), we fi-
nally get the skin-friction coefficient as follows:

1

2
CfRe

1=2
x ¼

hr

hr � h
f00ð0Þ: ð19Þ

where Rex ¼ xUwðxÞ
m1

is the local Reynolds number.

2.1. PST Case

To solve the thermal boundary layer and concentration Eqs.
(10) and (5), we consider non-isothermal temperature and con-

centration boundary conditions as follows:

T ¼ Tw ¼ T1 þ A
x

l


 �2
; C ¼ Cw ¼ C1 þ B

x

l


 �2
at y ¼ 0

T! T1; C! C1 as y!1
ð20Þ

where A and B is the parameters of temperature and concen-
tration distribution on the stretching surface, l is the character-

istic length.
We introduce a dimensionless temperature and concentra-

tion variable

hðgÞ ¼ T� T1
Tw � T1

; HðgÞ ¼ C� C1
Cw � C1

;

where

T� T1 ¼ A
x

l


 �2
hðgÞ; C� C1 ¼ B

x

l


 �2
HðgÞ ð21Þ

We obtain the following non-linear ordinary differential
equation for h(g) and H(g) as

½ðð1þ �hÞ þNrf1þ ðhw � 1Þhg3Þh0�0 þ 1� h
hr

� �

Pr½ðfh0 � 2f0hÞ þHa2EcðE1 � f0Þ2� þ 1� h
hr

� �
ð1þ �hÞðAse

�g þ BshÞ ¼ 0 ð22Þ

H00 þ ScðfH0 � 2f0HÞ ¼ 0 ð23Þ

where Pr ¼ l1Cp

k1
is the Prandtl number, Ec ¼ b2 l2

ACp
is the Eckert

number, Nr ¼ 16r�T3
1

3k1k� is the thermal radiation and Sc ¼ m1
D
is the

Schmidt number.



Effects of temperature-dependent viscosity and variable thermal conductivity on MHD 127
Corresponding thermal boundary conditions become

hðgÞ ¼ 1; HðgÞ ¼ 1 at g ¼ 0;

hðgÞ ! 0; HðgÞ ! 0 as g!1:
ð24Þ

The local Nusselt number which are defined as

Nux ¼
xqw

jðTw � T1Þ
ð25Þ

where qw is the heat transfer from the sheet is given by

qw ¼ �
16r�T3

3k�
þ j

� �
@T

@y

� 	
y¼0

ð26Þ

Using the non-dimensional variables (20) and (21), we get from
Eqs. (25) and (26) as

Nux=Re
1=2
x ¼ �ð1þNrh3

wÞh
0ð0Þ ð27Þ

The local Sherwood number which is defined as

Shx ¼
xqm

DðCw � C1Þ
ð28Þ

where

qm ¼ �D
@C

@y

� �
y¼0

ð29Þ

Using the non-dimensional variables (20) and (21), we get from
Eqs. (28) and (29) as

Shx=Re
1=2
x ¼ �H0ð0Þ ð30Þ
2.2. PHF Case

The boundary conditions in case of prescribed power law heat

flux is of the form

� j1
@T

@y
¼ qw ¼ E

x

l


 �2
; �j1

@C

@y
¼ qm ¼ F

x

l


 �2
at y ¼ 0;

T! T1; C! C1 as y!1; ð31Þ

where E, F is a constant and j = j1[1 + eg(g)] (for energy)
and j = j1[1 + eI(g)] (for concentration). Now we define
the non-dimensional temperature g(g) and concentration I(g)
as

gðgÞ ¼ T� T1
Tw � T1

; IðgÞ ¼ C� C1
Cw � C1

T� T1 ¼
E

j1

x

l


 �2 ffiffiffiffiffiffi
m1
b

r
gðgÞ; C� C1 ¼

F

j1

x

l


 �2 ffiffiffiffiffiffi
m1
b

r
IðgÞ

where

Tw � T1 ¼
E

j1

x

l


 �2 ffiffiffiffiffiffi
m1
b

r
; Cw � C1 ¼

F

j1

x

l


 �2 ffiffiffiffiffiffi
m1
b

r
ð32Þ

Using Eqs. (31) and (32) in Eqs. (7) and (8), we obtain the
non-linear ordinary differential equation for g(g) and I(g) in
the form

ðð1þ �gÞ þNrf1þ ðgw � 1Þgg3Þg0
h i0

þ 1� g

gr

� �

Pr½ðfg0 � 2f0gÞ þHa2EsðE1 � f0Þ2� þ 1� g

gr

� �
ð1þ �gÞðAse

�g þ BsgÞ ¼ 0 ð33Þ
I00 þ ScðfI0 � 2f0IÞ ¼ 0: ð34Þ
where Es ¼ Eck1

ffiffiffiffiffi
b

m1

q
is the scaled Eckert number. Corre-

sponding thermal boundary conditions for g(g) and I(g) are gi-
ven by

g0ðgÞ ¼ �1; I0ðgÞ ¼ �1 at g ¼ 0

gðgÞ ! 0; IðgÞ ! 0 as g!1
ð35Þ
3. Numerical Method

The coupled ordinary differential Eqs. (15), (22), (23), (33) and

(34) are of third order in f, and second order in h and H which
have been reduced to a system of seven simultaneous equations
of first-order for seven unknowns. In order to solve this system

of equations numerically we require seven initial conditions
but two initial conditions on f and one initial condition each
on h and H are known. However, the values of f0, h and H
are known at g fi1. Thus, these three end conditions are uti-

lized to produce three unknown initial conditions at g = 0 by
using shooting technique. The most crucial factor of this
scheme is to choose the appropriate finite value of g1. Thus
to estimate the value of g1, we start with some initial guess va-
lue and solve the boundary value problem consisting of Eqs.
(15), (22), (23), (33) and (34) to obtain f00(0), h0(0) and H0(0).

The solution process is repeated with another large value of
g1 until two successive values of f00(0),h0(0) and H0(0) differ
only after desired significant digit. The last value of g1 is taken

as the finite value of the limit g fi1 for a particular set of
physical parameters for determining velocity f(g), temperature
h(g) and concentration H(g) in the boundary layer. After
knowing all the five initial conditions we solve this system of

simultaneous equations using fifth-order Runge–Kutta–Fehl-
berg integration scheme with automatic generation of grid size
so that convergence can be achieved at a faster rate. Thus, the

coupled non-linear boundary value problem of third-order in f,
second-order in h and H has been reduced to a system of seven
simultaneous equations of first-order for seven unknowns as

follows:

f01 ¼ f2; f02 ¼ f3;

f03 ¼ �
1

hr � f4
f5f3 þ /k1

f2 � 1� f4
hr

� �
f1f3
/
� f22

/
þ /fHa2ðE1 � f2Þ � F�f22 þ kf4 þ df6g

� 	
f04 ¼ f5 ð36Þ

f05 ¼ �
1

ð1þ �f4Þ þNrf1þ ðhw � 1Þf4g3

� �þ 3Nrðhw � 1Þf1þ ðhw � 1Þf4g2

 �

f25

h
þ 1� f4

hr

� �
Pr½ðf1f5 � 2f2f4Þ þHa2EcðE1 � f2Þ2

þð1þ �f4ÞðAse
�g þ Bsf4Þ�

i
f06 ¼ f7; f07 ¼ �Scðf1f7 � 2f2f6Þ ð37Þ

where

f1 ¼ f; f2 ¼ f0; f3 ¼ f00; f4 ¼ h; f5 ¼ h0; f6 ¼ H; f7 ¼ H0
and a prime denotes differentiation with respect to g.
The boundary conditions now become

f1 ¼ 0; f2 ¼ 1; f4 ¼ 1; f6 ¼ 1; at g ¼ 0

f2 !1; f4 ! 0; f6 ! 0 as g!1
ð38Þ
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Since f3(0), f5(0) and f7(0) are not prescribed so we have to
start with the initial approximations as f3(0) = s10, f5(0) = s20
and f7(0) = s30. Let c1, c2 and c3 be the correct values of f3(0),
f5(0) and f7(0), respectively. The resultant system of seven or-
dinary differential equations is integrated using fifth-order
Runge–Kutta–Fehlberg method and denote the values of f3,

f5 and f7 at g = g1 by f3(s10, s20, s30,g1), f5(s10, s20, s30,g1)
and f7(s10, s20, s30,g1), respectively. Since f3, f5 and f7 at
g = g1 are clearly function of c1, c2 and c3, they are expanded

in Taylor series around c1 � s10, c2 � s20 and c3 � s30, respec-
tively by retaining only the linear terms. The use of difference
quotients is made for the derivatives appeared in these Taylor
series expansions. Thus, after solving the system of Taylor ser-

ies expansions for dc1 = c1 � s10, dc2 = c2 � s20 and
dc3 = c3 � s30, we obtain the new estimates s11 = s10 + ds10,
s21 = s20 + ds20 and s31 = s30 + ds30. Next the entire process

is repeated starting with f1(0), f2(0), s11, f4(0), s21 and s31 as ini-
tial conditions. Iteration of the whole outlined process is re-
peated with the latest estimates of c1, c2 and c3 until

prescribed boundary conditions are satisfied.
Finally, s1n = s1(n�1) + ds1(n�1), s2n = s2(n�1) + ds2(n�1)

and s3n = s3(n�1) + ds3(n�1) for n= 1, 2, 3, . . . are obtained

which seemed to be the most desired approximate initial values
of f3(0), f5(0) and f7(0) . In this way all the six initial conditions
are determined. Now it is possible to solve the resultant system
of seven simultaneous equations by fifth-order Runge–Kutta–

Fehlberg integration scheme so that velocity, temperature
fields and concentration for a particular set of physical param-
eters can easily be obtained. The results are provided in several

tables and graphs.

4. Results and discussion

Numerical solutions for the effects of thermal radiation on
non-Darcy mixed convection heat transfer over a stretching
sheet with variable thermal conductivity and temperature-

dependent viscosity are investigated in presence of thermal
radiation and non-uniform heat source/sink. The set of highly
non-linear ordinary differential Eqs. (15), (22), (23), (33) and

(34) subject to the boundary conditions (16), (24) and (35) con-
stitute a two-point boundary value problem, which is inte-
grated by fifth order Runge–Kutta Fehlberg method with
shooting technique. In this method it is important to choose

the appropriate finite values of g fi1. In order to verify the
validity and accuracy of the present analysis, results for heat
transfer �h0(0) were compared with those reported by Grubka

and Bobba [30] for some limiting conditions. The comparison
in the above cases is found to be in excellent agreement, as
shown in Table 1. The values of local skin-friction coefficient,
Table 1 Comparison of wall temperature gradient �h0(0) for
various values of Pr for Ha = E1 = Ec = As = Bs = e = /
= k1 = F* = k = Nr = Sc = 0.0, hr fi1, / = 1 with Grub-

ka and Bobba [30].

Pr Grubka and Bobba [30] Present results

0.72 1.0885 1.088548

1.00 1.3333 1.353545

3.0 2.5097 2.507866

10.0 4.7969 4.795510
local Nusselt number and local Sherwood number are tabu-
lated in Table 2 for various values of local inertia coefficient
F*, solutal buoyancy parameter d, Hartmann number Ha, tem-

perature dependent viscosity parameter hr and thermal radia-
tion parameter Nr. It is noted that the values of the local
Nusselt number and local Sherwood number decreses and in-

crease in the local skin friction coefficient by increasing the lo-
cal inertia coefficient and Hartmann number. It is also found
that the local Nusselt number and local Sherwood number in-

creases with increase in the buoyancy and viscosity parameter
but decreases the local skin friction coefficient. It is also
pointed out from this table that increasing the values of ther-
mal radiation parameter is to rise in the values of local Sher-

wood number whereas reverse trend is seen for local Nusselt
number and local skin-friction coefficient. The effect of various
physical parameters such as buoyancy parameter, porous

parameter, space-dependent and temperature-dependent heat
source/sink parameter on velocity, temperature and concentra-
tion profiles in PST case and PHF cases are shown in Figs. 2–

16.
Fig. 2 represents the variations of velocity distribution in

the boundary layer for various values of mixed convection

parameter or buoyancy parameter k. It is observed from this
figure that the velocity distribution increases with increasing
the buoyancy parameter k, this is due to the fact that the
boundary layer thickness increases with k.

Fig. 3 represents the variation of temperature distribution
in the boundary layer for various values of mixed convection
parameter or buoyancy parameter k. It is observed from these

figures that the temperature distribution decreases with
increasing the buoyancy parameter k due to the reason that
the thermal boundary layer thickness decreases with increase

in the buoyancy parameter.
Fig. 4 represents the variations of velocity profiles in the

boundary layer for various values of porous parameter k1. It

is observed from these figure that the velocity distribution de-
creases with increasing the porous parameter k1. This is due to
increase in the obstruction of the fluid motion with increase in
the porous parameter (since permeability of the porous med-

ium appears in the denominator of the porous parameter),
thereby increase in the porous parameter indicates decreases
in the permeability of the porous medium so the fluid velocity

decreases.
The variation of temperature profiles h(g) in the thermal

boundary layer in presence of porous parameter k1 is depicted

in Fig. 5. It is found that the effect of porous parameter is to
increase the temperature profile due to the fact that the in-
crease in porous parameter k1 decreases permeability which re-
sults in obstruction in the motion of the fluid due to which

there is increase in the temperature in the thermal boundary
layer. In other words, temperature increases with increase in
the porous parameter due to the resistance offered to the fluid

motion in the form of Darcy drag produced by the porous
medium.

Fig. 6 depicts the effects of non-uniform heat generation As,

Bs > 0 or absorption As, Bs < 0 parameter on the temperature
distribution. It is observed that there is generation of energy in
the thermal boundary layer by increasing the values of As,

Bs > 0 (heat source) which causes the temperature of the fluid
to increase, which in turn results in further increase of the flow
field due to the thermal buoyancy effect. This is the main rea-
son behind the temperature profiles to increase, whereas in the



Table 2 Value of Skin-friction coefficient, Nusselt number and Sherwood number for different parameters e = 0.2, / = 0.6,

Gc = 0.2, E1 = 0.2, k1 = 0.2, k = 2.0, Pr= 10.0, As= �2.0, Bs = �2.0, Ec = 0.2, Sc = 0.22, hw = 1.2.

F* d Ha hr Nr CfRe
1=2
x NuxRe

�1=2
x ShxRe

�1=2
x

0.5 0.5 0.2 �4.0 0.2 �1.275190 4.464208 0.5029314

1.2 �1.394402 4.448461 0.4954417

2.0 �1.521640 4.431759 0.4876322

1.2 0.5 0.2 �4.0 0.2 �1.394402 4.448461 0.4954417

1.2 �1.150537 4.484265 0.5378202

2.0 �0.9084269 4.519088 0.5754539

1.2 2.0 0.2 �2.0 0.2 �1.032235 4.806014 0.5727843

1.2 �1.290083 4.564397 0.5605545

2.0 �1.704449 4.182478 0.5380874

1.2 2.0 1.2 �4.0 0.2 �1.132555 4.288551 0.5591856

�2.0 �1.290083 4.564397 0.5605545

2.0 �0.8943129 5.430748 0.6191786

1.2 2.0 1.2 �4.0 0.2 �1.132555 4.288551 0.5591856

1.2 �1.056634 2.837676 0.5669879

2.0 �1.015118 2.343448 0.5694407

Figure 2 Variation of f0(g) on buoyancy parameter k.

Figure 3 Effect of k on the temperature profile in PST case.

Figure 4 The variations of f0(g) on porous parameter k1.

Figure 5 Effect of k1 on the temperature profile in PST case.
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Figure 6 Effect of As,Bs on temperature profiles in PST case.

Figure 7 Effect of As,Bs on concentration profiles in PST case.

Figure 8 Effect on non-uniform heat source/sink parameter As,

Bs on concentration profiles in PHF case.

Figure 9 Concentration profile for different values of Schmidt

number Sc in PST case.
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case of As, Bs < 0 (absorbtion) the boundary layer releases en-
ergy resulting in the temperature profiles to decrease with

increasing in the value of As,Bs in the thermal boundary layer.
Figs. 7 and 8 depict the effect of non-uniform internal heat

generation As, Bs > 0 or absorption As, Bs < 0 in the bound-

ary layer on the concentration field on H(g) and I(g) in PST
and PHF cases respectively. It is observed that the concentra-
tion profiles decreases by increasing the values of As, Bs > 0

(heat source) whereas reverse trend is seen on concentration
profiles by increasing the values of As, Bs < 0 (heat sink).

Figs. 9 and 10 exhibit the variation concentration profiles
with g for different values of Schmidt number Sc in PST and

PHF cases, respectively. It is observed that the effect of
increasing the value of Schmidt number is to decrease the con-
centration of the diffusive species in both PST and PHF cases.

Reduction in the concentration of diffusion species due to in-
crease in the Schmidt number can be demonstrated by replac-
ing hydrogen by water vapor and ammonia etc. in the said

sequence for both PST and PHF cases.
Figs. 11–13 are the plots of local skin friction coefficient, lo-

cal Nusselt number and local Sherwood number for various
values of physical parameter such as e = 0.6, / = 0.3,
Ha= 0.2, Nr = 2.0, E1 = 0.1, k1 = 0.2, F* = 0.2, k = 0.2,

E1 = 0.1,hr = �4.0, hw2.0. Fig. 11 depicts the variation in
the local skin-friction coefficient with Prandtl number Pr for
various values of As, Bs. It is observed from this figure that

the local skin-friction coefficient is increase due to increase in
the As, Bs > 0, whereas reverse effect is seen on local skin-fric-
tion by increasing the Prandtl number. Figs. 12 and 13 describe
the behavior of local Nusselt number and the local Sherwood

number with changes in the values of As, Bs for different values
of Pr. It is observed that the effect of increasing the value of
As, Bs is to increase the local Nusselt number and decrease

the local Sherwood number, whereas the effect of increase in
the Prandtl number is to decrease in the value of local Nusselt
number and local Sherwood number. The effect of Prandtl



Figure 10 Concentration profile for different values of Schmidt

number Sc in PHF case.

Figure 11 Local skin friction coefficient versus Pr for various of

As,Bs.

Figure 12 Local Nusselt number versus Pr for various of As, Bs.

Figure 13 Local Sherwood number versus Pr for various of As,

Bs.

Figure 14 Effect of thermal conductivity parameter e on

temperature profile.

Figure 15 Effect of viscosity parameter hr on temperature profile

in PST case.
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Figure 16 Effect of viscosity parameter hr on temperature profile

in PHF case.
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number is not much significant on the behavior of the Sher-
wood number.

The effect of variable thermal conductivity parameter e on

temperature profiles is shown in Fig. 14. It is observed from
this plot that increasing the value of e results in increasing
the magnitude of temperature due to increase in the thermal

boundary layer thickness. Figs. 15 and 16 display results for
temperature distribution for various values of viscosity param-
eter hr in the boundary layer for PST and PHF cases, respec-

tively. It is seen from these figures that the temperature
decreases very rapidly with g and its value decreases with in-
crease in hr. Similar trend is seen in the nature of the temper-

ature profiles when temperature decreases with increase in the
value of hr. Further, it is observed that the decrease in the tem-
perature with hr is remarkable new to the stretching sheet.

5. Conclusions

The flow and heat mass transfer for a non-Darcy hydromag-
netic flow over a stretching sheet submerged in a viscous fluid

-saturated porous medium in the presence of a uniform trans-
verse magnetic field are solved in this study. The resulting par-
tial differential equations were transformed to a set of ordinary

differential equations and then these equations are solved
numerically using Runge–Kutta–Fehlberg method with shoot-
ing techniques. Graphical mode of presentation of the com-

puted results illustrate the details of mass transfer
characteristics and their dependence on some physical param-
eters. The important findings of our analysis are listed below:

(i) Increase in the Schmidt number Sc is to decrease the
concentration profile in both PST and PHF cases.

(ii) The effect of non-uniform and temperature dependent

heat source/sink parameters As, Bs leads to increase in
the temperature profile.

(iii) The presence of space-dependent heat source/sink

parameter As, Bs is to decrease the concentration profile
in both PST and PHF cases.

(iv) The effect of buoyancy parameter is to increase the

velocity distribution in the momentum boundary layer.
(v) Thermal boundary layer thickness decreases due to

increase in buoyancy parameter k.
(vi) The effect of porous parameter is to decrease velocity

and increase temperature profiles throughout the

momentum and thermal boundary layer, respectively.
(vii) Thermal boundary layer thickness increases due

to increase in the variable thermal conductivity
parameter e.

(ix) The temperature profiles decreases very rapidly with
decreases in hr in both PST and PHF cases.
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