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a b s t r a c t

In this paper we consider sufficient conditions in order to stochastically compare random
vectors of multivariate mixture models. In particular we consider stochastic and convex
orders, the likelihood ratio order, and the hazard rate and mean residual life dynamic
orders. Applications to proportional hazard models and mixture models in risk theory are
also given.
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1. Introduction

Stochastic comparisons of random vectors are of interest in the context of risk theory and reliability and some other
fields. In this paper we consider specific results about stochastic comparisons of random vectors (T1, T2, . . . , Tn)where the
joint distribution function is given by

F(t1, . . . , tn) =
∫

Rm

n∏
i=1

Fi(ti|θ1, . . . , θm)dΠ(θ1, . . . , θm), (1.1)

whereΠ is anm-dimensional probability distribution and, for any vector (θ1, . . . , θm) in the support ofΠ , Fi(·|θ1, . . . , θm)
is a one-dimensional distribution function. For example, this model can be used in the following situations:

• Applications in finance: In risk management, the default risk of an obligor can be assumed to depend on some random
factors, such as macroeconomics variables. Given a realization of the factors, defaults of a firm are assumed to be
independent. Two particular models of interest in this context are the case where the conditional defaults follow a
Bernoulli model or a Poissonmodel. An extension of these static mixturemodels, arises when the default times of n firms
T1, . . . , Tn are independent given the observation of somem-dimensional random economic factors2. If Fi(·|θ) denotes
the conditional distribution of Ti(θ) ≡ [Ti|2 = θ], and Π denotes the distribution of 2, then the joint distribution of
(T1, . . . , Tn) is given by (1.1).
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• Applications in reliability: Let us consider that T1, . . . , Tn are the random lifetimes of n components, which are working
in an m-dimensional random environment 2. Given 2 = θ, that is, given specific values of the environment, the
components are independent. Again the joint distribution of T1, . . . , Tn is given, with the notation of the previous
example, by (1.1).

If Fi(·|θ) is absolutely continuous, for each θ in the support of2, with a density function fi(·|θ), then the distribution of
(T1, . . . , Tn) is absolutely continuous, and the joint density function is given by

f (t1, . . . , tn) =
∫

Rm

n∏
i=1

fi(ti|θ1, . . . , θm)dΠ(θ1, . . . , θm). (1.2)

This model is known as multivariate mixture model, and can be applied not only in risk theory and reliability, but
also in some other different contexts and situations, for example it can be used to model heterogeneity (see [1]) and
if Fi(·|θ1, . . . , θm) = F(·|θi), where F denotes a distribution function, then (1.1) describes special frailty models. If the
components are not only independent, but also equally distributed, that is Fi(·|θ) = F(·|θ), for all i = 1, . . . , n, then the
randomvector (T1, . . . , Tn) is exchangeable. The role of thismodel in reliability, in the exchangeable case, can be seen in [2,3].
For this model several authors have provided conditions to obtain dependence properties of the random vector

(T1, . . . , Tn), as can be seen in [4–8]. See also [9]. For a recent review of this topic see [10]. An analysis of stochastic
dependence for such models in the context of financial applications and reliability and survival analysis is presented in
the recent papers by Denuit and Frostig [11] and Frostig and Denuit [12] (in this respect see also Section 4).
The purpose of this paper is, given two random vectors as above, (S1, . . . , Sn,21) and (T1, . . . , Tn,22), to provide

conditions to obtain stochastic comparisons of (S1, . . . , Sn) and (T1, . . . , Tn). In particular we shall present a detailed
discussion about stochastic orders of, the so-called, dynamic type. These stochastic orders are particularly interesting from
a conceptual andmathematical point view. They (see e.g. [13]) are defined in terms of the notion of history, which describes
the state of a random vector of lifetimes, of a set of components, at a given time t; this approach leads to the notions of
multivariate hazard rate and multivariate mean residual life orders. Since several notions of positive dependence can be
defined in terms of stochastic orderings, we will also obtain some results in the spirit of Shaked and Spizzichino [5] as
corollaries of our achievements. In particular we obtain sufficient conditions for the HIF notion, which was left as an open
problem in that paper.
The paper is organized as follows. In Section 2 we recall the definitions and main properties of the stochastic orders and

dependence properties considered in this paper. Themain results will be given in Section 3 and applications to proportional
hazard models and mixture models in credit risk will be given in Section 4. Along the paper for any event A the notation
[X |A ] stands for any random variable whose distribution is the conditional distribution of X given A. By =st we denote
equality in law.

2. Previous notions and results on stochastic orders and related concepts

In this section we recall the definitions of some stochastic orders that will be considered along the paper. Also some facts
for positive dependence notions are considered. For the definitions and properties of stochastic orders, the reader can refer
to [13,14].
Given two random vectors X and Y we say that X is less than Y in the usual multivariate stochastic order, denoted by

X≤st Y, if

E[φ(X)] ≤ E[φ(Y)], (2.3)

for all increasing functions φ : Rn 7→ R, for which the previous expectations exist. In the univariate case, given two random
variables X and Y , with survival functions F and G, then (2.3) is equivalent to

F(t) ≤ G(t), for all t ∈ R.

Given two random variables X and Y we say that X is less than Y in the convex [increasing convex] order, denoted by
X ≤cx[icx] Y , if

E[φ(X)] ≤ E[φ(Y )],

for all convex [increasing convex] functions φ, for which previous expectations exist. In the multivariate case there are
several possibilities to extend this concept, depending on the kind of convexity that we consider.
Given two random vectors X and Y we say that X is less than Y in the multivariate convex [increasing convex] order,

denoted by X≤cx[icx] Y, if

E[φ(X)] ≤ E[φ(Y)], (2.4)

for all convex [increasing convex] functions φ : Rn 7→ R, for which the previous expectations exist.
If (2.4) holds for all componentwise convex [increasing componentwise convex] functions φ, then we say that X is

less than Y in the componentwise convex [increasing componentwise convex] order, denoted by X≤ccx[iccx] Y. Some other
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appropriate classes of functions defined onRn can be considered to extend convex orders to themultivariate case, bymeans
of a difference operator. Let∆εi be the ith difference operator defined for a function φ : R

n
→ R as

∆εi φ(x) = φ(x+ ε1i)− φ(x)

where 1i = (0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0). A function φ is said to be directionally convex if∆εi∆

δ
j φ(x) ≥ 0 for all 1 ≤ i ≤ j ≤ n

and ε, δ ≥ 0.We observe that directionally convex functions are also known as ultramodular functions (see [15]). A function
φ is said to be supermodular if ∆εi∆

δ
j φ(x) ≥ 0 for all 1 ≤ i < j ≤ n and ε, δ ≥ 0. If φ is twice differentiable then, it is

directionally convex if ∂2φ/∂xi∂xj ≥ 0 for every 1 ≤ i ≤ j ≤ n, and it is supermodular if ∂2φ/∂xi∂xj ≥ 0 for every
1 ≤ i < j ≤ n. Clearly a function φ is directionally convex if it is supermodular and it is componentwise convex.
When we consider directionally convex [increasing directionally convex] functions in (2.4) then we say that X is less

than Y in the directionally convex [increasing directionally convex] order, denoted by X≤dir-cx[idir-cx] Y. If we consider
supermodular [increasing supermodular] functions in (2.4) thenwe say thatX is less than Y in the supermodular [increasing
supermodular] order, denoted by X≤sm[ism] Y.
The supermodular order is a well known tool to compare dependence structures of random vectors whereas the

directionally convex order not only compares the dependence structure but also the variability of the marginals.
Nowwe consider some notions in the absolutely continuous case. Some remarks for the discrete case will be given along

the section.
Given two random variables X and Y , with densities f and g , respectively, we say that X is less than Y in the likelihood

ratio order, denoted by X ≤lr Y , if

f (s)g(t) ≥ f (t)g(s) for all s ≤ t.

In the multivariate case, given two random vectors X and Y, with joint densities f and g , respectively, we say that X is
less than Y in the multivariate likelihood ratio order, denoted by X≤lr Y, if

f (x ∧ y)g(x ∨ y) ≥ f (x)g(y), for all x, y ∈ Rn,

where (x ∧ y) = (min(x1, y1), . . . ,min(xn, yn)) and (x ∨ y) = (max(x1, y1), . . . ,max(xn, yn)).
The likelihood ratio order is related to the MTP2 dependence notion, as we will recall next.
Given a random vector Xwith density f , we say that X is MTP2 (multivariate totally positive of order 2) if

f (x ∧ y)f (x ∨ y) ≥ f (x)f (y), for all x, y ∈ Rn, (2.5)

that is, if X≤lr X.
Recall that any function f : Rn → R, which satisfies (2.5) is said to be MTP2.
In the discrete case the definition of multivariate likelihood ratio order can be given by replacing the joint density by the

joint probability function.
Next we consider some orders of interest in reliability, where the random variables denote the random lifetimes of some

units or systems. These orders are motivated from a time-dynamic point of view and for the definitions and properties the
reader can refer to [16–19,13].
Given two random variables X and Y , with survival functions F and G, respectively, we say that X is less than Y in the

hazard rate order, denoted by X ≤hr Y , if

F(t)G(s) ≤ F(s)G(t) for all s ≤ t.

In the absolutely continuous case, given two non-negative random variables X and Y with hazard rates r and s
respectively, then X ≤hr Y if r(t) ≥ s(t) for all t ≥ 0.
In the multivariate case it is possible to provide several extensions. We consider the time-dynamic definition of

the multivariate hazard rate order introduced by Shaked and Shanthikumar [16]. For some other extensions, from a
mathematical point of view, see [20].
Let us consider a random vector X = (X1, . . . , Xn)where the Xi’s can be considered as the lifetimes of n units. For t ≥ 0

let ht denote the list of units which have failed and their failure times. More explicitly, a history ht will denote

ht = {XI = xI ,XI > te},

where I = {i1, . . . , ik} is a subset of {1, . . . , n}, I is its complement with respect to {1, . . . , n}, XI will denote the vector
formed by the components of X with index in I and 0 < xij < t for all j = 1, . . . , k and e denotes vectors of 1’s, where the
dimension can be determined from the context.
Now we proceed to give the definition of the multivariate hazard rate order. Given the history ht , as above, let j ∈ I , its

multivariate conditional hazard rate, at time t , is defined as follows:

ηj(t|ht) = lim
∆t→0+

1
∆t
P[t < Xj ≤ t +∆t|ht ]. (2.6)

Clearly ηj(t|ht) is the ‘‘probability’’ of instant failure of component j, given the history ht .
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Now let X and Y be two n-dimensional random vectors with hazard rate functions η·(·|·) and λ·(·|·), respectively. We say
that X is less than Y in the multivariate hazard rate order, denoted by X≤hr Y, if, for every t ≥ 0,

ηi(t|ht) ≥ λi(t|h′t)

where

ht = {XI∪J = xI∪J ,XI∪J > te} (2.7)

and

h′t = {YI = yI , YI > te}, (2.8)

whenever I ∩ J = ∅, 0 ≤ xI ≤ yI ≤ te, and 0 ≤ xJ ≤ te, where i ∈ I ∪ J .
Given two histories as above, we say that ht is more severe than h′t .
The multivariate hazard rate order, as the multivariate likelihood ratio order, is not necessarily reflexive. In fact if a

random vector X satisfies X≤hr X, then it is said to have the HIF property (hazard increasing upon failure, see [19]), and it
can be considered as a positive dependence property. Also the HIF notion can be considered as amathematical formalization
of the default contagion notion in risk theory. Loosely speaking, the default contagion notion means that the conditional
probability of default for a non-defaulted firm increases given the information that some other firms have defaulted. In
particular, concerning the HIF notion, we have that if the information becomes the worst, that is, the number of defaulted
firms is larger and the default times are earlier, then the probability of default for a non-defaulted firm increases.
Wewant to point out that the definition of themultivariate hazard rate order in the discrete case does not follow just con-

sidering discrete hazard rates in (2.6). In this case some additional considerations have to be taken into account (see [21,22]).
Another stochastic order of interest, from a time-dynamic point of view, is the mean residual order.
Given two random variables X and Y , with mean residual lives

m(t) = E[X − t|X > t],

and

l(t) = E[Y − t|Y > t],

respectively, we say that X is less than Y in the mean residual life order, denoted by X ≤mrl Y , if, for every t ≥ 0,

m(t) ≤ l(t).

In the multivariate case, given an n-dimensional random vector X, and a history ht = {XI = xI ,XI > te}, then for the
component j ∈ I , its multivariate conditional mean residual function, at time t , is defined as follows:

mj(t|ht) = E[Xj − t|ht ].

In this casemj(t|ht) is the expected residual life of component j, given the history ht .
In a similar way to the multivariate hazard rate order, Shaked and Shanthikumar [17] define the multivariate mean

residual life order. Let X and Y be two n-dimensional random vectors with multivariate conditional mean residual life
functions m·(·|·) and l·(·|·), respectively. We say that X is less than Y in the multivariate mean residual life order, denoted
by X≤mrl Y, if, for every t ≥ 0,

mi(t|ht) ≤ li(t|h′t)

where ht and h′t are given in (2.7) and (2.8), respectively.
Again the multivariate mean residual life order is not necessarily reflexive. If a random vector X satisfies X≤mrl X, then it

is said to have the MRL-DF property (mean residual life decreasing upon failure, see [17]), and it is considered as a positive
dependence property. Again the MRL-DF notion can be interpreted in the context of default contagion. In this case we have
that the mean time to default of a non-defaulted firm decreases, when the number of defaulted firms increases and the
default times are earlier.
To conclude we include the following relationships among the previous orders.
Univariate case:
≤lr ⇒ ≤hr ⇒ ≤st

⇓ ⇓

≤mrl ⇒ ≤icx .

Multivariate case:
≤lr ⇒ ≤hr ⇒ ≤st

⇓ ⇓

≤mrl ≤icx

and

≤cx[icx] ⇐ ≤ccx[iccx] ⇒ ≤dir-cx[idir-cx] ⇐ ≤sm[ism] . (2.9)
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3. Stochastic comparisons of conditionally independent random vectors

We are now ready to start with our treatment of the general case in which we have two random vectors (S1, . . . , Sn,21)
and (T1, . . . , Tn,22). Generally, unless stated otherwise, we shall assume that S1, . . . , Sn and T1, . . . , Tn are independent
random variables given 21 = θ and 22 = θ for any value of θ, respectively, and 21 and 22 are m-dimensional random
vectors. As first we describe sufficient conditions for the multivariate stochastic order of (S1, . . . , Sn) and (T1, . . . , Tn), in
the usual sense.

Theorem 3.1. If, for all i: 1, . . . , n,
(i) [Si|21 = θ] or [Ti|22 = θ], or both, are increasing in the stochastic order in θ,
(ii) [Si|21 = θ] ≤st[Ti|22 = θ], for all θ,
and

(iii) 21≤st22,

then

(S1, . . . , Sn)≤st (T1, . . . , Tn).

Proof. Let φ : Rn 7→ R be an increasing function. We are going to prove condition (2.3).
Let us suppose that (i) holds for Si(θ) ≡ [Si|21 = θ] (the proof in the other case is similar). Then it is easy to see that

E[φ(S1(θ), . . . , Sn(θ))] is increasing in θ. (3.10)

Also condition (ii) is equivalent to (see Theorem 6.B.16(b) in [13]),

(S1(θ), . . . , Sn(θ))≤st (T1(θ), . . . , Tn(θ)), for all θ. (3.11)

Let us denote by Π1 and Π2 the joint distribution function of21 and22, respectively. We have the following chain of
inequalities (we assume that the conditions of Fubini’s theorem hold)

E[φ(S1, . . . , Sn)] =
∫

Rm
E[φ(S1(θ), . . . , Sn(θ))]dΠ1(θ)

≥

∫
Rm
E[φ(S1(θ), . . . , Sn(θ))]dΠ2(θ)

≥

∫
Rm
E[φ(T1(θ), . . . , Tn(θ))]dΠ2(θ) = E[φ(T1, . . . , Tn)],

where the first inequality follows from (iii) and (3.10), and the second inequality from (3.11). Therefore (S1, . . . , Sn)≤st
(T1, . . . , Tn). �

Remark 3.2. Condition (i) is a well known property. Given a family {X(θ), θ ∈ χ j Rm} of random variables, if X(θ) is
increasing in the stochastic order in θ, then {X(θ), θ ∈ χ j Rm} is said to be stochastically increasing (SI). The SI notion can
be seen also, in the literature, as a condition of positive dependence. If (X,Θ) is a bivariate vector, X is SI inΘ if [X |Θ = θ ]
is SI (see [23,13]).

The previous theorem is a particular case of the following one.

Theorem 3.3. Let (S1, . . . , Sn,21) and (T1, . . . , Tn,22) be random vectors, where 21 and 22 are m-dimensional random
vectors, and the components S1, . . . , Sn and T1, . . . , Tn are not necessarily conditionally independent random variables given
21 = θ and22 = θ for all θ, respectively. If

(i) [S1, . . . , Sn|21 = θ] or [T1, . . . , Tn|22 = θ], or both, are increasing in the stochastic order in θ,
(ii) [S1, . . . , Sn|21 = θ] ≤st[T1, . . . , Tn|22 = θ], for all θ,
and

(iii) 21≤st22,

then

(S1, . . . , Sn)≤st (T1, . . . , Tn).

Proof. The proof follows similar steps to that of Theorem 3.1. �

In the conditionally independent case, (i) and (ii) in Theorem 3.1 are equivalent to (i) and (ii) in Theorem 3.3, respectively.
Next we consider the stochastic comparison for some convex and related orders. We first consider a result for the ism

order in the same situation as that in Theorem 3.1, and we assume also that [Si|21 = θ] =st[Ti|22 = θ], for all θ. We will
denote by F i(·|θ) the common survival function of [Si|21 = θ] and [Ti|22 = θ].
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Theorem 3.4. If, for all i: 1, . . . , n,

(i) [Si|21 = θ] is increasing or decreasing [increasing], at the same time, in the stochastic order in θ,
(ii) F i(·|θ) is componentwise convex in θ
and

(iii) 21≤ccx[iccx]22,

then

(S1, . . . , Sn)≤ism (T1, . . . , Tn).

Proof. Let φ be an increasing supermodular function, we assume that φ is twice differentiable, then following [24,12]

∂2

∂θi∂θj
E[φ(S1, S2, . . . , Sn)|Θ1 = θ ] =

∑
l<k

∫
∂2

∂xl∂xk
φ(x1, . . . , xn)

∂

∂θi
F l(xl|θ)

∂

∂θj
F k(xk|θ)

∏
h6=l,k

dFh(xh|θ)

+

n∑
l=1

∫
∂

∂xl
φ(x1, . . . , xn)

∂2

∂θi∂θj
F l(xl|θ)

∏
h6=l

dFh(xh|θ).

Therefore, under (i) and (ii), E[φ(S1, S2, . . . , Sn)|Θ1 = θ ] is componentwise convex [increasing componentwise convex]
in θ, and the result follows as in the previous result. �

Now we consider a different situation. Let (S1, . . . , Sn,21), (T1, . . . , Tn,22) be random vectors, where 21 =
(Θ1,1, . . . ,Θ1,n) and 22 = (Θ2,1, . . . ,Θ2,n) are n-dimensional random vectors, and the conditional distributions of Si
[Ti] given 21 = θ [22 = θ] just depends on Θ1,i = θi [Θ2,i = θi]. In this case we will fix the notation Si(θi) ≡ Si(θ)
[Ti(θi) ≡ Ti(θ)]
Now we can state the following theorem.

Theorem 3.5. If, for all i: 1, . . . , n,

(i) Si(θ)≤cx[icx] Ti(θ), for all θ ,
(ii) E[φ(Si(θ))] or E[φ(Ti(θ))], or both, are convex [increasing convex] in θ for all convex [increasing convex] functions φ,
and

(iii) 21≤ccx[iccx]22
then

(S1, . . . , Sn)≤ccx[iccx] (T1, . . . , Tn).

Proof. Following [24] it is not difficult to show that if (ii) holds for Si(θ), i = 1, 2, . . . , n, then E[φ(S1(θ1), . . . , Sn(θn))]
is componentwise convex [increasing componentwise convex] in θ (the proof when (i) holds for Ti(θ), i = 1, 2, . . . , n, is
similar). Now (i) is equivalent to (S1(θ1), . . . , Sn(θn))≤ccx[iccx] (T1(θ1), . . . , Tn(θn)), and the proof follows similar steps to
that of Theorem 3.1. �

Related results can be found in [12]. In particular we observe that Proposition 3.5 in [12] can be obtained from
Theorems 3.4 and 3.5.

Remark 3.6. Recall that given a family {X(θ), θ ∈ χ j R} of random variables, if X(θ) is SI and E[φ(X(θ))] is increasing
convex in θ ∈ χ , for all increasing convex functions φ, then {X(θ), θ ∈ χ j R} is said to be stochastically increasing and
convex (SICX) (see [13]). Therefore condition (ii) (in the increasing convex case) is weaker than the SICX notion.

From (2.9) we get the following result.

Corollary 3.7. Under the same conditions as in the previous theorem, then

(S1, . . . , Sn)≤dir-cx,cx[idir-cx,icx] (T1, . . . , Tn).

In the same situation for (S1, . . . , Sn,21), (T1, . . . , Tn,22) as that in the previous result, we consider now the
multivariate likelihood ratio order.

Theorem 3.8. If, for all i: 1, . . . , n,

(a) Si(θ)=st Ti(θ), for all θ ,
(b) Si(θ)≤lr Si(θ ′) for all θ ≤ θ ′,
and

(c) 21≤lr22
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then

(S1, . . . , Sn)≤lr (T1, . . . , Tn).

Proof. Let us denote by fi(ti|θ) the density function of Si(θ). It is not difficult to show that condition (ii) implies that

f (t1, . . . , tn|θ1, . . . , θn) =
n∏
i=1

fi(ti|θi), is MTP2 in (t1, . . . , tn, θ1, . . . , θn).

Now from Theorem 2.4 by Karlin and Rinott [25], then (S1, . . . , Sn)≤lr (T1, . . . , Tn). �

When21=st22, then we have the following result obtained by Shaked and Spizzichino [5].

Corollary 3.9. If, for all i: 1, . . . , n,

(i) Si(θ)≤lr Si(θ ′) for all θ ≤ θ ′,
and

(ii) 2 isMTP2,

then

(S1, . . . , Sn) isMTP2.

Following the results given for the likelihood ratio order, it is natural to conjecture the following result.

Conjecture 3.10. Let (S1, S2, . . . , Sn,21), (T1, T2, . . . , Tn,22) be random vectors as in Theorem 3.8, if for all i: 1, . . . , n,

(i) Si(θ)=st Ti(θ), for all θ ,
(ii) Si(θ)≤hr Si(θ ′) for all θ ≤ θ ′,
and

(iii) 21≤lr22
then

(S1, . . . , Sn)≤hr (T1, . . . , Tn).

A consequence of this result would be the following: Let (S1, S2, . . . , Sn,2) be a random vector where (S1, S2, . . . , Sn) is
conditionally independent given2 = θ. If Si(θ)≤hr Si(θ ′) for all θ ≤ θ ′ and i: 1, . . . , n then

(S1, . . . , Sn)≤hr(S1, . . . , Sn)(⇔ (S1, . . . , Sn) ∈ HIF).

However this result is not true, for a counterexample see Example 3.5 in [5].
Anyway, it is possible to give some conditions under which we can obtain the dynamical hazard rate order.
Let us consider two random vectors (S1, . . . , Sn,21) and (T1, . . . , Tn,22), where21 and22 arem-dimensional random

vectors, and let us denote by sit(θ) and r
i
t(θ) the hazard rates of [(Si|21 = θ] and [Ti|22 = θ)], respectively. Let us denote

by η and λ the dynamic multivariate hazard rates of S = (S1, . . . , Sn) and T = (T1, . . . , Tn), respectively. Finally S and T are
conditionally independent given21 = θ and22 = θ, respectively. In this case, following arguments similar to those in the
proof of Proposition 2.39 in [3], we have the following equalities

ηj(t|ht) =
∫

Rm
sjt(θ)π1(θ|ht)dθ (3.12)

and

λj(t|h′t) =
∫

Rm
r jt(θ)π2(θ|h

′

t)dθ, (3.13)

where ht and h′t are histories for S and T, respectively, andπi(θ|D) is the conditional density of2i, for i = 1, 2 given a history
D.
Now we state the following result.

Theorem 3.11. If, for all i: 1, . . . , n,

(i) [Si|21 = θ] (or [Ti|22 = θ]) is increasing [decreasing] in the hazard rate order in θ,
(ii) [Si|21 = θ] ≤hr[Ti|22 = θ], for all θ,
and

(iii) [21|ht ] ≤st [≥st] [22|h′t ], for every two histories ht and h
′
t , for (S1, . . . , Sn) and (T1, . . . , Tn) respectively, where ht is more

severe than h′t ,
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then

(S1, . . . , Sn)≤hr (T1, . . . , Tn).

Proof. First we observe that condition (i) is equivalent to the condition sit(θ) (or r
i
t(θ)) is decreasing [increasing] in θ, for all

t > 0. We will consider the case in which sit(θ) is decreasing [increasing] in θ, for all t > 0, the other case follows under
similar arguments.
Let us denote by η and λ the multivariate conditional hazard rates of (S1, . . . , Sn) and (T1, . . . , Tn), respectively. And

finally, let us consider two histories ht and h′t as in (2.7) and (2.8). Let j ∈ I ∪ J , recalling (3.12) and (3.13), we have the
following chain of inequalities

ηj(t|ht) =
∫
χ

sjt(θ)π1(θ|ht)dθ = E[s
j
t(21|ht)]

≥ E[sjt(22|h
′

t)]

≥ E[r jt(22|h
′

t)] = λj(t|h
′

t),

where the first inequality follows from (i) and (iii), and the second inequality follows from (ii). Therefore
(S1, . . . , Sn)≤hr (T1, . . . , Tn). �

An important consequence of this theorem is the following result.

Theorem 3.12. If, for all i: 1, . . . , n,

(i) [Si|2 = θ] is increasing[decreasing] in the hazard rate order in θ

and
(ii) [2|ht ] ≤st [≥st] [2|h′t ], for every two histories ht and h

′
t , for (S1, . . . , Sn), where ht is more severe than h

′
t ,

then

(S1, . . . , Sn) ∈ HIF .

Therefore we provide conditions for the HIF property of random vectors with conditionally independent components,
which was an open problem in [5].
Next we consider the mean residual life order. In the conditionally independent case, we provide first the following

expression for the multivariate mean residual life.

Proposition 3.13. Let (S1, . . . , Sn) be a random vector with the property of being conditionally independent given2. Denote by
mjt(θ) the mean residual life of [Sj|2 = θ], for j : 1, . . . , n, and denote by m·(·|·) the multivariate conditional mean residual life
of (S1, . . . , Sn), then

mj(t|ht) =
∫
χ

mjt(θ)π(θ|ht)dθ, (3.14)

where ht = {SI = sI , SI > t} and j ∈ I , and π(·|ht) is the conditional density function of 2 given ht .

Proof. Let us consider the history ht = {SI = sI , SI > te}, where I = {i1, . . . , ik} and I = {j1, . . . , jn−k}. Let j ∈ I , then

mj(t|ht) = E[Sj − t|ht ] = E{E[Sj − t|2]|ht} = E[mit(2)|ht ],

where the last inequality follows from the conditional independence of S1, . . . , Sn given2. �

Now we give conditions for the mrl order multivariate mixture models.

Theorem 3.14. If, for all i: 1, . . . , n,

(i) [Si|21 = θ](or [Ti|22 = θ]) is increasing [decreasing] in the mean residual life order in θ,
(ii) [Si|21 = θ] ≤mrl[Ti|22 = θ], for all θ,
and

(iii) [21|ht ] ≤st [≥st] [22|h′t ], for every two histories ht and h
′
t , for (S1, . . . , Sn) and (T1, . . . , Tn) respectively, where ht is more

severe than h′t ,

then

(S1, . . . , Sn)≤mrl (T1, . . . , Tn).
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Proof. The proof is similar to that of Theorem 3.11. First we observe that condition (i) is equivalent to the condition mit(θ)
(or lit(θ)) is increasing [decreasing] in θ, for all t > 0. We will consider the case in whichmit(θ) is increasing [decreasing] in
θ, for all t > 0, the other case follows under similar arguments.
Let us denote by m and l the multivariate conditional mean residual lives of (S1, . . . , Sn) and (T1, . . . , Tn), respectively.

And finally, let us consider two histories ht and h′t for (S1, . . . , Sn) and (T1, . . . , Tn), such that ht is more severe than h
′
t .

Recalling (3.14), we have the following chain of inequalities

mi(t|ht) =
∫
χ

mit(θ)π1(θ|ht)dθ = E[m
i
t(21|ht)]

≤ E[mit(22|h
′

t)]

≤ E[lit(22|h
′

t)] = li(t|h
′

t),

where the first inequality follows from (i) and (iii), and the second inequality follows from (ii). Therefore
(S1, . . . , Sn)≤mrl (T1, . . . , Tn). �

Now it is possible to provide the following result.

Theorem 3.15. If, for all i: 1, . . . , n,

(i) [Si|2 = θ] is increasing[decreasing] in the mean residual life order in θ

and
(ii) [2|ht ] ≤st [≥st] [2|h′t ], for every two histories ht and h

′
t , for (S1, . . . , Sn), where ht is more severe than h

′
t ,

then

(S1, . . . , Sn) ∈ MRL-DF.

In view of previous theorems, it seems that condition (iii) in Theorems 3.11 and 3.14 is the most difficult to verify, so it
would be interesting to describe some sufficient conditions for

(21|ht)≤st[≥st](22|h′t)

where ht is more severe than h′t . Now we describe some results in such a direction. We will give conditions for likelihood
ratio order of (21|ht) and (22|h′t), which in turns implies the stochastic order. The results are given for random vectors not
necessarily with the property of being conditionally independent. We start with a result concerning the case whenΘ1 and
Θ2 are real random variables.

Theorem 3.16. Let (S1, . . . , Sn,Θ1) and (T1, . . . , Tn,Θ2), be random vectors, whereΘ1 andΘ2 are random variables. If

(i) G(t|θ)/F(t|θ) is increasing[decreasing] in θ , for all t, where G(t|θ) and F(t|θ) are the survival functions of (S1, . . . , Sn|Θ1 =
θ) and (T1, . . . , Tn|Θ2 = θ),

(ii) Θ1≤lr[≥lr]Θ2,
and

(iii) for every K ⊆ {1, . . . , n} and xK ≤ yK
gTK (yK |TK > teK ;Θ2 = θ)
fSK (xK |SK > teK ;Θ1 = θ)

is increasing in θ,

where by fSK (xK |B) and gTK (yK |B) we denote the conditional density functions of SK and TK , respectively, given some event
B

then

[Θ1|ht ] ≤lr [≥lr] [Θ2|h′t ]

where ht is more severe than h′t .

Proof. Let

h′t =
{
TI = yI , TJ > teJ , TI⋃ J > teI⋃ J

}
and

ht =
{
SI = xI , SJ = xJ , SI⋃ J > teI⋃ J

}
,

where xI ≤ yI ≤ teI and xJ ≤ teJ .
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If we denote by πi(θ |A), the conditional density of Θi given A, for i = 1, 2, and by fSI (xI |B) and gTI (yI |B) we denote the
conditional density functions of SI and TI , respectively, given some event B, then we have

π1(θ |ht) ∝ π1
(
θ |SI⋃ J > teI⋃ J

)
fSI
(
xI |SI⋃ J > teI⋃ J;Θ1 = θ

)
fSJ
(
xJ |SI = xI; SI⋃ J > teI⋃ J;Θ1 = θ

)
and

π2(θ |h′t) ∝ π2
(
θ |TI⋃ J > teI⋃ J

)
gTI
(
yI |TI⋃ J > teI⋃ J;Θ2 = θ

)
×

∫
∞

t
· · ·

∫
∞

t
gTJ
(
yJ |TI = yI; TI⋃ J > teI⋃ J;Θ2 = θ

)
dyJ .

Now we prove that [Θ1|ht ] ≤lr[Θ2|h′t ], the proof for [Θ1|ht ] ≥lr[Θ2|h
′
t ] follows under similar arguments. The result will

follow if we prove that

π2

(
θ |TI⋃ J > teI⋃ J

)
π1

(
θ |SI⋃ J > teI⋃ J

) (3.15)

and

gTI
(
yI |TI⋃ J > teI⋃ J;Θ2 = θ

) ∫
∞

t · · ·
∫
∞

t gTJ
(
yJ |TI = yI; TI⋃ J > teI⋃ J;Θ2 = θ

)
dyJ

fSI
(
xI |SI⋃ J > teI⋃ J;Θ1 = θ

)
fSJ
(
xJ |SI = xI; SI⋃ J > teI⋃ J;Θ1 = θ

) (3.16)

are increasing in θ .
As far as (3.15) is concerned, we have that

π2

(
θ |TI⋃ J > teI⋃ J

)
π1

(
θ |SI⋃ J > teI⋃ J

) ∝ GI⋃ J
(
teI⋃ J |θ

)
π2(θ)

F I⋃ J
(
teI⋃ J |θ

)
π1(θ)

and therefore, by (i) and (ii), is increasing in θ .
Finally we observe that (3.16) can be written as∫

∞

t
· · ·

∫
∞

t

gTI
(
yI |TI⋃ J > teI⋃ J;Θ2 = θ

)
gTJ
(
yJ |TI = yI; TI⋃ J > teI⋃ J;Θ2 = θ

)
fSI
(
xI |SI⋃ J > teI⋃ J;Θ1 = θ

)
fSJ
(
xJ |SI = xI; SI⋃ J > teI⋃ J;Θ1 = θ

) dyJ
and this expression is increasing in θ by (iii). �

Remark 3.17. Nowweextend the previous result to themultivariate case,whereΘ1 andΘ2 are replaced by randomvectors,
of the same dimension,Θ1 andΘ2. First we note (see [26] and [3, p. 109]) that in the multivariate case, given two random
vectors S and T with joint densities fS and gT, if S or T, or both, are MTP2 and fS(u)/gT(u) is increasing in u, then S≤lr T.
Clearly if S≤lr T then fS(u)/gT(u) is increasing in u.

Theorem 3.18. Let (S1, . . . , Sn,21) and (T1, . . . , Tn,22), be random vectors, where21 and22 are random vectors of the same
dimension. If

(i) G(t|θ)/F(t|θ) is increasing[decreasing] in θ, for all t, where G(t|θ) and F(t|θ) are the survival functions of [S1, . . . , Sn|21 =
θ] and [T1, . . . , Tn|22 = θ],

(ii) 21≤lr[≥lr]22,
(iii) 21 isMTP2 and f (·|θ) isMTP2 in θ or22 isMTP2 and g(·|θ) isMTP2 in θ, or both, where f (·|θ) and g(·|θ) are the conditional

densities of S and T given21 = θ and22 = θ, respectively,
and

(iv) for every K ⊆ {1, . . . , n} and xK ≤ yK
gTK (yK |TK > teK ;22 = θ)

fSK (xK |SK > teK ;21 = θ)
is increasing in θ,

then

[21|ht ] ≤lr [≥lr] [22|h′t ]

where ht is more severe than h′t .
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Proof. As in the previous theoremwe give the proof for [21|ht ] ≤lr[22|h′t ]. Let ht and h
′
t be as in the previous theorem. Now

under the same notation as in the previous theorem and from Remark 3.17, the result follows if we prove that

π2(θ|h′t)/π1(θ|ht) is increasing in θ (3.17)

and that

[21|h]) or [22|h′t ], or both, are MTP2. (3.18)

The proof of (3.17) follows, from (i), (ii) and (iv), under the same arguments of the proof of Theorem 3.16.
Nowwe prove (3.18).We give the proof for [21|ht ], the proof for [22|h′t ] is analogous. Given a history ht = {SI = sI , SI >

te}, we observe that

π1(θ|ht) ∝ π1(θ)P[SI > te|21 = θ]fSI (SI |SI > te,21 = θ),

and then (3.18) follows from (iii). �

It is important to note that condition (iii) in Theorems 3.11 and 3.14 just requires a stochastic comparison in the≤st sense.
In the two previous results we give conditions for the likelihood ratio order. Therefore it would be interesting to find other
conditions, different from those of Theorems 3.16 and 3.18 for the usual stochastic order. This remains as an open problem.
We want to point out that conditions (iii) and (iv) in Theorems 3.16 and 3.18, respectively, are implied by the condition
(S1, . . . , Sn,21)≤lr (T1, . . . , Tn,22).
To conclude this section we observe also that a combination of Theorems 3.12 and 3.18 can be used to provide the

following result for the HIF property. This result can be compared with Corollary 3.9

Theorem 3.19. Let (S1, . . . , Sn,2) be a random vector, where, for all values θ in the support of 2, S1, . . . , Sn are conditionally
independent given in2 = θ. If, for all i: 1, . . . , n,

(i) Si(θ)≤lr Si(θ′) for all θ ≤ θ′,
(ii) 2 isMTP2
(iii) fi(·|θ) isMTP2 in θ, where fi(·|θ) is the conditional density of Si given2 = θ,

and
(iv)

fSK (yK |SK > teK ;2 = θ)

fSK (xK |SK > teK ;2 = θ)
is increasing in θ,

then

(S1, . . . , Sn) ∈ HIF .

4. Applications

4.1. Mixture models in credit risk

An important application of multivariate mixture models is given in portfolio credit risk. In this context if we consider a
loan portfolio with respect to n different obligors, the default risk of each obligor is assumed to depend on a set of economic
factors, which are modelled stochastically. Given a realization of the factors, defaults of individual firms are assumed
to be independent. Some important applications arise when the defaults are modelled via Bernoulli or Poisson random
variables. In this case Belzunce and Semeraro [7] andDenuit and Frostig [11] have provided several results about dependence
properties between the individual defaults. Next we provide some additional results about stochastic comparisons.

• Bernoulli mixture models
Let us consider the case where the default probability of the ith firm, given some random economic factors 2 = θ, is
given by pi(θ). If we denote by Si(θ) the indicator random variable of default of the ith firm, then Si(θ) is a Bernoulli
random variable with parameter pi(θ) = P[Si(θ) = 1]. If we consider the unconditional distribution of defaults of the
n firms, (S1, S2, . . . , Sn), obtained by integrating over the distribution of the economic factors2, then (S1, S2, . . . , Sn) is
said to follow a Bernoulli mixture model (see [23, p. 219]). Let us describe situations where some of the previous results
can be applied.
First we observe that given a function φ : Rn → R, we obtain that

E[φ(Si(θ))] = φ(0)+ (φ(1)− φ(0))pi(θ). (4.19)
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Therefore if φ is increasing, then the behaviour of E[φ(Si(θ))], with respect to θ depends only on pi(θ). For example, if
pi(θ) is increasing in θ, then E[φ(Si(θ))] is increasing in θ, and therefore Si(θ) is SI in θ (see Remark 3.2. Let us consider
another set of n Bernoulli random variables, T1(θ), T2(θ), . . . , Tn(θ), where P[Ti(θ) = 1] = qi(θ), that can be considered
as the random defaults of another set of firms given a realization of the economic factors,2 = θ. It is not difficult to see
that, if pi(θ) ≤ qi(θ) then Si(θ)≤st Ti(θ). In fact it can be proved easily that Si(θ)≤lr Ti(θ). Therefore as a consequence
of Theorem 3.1 (S1, . . . , Sn)≤st (T1, . . . , Tn). We can consider also the situation where the default probability of the
ith firm can be computed under two different scenarios, 21 and 22, as P[default of ith firm|21 = θ ] = pi(θ) and
P[default of i-th firm|22 = θ] = qi(θ), respectively. Under previous conditions and assuming that21≤st22, we have
again, from Theorem 3.1, that (S1, . . . , Sn)≤st (T1, . . . , Tn). Let us consider now the potential loss of the ith firm, given
by ei, where ei is positive and deterministic. Then the portfolio loss under the two scenarios, are given by L1 =

∑n
i=1 eiSi

and L2 =
∑n
i=1 eiTi, and under previous considerations we obtain that L1≤st L2.

Let us consider, for example, that the two scenarios are modelled by multivariate logit-normal distributions, that is, for
i = 1, 2

2i =

(
exp{Z i1}
1+ exp{Z i1}

, . . . ,
exp{Z im}
1+ exp{Z im}

)
,

where Z1 ∼ N(µ1,61) and Z2 ∼ N(µ2,62). Given that the multivariate stochastic order is preserved under increasing
transformations, and from results for multivariate normal distributions (see [27]), if µ1i ≤ µ2i for all 1 ≤ i ≤ n and
61 = 62, thenΘ1≤stΘ2.
In case that the probability of default, pi(θ), depends only on the value θi, that is pi(θ) = pi(θi), we can consider
applications for the lr and icx orders. For example, is not difficult to prove that, if pi(θi) is increasing in θi, then Si(θi) is
increasing in the likelihood ratio order, and thereforewe can apply Theorem3.8. From (4.19), if we consider an increasing
convex function φ, then, if pi(θi) is increasing and convex, then we can apply Theorem 3.5.
• Poisson mixture models
Another possibility in this context is to consider that ‘‘a companymay potentially ‘‘default more than once’’ in the period
of interest, albeit with a very low probability’’ (see [28]). In this case given n companies, the number of defaults for each
company (S1, . . . , Sn), is a random vector such that conditional on some random economic factors Θ = θ, the random
vector (S1, . . . , Sn|Θ = θ) is a vector of independent Poisson distributed rvs with parameter λi(θ). Applications of this
model can be found also in actuarial mathematics (see Section 10.2.4 in [28]).
It is not difficult to see that if λi(θ) is increasing in θ then Si(θ) is increasing in the likelihood ratio order in θ, therefore
is increasing in the stochastic order and therefore condition (i) in Theorem 3.1 is satisfied, and similar results to that
considered for Bernoulli mixture models can be given. For example we can consider the case where the distribution
of the parameters (λ1, . . . , λn) is a multivariate lognormal distribution. This leads to a multivariate Poisson lognormal
distribution for (S1, . . . , Sn). Given that the multivariate lognormal distribution can be obtained from a multivariate
normal distribution through an increasing transformation, and given that the usual stochastic order is preserved under
increasing transformations, we can provide conditions on two scenarios distributed according to multivariate lognormal
distributions, as in the Bernoulli case, to apply Theorem 3.1.

4.2. Proportional hazard models

Let us consider the case in which for all i: 1, . . . , n, Si(θ) and Ti(θ) are non-negative random variables, with proportional
hazard rates given by

pi(θ)ri(t) and qi(θ)ri(t),

where pi(·) and qi(·) are real functions and ri(·) is a hazard rate. Then the distribution functions of Si(θ) and Ti(θ) are given
by

F i(t)pi(θ) and F i(t)qi(θ),

respectively, where F i is the associated survival function to ri, that is F i(t) = exp(−
∫ t
0 ri(x)dx), and the density functions of

Si(θ) and Ti(θ) are given by

pi(θ)ri(t)F i(t)pi(θ) and qi(θ)ri(t)F i(t)qi(θ),

respectively.
Applications of this model can be given in the context of lifetimes. For example, it can be used to describe risk models

(see Chapters 7 and 10 in [29]). Dependence properties for this model have been provided by Shaked and Spizzichino [5]
and Frostig and Denuit [12]. Other applications can be given in the context of Bayesian minimal repair.
Consider n independent units with survival functions F i, i : 1, . . . ,m, and suppose that each one is imperfectly repaired

upon failure. That is, upon failure of unit i, this is perfectly repaired with probability pi or is minimally repaired with
probability 1−pi. This model was proposed by Brown and Proschan [30] and it is known as imperfect repair model. Following
[31], we can generalize this model assuming that pi depends on somem-dimensional random environment2, that is, given
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2 = θ, then pi = pi(θ). If we denote byΠ(θ) the joint distribution function of2, and S = (S1, . . . , Sn), denotes the waiting
time of the first perfect repair of the n components, then the joint survival function of S, is given by

F(t1, . . . , tm) =
∫

Rm

m∏
i=1

F i(ti)pi(θ)dΠ(θ),

For thismodel Belzunce and Semeraro [7] provide some dependence properties. Next we describe conditions on pi(·) and
qi(·) under which we can apply some of the previous results to compare two random vectors (S1, . . . , Sn) and (T1, . . . , Tn)
as above, working on two random environments21 and22, respectively.
Let us consider that pi(θ) (or qi(θ)) is decreasing in θ. Then it is not difficult to verify that Si(θ)≤lr Si(θ′) for all θ ≤ θ′,

and therefore Si(θ)≤st Si(θ′). If we assume also that pi(θ) ≥ qi(θ), for all θ, then is not difficult to prove that Si(θ)≤lr Ti(θ),
and therefore Si(θ)≤st Ti(θ). Let us assume that21≤st22, then from Theorem 3.1, (S1, . . . , Sn)≤st (T1, . . . , Tn).
Let us consider now that21 = (Θ1,1, . . . ,Θ1,n) and22 = (Θ2,1, . . . ,Θ2,n) are n-dimensional randomvectors, and let us

assume that pi(θ1, . . . , θn) and qi(θ1, . . . , θn)dependonly on θi. Let us consider that pi(θ) (or qi(θ)) is not only decreasing, but
also concave in θ . Then from Theorem 8.C.1 and 8.C.5 in [13] it is possible to prove that {Si(θ), θ ∈ χ ⊆ R} ∈ SICX. Therefore
from Remark 3.6 we have that Si(θ) (or Ti(θ)) satisfies condition (ii) in Theorem 3.5. Under the assumption pi(θ) ≥ qi(θ), for
all θ , we have condition (i) in Theorem 3.5, therefore if21≤iccx22 then from Theorem 3.5, (S1, . . . , Sn)≤iccx (T1, . . . , Tn).
Let us consider as above that pi only depends on θi, and that, for all i: 1, . . . , n, pi(·) = qi(·). As mentioned

before, if pi(θ) is decreasing in θ , then Si(θ)≤lr Si(θ ′) for all θ ≤ θ ′. Therefore, from Theorem 3.8, if 21≤lr22 then
(S1, . . . , Sn)≤lr (T1, . . . , Tn).
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