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We consider perturbations in a cosmological model with a small coupling between dark energy and
dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling
between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to
the dark matter energy density, it will drive the instability in the curvature perturbations; however if
the coupling is proportional to the energy density of dark energy, there is room for the stability in the
curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable,
no matter whether the coupling is proportional to the one or the other energy density.

© 2008 Elsevier B.V.

We are convinced by the fact that our universe is undergoing an accelerated expansion driven by the so-called dark energy (DE). The
leading interpretation of such a DE is the cosmological constant with equation of state (EoS) w = −1. Although the cosmological constant
is consistent with the observational data, it presents apparently unsurmountable problems from the theoretical point of view, which not
only requires a severe fine tuning of 120 digits to attain the actual value of the cosmological constant, but also leads to the coincidence
problem, namely why the DE and the dark matter (DM) are comparable in size exactly today [1].

Dark energy contributes a significant fraction of the content of the universe. It is thus natural to consider its interaction with the
remaining fields of the Standard Model in the framework of standard field theory. The possibility that DE and DM can interact has been
widely discussed recently [2–27]. It has been shown that certain types of coupling between DE and DM can lead to a late time attractor
solution for the ratio of DM and DE densities [6] and provide a mechanism to alleviate the coincidence problem [2,4]. It has been argued
that an appropriate interaction between DE and DM can influence the perturbation dynamics and affect the lowest multipoles of the CMB
spectrum [9,11]. Arguments using galaxies structure formation suggested that the strength of the coupling could be as large as the QED
fine structure constant [9,12]. More recently, it was shown that such an interaction could be inferred from the expansion history of the
universe, as manifested in, e.g., the supernova data together with CMB and large-scale structure information [16,23,24]. In addition, it was
suggested that the dynamical equilibrium of collapsed structures can be affected by the coupling between DE and DM [13]. The basic
idea is that the virial theorem is distorted by the non-conservation of mass caused by the coupling [22]. Thermodynamical attempts to
understand the interaction between DE and DM has also been proposed [18].

Recently there has been some concern about the stability of the perturbations under DE and DM interaction [27], which could represent
a sharp blade in the heart of such interacting models. In the original analysis the authors considered that the energy exchange between
DE and DM is proportional to the energy densities of DM and total dark sectors. For the constant DE EOS w > −1, it was found that the
instability arises regardless of how weak the coupling is. In this work we are going to reexamine the stability of the curvature perturbation
when dark sectors are mutually interacting. We will concentrate on the interaction between dark sectors in a linear combination of
energy densities of DE and DM, which is a more general phenomenological form in describing the interaction [23,29]. We will restrict our
investigation to constant EOS including w > −1 and w < −1 cases.

We consider a two-component system with each energy–momentum tensor satisfying

∇μT μν
(λ) = Q ν

(λ), (1)

where Q ν
(λ) denotes the interaction between different components and λ denotes either the DM or the DE sector. This equation can be

projected on the time or on the space direction of the comoving observer. Using the four velocity Vν , it can be contracted into
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Vν∇μT μν
(λ)

= −ρ̇λ − θ(ρλ + pλ) = Vν Q ν
(λ), (2)

which is the projection on the time direction of the comoving observer. Above, ρ̇λ = Vν∇νρλ and θ = ∇ν Vν is the volume expansion rate.
In order to get the projection along the space direction, we can use hτ

ν = δτ
ν + V τ Vν on (1) and take the contraction

hτ
ν∇μT μν

(λ) = (ρλ + pλ)Aτ +(3) ∇τ pλ = hτ
ν Q ν

(λ), (3)

where Aτ = V μ∇μV τ is the acceleration. For the homogeneous and isotropic universe, it requires (3)∇τ
pλ = 0. Besides, for the DM

particle, its world line is the geodesic, Aτ = 0. Thus the spacial part of Q ν
(λ) vanishes, which means that in the background there

is no momentum transfer between dark sectors [27]. For the whole system the energy–momentum conservation still holds, satisfying
Σλ∇μT μν

(λ) = 0, thus requiring Q 0
DE = −Q 0

DM.
We choose the perturbed space–time

ds2 = a2[−(1 + 2ψ)dτ 2 + 2∂i B dτ dxi + (1 + 2φ)δi j dxi dx j + Dij E dxi dx j], (4)

where

Dij =
(

∂i∂ j − 1

3
δi j∇2

)
. (5)

The perturbed energy–momentum tensor reads

δ∇μT μ0
(λ) = 1

a2

{−2
[
ρ ′

λ + 3H(pλ + ρλ)
]
ψ + δρ ′

λ + (pλ + ρλ)θλ + 3H(δpλ + δρλ) + 3(pλ + ρλ)φ
′} = δQ 0

(λ),

∂iδ∇μT μi
(λ) = 1

a2

{[
p′

λ + H(pλ + ρλ)
]∇2 B + [

(p′
λ + ρ ′

λ) + 4H(pλ + ρλ)
]
θλ

+ (pλ + ρλ)∇2 B ′ + ∇2δpλ + (pλ + ρλ)θ
′
λ + (pλ + ρλ)∇2ψ

} = ∂iδQ i
(λ) (6)

regardless of the anisotropic stress, while δQ i
(λ)

is a new perturbation variable. Considering that the intrinsic momentum transfer can pro-
duce acoustics in the DM fluid as well as pressure which may resist the attraction of gravity and hinder the growth of gravity fluctuations
during tightly coupled photon baryon period, in our study we shall neglect the intrinsic momentum transfer by setting δQ i

(λ) = 0. This is
a choice of interaction and the results should not heavily depend on such assumption. Our aim is to provide examples of both stability
and instability in perturbations.

We construct gauge-invariant quantities by employing Bardeen’s potentials, gauge-invariant density contrast and velocity

Ψ = ψ − 1

a

[(
−B + E ′

2

)
a

]′
, Φ = φ − 1

6
∇2 E + a′

a

(
B − E ′

2

)
,

D(λ) = δ(λ) − ρ ′
(λ)

ρ(λ)H

(
φ − 1

6
∇2 E

)
, V (λ) = v(λ) + E ′

2
. (7)

Choosing a particular gauge, the Longitudinal gauge, by defining E = 0, B = 0, one can find Ψ = ψ , Φ = φ [28].
For the interacting model we use the perturbed pressure [27]

δpd = C2
e δdρd + (

C2
e − C2

a

)[3H(1 + w)Vdρd

k
− a2 Q 0

d
Vd

k

]
(8)

and the interaction as a linear combination of the energy densities of dark sectors,

a2 Q 0
m = 3H(λ1ρm + λ2ρd), a2 Q 0

d = −3H(λ1ρm + λ2ρd), (9)

where λ1 and λ2 are small positive dimensionless constants. The generality in the choice of the couplings relies on the generality of the
models. In case we had a Lagrangian formulation the coupling should be fixed. Lacking a Lagrangian we are free to choose our model.
We are going to show that for some choice of couplings we may achieve stability in curvature perturbations. Choosing a positive sign for
the interaction the direction of the energy transfer goes from DE to DM, which is required to alleviate the coincidence problem [15] and
avoid some unphysical problems such as negative DE density, etc. [23,27]. In [27] it was argued that it is more natural to assume that
the interaction between dark sectors depends on purely local quantities. Considering the symmetries of the Friedmann–Robertson–Walker
metric, we note that the interaction can vary only in time, rather than from point to point. The only time parameter in question is the
age. Thus, the factor H appears in our interaction, implying that the interaction depends on the cosmic time through the global expansion
rate.

By taking Fourier transformation of Eq. (6), we get perturbation equations

D ′
m = −kUm + 6HΨ (λ1 + λ2/r) − 3(λ1 + λ2/r)Φ ′ + 3Hλ2(Dd − Dm)/r, (10)

U ′
m = −HUm + kΨ − 3H(λ1 + λ2/r)Um, (11)

D ′
d = −3HC2

e

{
Dd − [

3(λ1r + λ2) + 3(1 + w)
]
Φ

} − 3H
(
C2

e − C2
a

)[3HUd

k
− a2 Q 0

d
Ud

(1 + w)ρdk

]

− 3H w
[
3(λ1r + λ2) + 3(1 + w)

]
Φ + 3H w Dd + 3w ′Φ + 3(λ1r + λ2)Φ

′ − kUd − 6Ψ H(λ1r + λ2)

+ 3Hλ1r(Dd − Dm), (12)

U ′
d = −H(1 − 3w)Ud + kC2

e

{
Dd − 3

[
(λ1r + λ2) + (1 + w)

]
Φ

}
− (

C2
e − C2

a

)
a2 Q 0

d
Ud + 3

(
C2

e − C2
a

)
HUd + (1 + w)kΨ + 3H(λ1r + λ2)Ud, (13)
(1 + w)ρd
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where r = ρm/ρd , U = (1 + w)V . We have taken δH = 0 by assuming the expansion rate in the interaction to be the global expansion
rate. This is a matter of choice.

In the above, C2
a = w < 0. However, it is not clear what expression should we have for C2

e . In [27] it has been argued in favor of C2
e = 1.

This is correct for the scalar field, but it is not obvious for other cases, especially for a fluid with a constant equation of state. The most
dangerous possibility, as far as instabilities are concerned, is C2

e = 1 �= C2
a = w < 0 since the first term in the second line of Eq. (13) can

lead to blow up when w close to −1. In spite of such a danger we are considering such a case here. Assuming C2
e = 1, C2

a = w , the above
equations can be rewritten as

D ′
d = (−1 + w + λ1r)3H Dd − 9H2(1 − w)

(
1 + λ1r + λ2

1 + w

)
Ud

k
− kUd + 9H(1 − w)(λ1r + λ2 + 1 + w)Φ

+ 3(λ1r + λ2)Φ
′ − 6Ψ H(λ1r + λ2) − 3Hλ1rDm, (14)

U ′
d = 2

{
1 + 3

1 + w
(λ1r + λ2)

}
HUd + kDd − 3k(λ1r + λ2 + 1 + w)Φ + (1 + w)kΨ. (15)

By using the gauge-invariant quantity ζ = φ − Hδτ and letting ζm = ζd = ζ we get the adiabatic initial condition,

Dm

1 − λ1 − λ2/r
= Dd

1 + w + λ1r + λ2
. (16)

The curvature perturbation relates to density contrast by [30]

Φ = 4πGa2 ∑
ρi{Di

g − ρ ′
i U i/ρi(1 + wi)k}

k2 − 4πGa2
∑

ρ ′
i/H . (17)

With the help of these equations we can compute the curvature perturbation Φ based on the CMBEASY code. We first consider the
interaction between the dark sectors in proportional to the energy density of DM (λ2 = 0) and in our calculation we keep the DE EoS
w �= −1. For constant w > −1, we show the numerical results for the ratio r = ρm/ρd in Fig. 1. We observe that λ1r exhibits a scaling
behavior, which keeps constant both at early and present times of the universe. This behavior is not changed when we turn on λ2.
Analytically, this can be understood by inserting the continuity equations

ρ ′
m + 3Hρm = 3H(λ1ρm + λ2ρd), ρ ′

d + 3Hρd(1 + w) = −3H(λ1ρm + λ2ρd) (18)

in

r′ = ρ ′
m

ρd
− r

ρ ′
d

ρd
. (19)

Solving the corresponding quadratic equation, we get

(rλ1)1 = −1

2
(w + λ1 + λ2) + 1

2

√
w2 + 2wλ2 + 2wλ1 + λ2

2 − 2λ1λ2 + λ2
1,

(rλ1)2 = −1

2
(w + λ1 + λ2) − 1

2

√
w2 + 2wλ2 + 2wλ1 + λ2

2 − 2λ1λ2 + λ2
1. (20)

This implies

(rλ1)1 ≈ −(w + λ2), (rλ1)2 ≈ − λ1λ2

w + λ2
∼ 0 (21)

for λ1 � λ2 < −w . These two roots of λ1r are constant in the very early time and current time of the universe, respectively.
The scaling behavior of λ1r influences the curvature perturbation Φ . Numerically, we see from Fig. 1 that when w > −1 and λ1 �= 0,

Φ blows up, which agrees with the result obtained in [27]. We find that this blow-up starts at earlier time when w approaches −1 from
above and it happens regardless of the value of λ2.

The reason for the blow up is the fact that the expression of r is non perturbative in λ1, being proportional to λ−1
1 at very times, when

we have to consider the beginning of the CMB computation.
However, when we consider the dark sectors’ interaction as being proportional to the energy density of DE and examine the case that

the constant EoS is a little bigger than −1: the blow-up disappears. Stability is also found when we extend our discussion to the constant
EoS w < −1.

Numerically, we find that the first two terms on the RHS of Eqs. (14) and (15) contribute more than other terms to the divergence.
Using ξ1 and ξ2 to represent the first two terms of Eq. (14), we can approximately write

D ′
d ∼ ξ1 + ξ2, (22)

where

ξ1 = (−1 + w + λ1r)3H Dd, ξ2 = −9H2(1 − w)

(
1 + λ1r + λ2

1 + w

)
Ud

k
. (23)

When λ2 = 0, λ1 �= 0 and −1 < w < 0, λ1r ≈ −w , we have ξ2 one order larger than ξ1 and ξ1 + ξ2 > 0, which causes the vast increase in
Dd as shown in Fig. 2(a). However, when λ1 �= 0 in the case w < −1 and λ1 = 0, λ2 �= 0 no matter whether w < −1 or w > −1, ξ2 and ξ1
are of the same order as shown in Fig. 2(b), (c) and ξ1 + ξ2 < 0, which makes Dd to decrease with time. Therefore, the blow up is avoided.

In order to further explain the reason for the blow-up we provide an analytical analysis. Keeping the leading terms, we have the
approximate equations
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Fig. 1. The upper two figures show the scaling behavior of λ1r. The lower two show the behavior of the perturbation.

(a) (b)

(c)

Fig. 2. Comparisons of ξ1 and ξ2.
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Fig. 3. Behavior of the indices r1 and r2 in terms of w .

D ′
d ≈ (−1 + w + λ1r)3H Dd − 9H2(1 − w)

(
1 + λ1r + λ2

1 + w

)
Ud

k
,

U ′
d ≈ 2

[
1 + 3

1 + w
(λ1r + λ2)

]
HUd + kDd. (24)

Considering the case that the interaction between dark sectors is proportional to the energy density of DM (λ1 �= 0, λ2 = 0) and noting
that λ1r ∼ −w , we can simplify the above equations to

D ′
d ≈ −3H Dd − 9H2 1 − w

1 + w

Ud

k
, U ′

d ≈ 2
1 − 2w

1 + w
HUd + kDd. (25)

A second order differential equation for Dd is

D ′′
d ≈

(
2

H′

H − 1 + 7w

1 + w
H

)
D ′

d + 3
(

H′ − H2)Dd. (26)

In the radiation dominated period, we have H ∼ 1
τ , H′ ∼ − 1

τ 2 , H′
H ∼ − 1

τ and Eq. (26) can be approximated as

D ′′
d ≈ −3

1 + 3w

1 + w

D ′
d

τ
− 6

τ 2
Dd, (27)

whose solution is

Dd ≈ C1τ
r1 + C2τ

r2 , (28)

where

r1 = −1 + 4w − √−5 − 4w + 10w2

1 + w
, r2 = −1 + 4w + √−5 − 4w + 10w2

1 + w
. (29)

The result, Eq. (29), has also been given in [27], see their Eqs. (84) and (85) by setting α = 0, putting the obvious +/− in front of the
square root and remembering Dd ∼ ψ . In [27], n corresponds to ψ while rs corresponds to D . In Fig. 3, we see that when −1 < w < 0,
both r1 and r2 are positive, which means that the perturbation in Dd grows. However, when w < −1, both r1 and r2 are negative; this
results in the decay of the perturbation in Dd . No divergence occurs, regardless of the value of λ1.

These results tell us that for a constant DE EoS w > −1, a coupling between DE and DM in proportional to ρm (λ1 �= 0) will lead to a
violent divergence in the curvature perturbation. However, this divergence is absent for w < −1.

Considering the case that the interaction between dark sectors is proportional to the energy density of DE, namely, λ1 = 0, λ2 �= 0,
Eq. (24) reduces to

D ′
d ≈ (−1 + w)3H Dd − 9H2(1 − w)

(
1 + λ2

1 + w

)
Ud

k
, U ′

d ≈ 2

(
1 + 3λ2

1 + w

)
HUd + kDd. (30)

We can rewrite the second order differential equation for Dd in the form

D ′′
d =

[(
−1 + 3w + 6λ2

1 + w

)
H + 2

H′

H

]
D ′

d + 3(1 − w)

[
H′ + H2

(
−1 + 3λ2

1 + w

)]
Dd. (31)

In the radiation dominated era, the above equation becomes

D ′′
d =

(
−3 + 3w + 6λ2

1 + w

)
D ′

d

τ
+ 3(1 − w)

(
−2 + 3λ2

1 + w

)
Dd

τ 2
. (32)

Introducing the auxiliary quantities
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Fig. 4. Behavior of � and of Γ .

Γ = 3w2 + w + 6λ2 − 2, � = 9w4 + 30w3 + 13w2 + (−28 + 12λ2)w + 36λ2
2 + 12λ2 − 20, (33)

we find that, when � > 0,

Dd ∼ C1τ
r1 + C2τ

r2 , (34)

where

r1 = 1

2

Γ

1 + w
+ 1

2

√
�

1 + w
, r2 = 1

2

Γ

1 + w
− 1

2

√
�

1 + w
. (35)

On the other hand, when � < 0,

Dd ∼ C1τ
1
2

Γ
1+w cos

1

2

√|�|
1 + w

lnτ + C2τ
1
2

Γ
1+w sin

1

2

√|�|
1 + w

lnτ . (36)

In Fig. 4 we see that � can be positive only in the vicinity of w = −1. When λ2 is small, the range for positive � is small. w = −1
is the central singularity, since it will lead to the divergence in r1 and cause the blow-up in the density perturbation Eq. (34). When
w > −1 and � > 0, the blow-up in the density perturbation can also happen since Γ/2(1 + w) is positive as well. But when w grows
further above −1, � will become negative and so does Γ/2(1 + w), which will lead to the convergent result of Eq. (36). When w < −1,
Γ/2(1 + w) is always negative, the density perturbation will decay even when w is close to −1 from below and � is small and positive.

The physical origin of such a behaviour can be traced to Eq. (8). When λ1 = 0, the dark energy sound speed depends only on dark
energy parameters, contrary to what happens when λ1 �= 0. In this latter case, the coupling introduces a dependence of the pressure
perturbation on the dark matter energy density. In the latter case, at early times ρm 
 ρd and the non-adiabatic pressure perturbation
diverges at superhorizon scales, driving the instability. In our case, the effect is less acute and the system of coupled differential equations
describing the evolution is better behaved.

These results show that when the interaction between dark sectors is proportional to the energy density of DE (λ2 �= 0), the blow-up
in the perturbation will not happen for constant EoS w < −1. For w > −1, when the coupling is small, the blow-up can also be avoided
in the observational range of the EoS. However, there is a possibility for the divergence to happen when the interaction is large in the
observationally allowed w > −1 range.

In summary, we have reexamined the cosmological perturbations when DE and DM interact with each other. We have specialized
the interaction to be a linear combination of DE and DM energy densities, namely λ1ρm + λ2ρd . We found that for constant DE EoS
w > −1 and nonzero λ1 the instability occurs in agreement with the results of Ref. [27]. However when w > −1 and the interaction is
just proportional to the energy density of DE (λ1 = 0, λ2 �= 0), the perturbation is stable for small λ2 when w is within observational
range. For phantom DE case with constant w < −1, the perturbation is stable regardless of the value of the coupling. This result was also
evidently shown in [27]. It would be interesting to extend this study to other interaction forms. Moreover, it would be of great interest
to confront the stable DE and DM interaction model to observations, such as CMB angular power and large scale structure etc. Works in
these directions are in progress.
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