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The double copy is a much-studied relationship between gauge theory and gravity amplitudes. Recently, 
this was generalised to an infinite family of classical solutions to Einstein’s equations, namely stationary 
Kerr–Schild geometries. In this paper, we extend this to the Taub–NUT solution in gravity, which has a 
double Kerr–Schild form. The single copy of this solution is a dyon, whose electric and magnetic charges 
are related to the mass and NUT charge in the gravity theory. Finally, we find hints that the classical 
double copy extends to curved background geometries.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The study of scattering amplitudes in both gauge and gravity 
theories continues to be an active area of research, including the 
relationships between both types of theory. A relatively recent dis-
covery is the double copy property linking gauge and gravity ampli-
tudes, with or without supersymmetry [1–3]. This itself relies on a 
certain relationship (BCJ duality) being made manifest in the gauge 
theory, and is known to be true at tree-level [2,4–10], where it is 
equivalent to the KLT relations of [11]. Follow-up work has exam-
ined loop-level amplitudes [3,12–30], form-factors [31], or alterna-
tive theories [32]. All-order tests of the double copy are possible in 
certain kinematic limits [15,33–36], but a full proof at loop level – 
which relies on the existence of BCJ-dual amplitudes – has yet to 
be obtained (see Refs. [37–52] for related studies). It is not known, 
for example, if the copy is a genuinely non-perturbative property 
of both theories. One reason for this is that the perturbative con-
struction of the double copy (which relies on replacing four-gluon 
vertices with pairs of three-gluon vertices) obscures a direct under-
standing at the level of the Lagrangian. Partial exceptions to this 
are the perturbatively constructed effective Lagrangian of Ref. [2]
(see also Refs. [38,53]), and the self-dual sector of Refs. [20,54]
where, in the latter, the Yang–Mills action can be made manifestly 
cubic [55], and a full interpretation of BCJ duality obtained. See 
Ref. [56] for a recent review.
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The above discussion motivates an alternative way of examin-
ing the double copy, namely to look directly at solutions of the 
classical equations of motion in gauge and gravity theories, and 
to match these up according to a double copy prescription. If this 
matching can be argued to be the same as the BCJ double copy for 
amplitudes in a meaningful way, one gains a deeper understanding 
of the double copy, including its potentially nonperturbative role. 
A pioneering study in this regard was recently undertaken by some 
of the present authors in Ref. [57], which found an infinite class 
of classical solutions that double copy between Yang–Mills the-
ory and gravity. On the gravity side, these correspond to stationary 
Kerr–Schild solutions, where the latter property leads to lineari-
sation of the Einstein equations, such that the solution for the 
graviton field terminates at first-order in perturbation theory. The 
single copies of these solutions solve linearised Yang–Mills equa-
tions, and a number of examples were given in Ref. [57]. That the 
single copy procedure is indeed related to the BCJ double copy for 
amplitudes relies on performing the zeroth copy from the gauge 
theory to a biadjoint scalar theory. The latter has arisen in a num-
ber of recent studies [10,58–60], and its relevance in the present 
context is that the scalar field from the zeroth copy can be used to 
fix the double copy prescription between gauge theory and gravity. 
It was also shown in Ref. [57] that the self-dual sectors of gauge 
theory and gravity have a Kerr–Schild-like description.

A number of puzzles remain regarding the results of Ref. [57], 
not least the lack of a full understanding of the role that Kerr–
Schild coordinates play. The aim in this paper is to generalise the 
results of Ref. [57], and to provide further evidence supporting the 
classical double copy. To this end, we consider the Taub–NUT so-
lution [61,62] in General Relativity, which is known not to have a 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.09.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:a.luna-godoy.1@research.gla.ac.uk
mailto:monteiro@maths.ox.ac.uk
mailto:donal@staffmail.ed.ac.uk
mailto:Christopher.White@glasgow.ac.uk
http://dx.doi.org/10.1016/j.physletb.2015.09.021
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.09.021&domain=pdf


A. Luna et al. / Physics Letters B 750 (2015) 272–277 273
simple Kerr–Schild form. Nevertheless, we will obtain a single copy 
of this solution, which has a clear interpretation (in four spacetime 
dimensions) as a gauge-theory dyon. As for the simple Kerr–Schild 
solutions of Ref. [57], one may also take a zeroth copy to a bi-
adjoint scalar theory, which can be used to fix the nature of the 
double copy, and to relate this to the double copy for amplitudes. 
The Schwarzschild black hole emerges as a special case.

Another generalisation is to consider Kerr–Schild geometries 
that have a non-trivial (i.e. non-Minkowski) background metric. 
We examine the Taub–NUT solution on (Anti-)de Sitter space, and 
find that the single copy also works in this case, namely that one 
may construct a gauge theory object that satisfies the curved space 
Maxwell equations. We find an extra term in the biadjoint field 
equation, which is consistent with the scalar being conformally 
coupled to the gravity background in four spacetime dimensions.

The structure of our paper is as follows. In Section 2, we review 
the results of Ref. [57]. In Section 3 we discuss the Taub–NUT so-
lution and its gauge theory counterpart, and in Section 4 we look 
at the double copy in (Anti-)de Sitter space. We discuss our results 
and conclude in Section 5.

2. The Kerr–Schild double copy

A special family of solutions to Einstein’s gravitational field 
equations comprises Kerr–Schild metrics (see e.g. [63] for a detailed 
review)

gμν = ḡμν + κhμν

= ḡμν + κ φ kμ kν, (1)

where κ = √
16πG N , G N is Newton’s constant, and ḡμν is a back-

ground metric. Here φ is a scalar field, and kμ is both null and 
geodetic with respect to the background. That is,

ḡμν kμ kν = 0, (k · D)kμ = 0, (2)

where Dμ is the covariant derivative in the metric ḡμν . The Kerr–
Schild form is special in that the “graviton” explicitly decomposes 
into an outer product of the vector kμ with itself. Furthermore, 
such solutions have the remarkable property that they linearise the 
Einstein equations. More specifically, the components of the Ricci 
tensor are1

Rμ
ν = R̄μ

ν − κ

[
hμ
ρ R̄ρ

ν + 1

2
Dρ

(
Dνhμρ + Dμhρ

ν − Dρhμ
ν

)]
, (3)

where R̄μν is the Ricci tensor associated with ḡμν . Reference [57]
concentrated on a Minkowski background, ḡμν = ημν , and also sta-
tionary solutions (∂0φ = ∂0kμ = 0). It was then shown that the 
gauge field

Aa
μ = caφ kμ, (4)

for constant ca , solves the Yang–Mills equations, which due to the 
trivial colour dependence take a linearised form,

∂μF a
μν = 0. (5)

This gauge field of eq. (4) is then taken to be the single copy of the 
graviton of eq. (1), obtained by removing one of the Lorentz vec-
tors kμ from the graviton solution, and replacing coupling constant 
and charge factors. Carrying this one step further, one may remove 
the additional Lorentz factor, and define the biadjoint scalar field

	aa′ = cac̃a′
φ, (6)

1 N.B. the Ricci tensor is only linearised for the index placement as chosen in 
eq. (3).
for constant colour charge vectors ca and c̃a′
, where a and a′ are 

associated to the Lie algebras of two distinct groups G and G ′ . 
This solves the equation of motion for the biadjoint scalar theory 
(which linearises),

∂2	aa′ − yf abc f̃ a′b′c′
	bb′

	cc′ = 0, (7)

and is then identified with the zeroth copy of the gauge theory 
solution. The zeroth copy is one way of fixing the single copy pro-
cedure of eq. (4), which would otherwise be ambiguous. A priori, 
one can choose to absorb an overall scalar function into the Kerr–
Schild vector kμ before taking the single copy. However, there is 
a unique choice that satisfies the biadjoint equation upon taking 
the zeroth copy. Furthermore, this has a physical interpretation as 
a scalar propagator integrated over the source charge [57]. This 
is the same procedure as the BCJ double copy for amplitudes, in 
which denominator factors (scalar propagators) are left untouched 
when the double copy is performed, but numerators are not.

3. The Taub–NUT solution

The Taub–NUT metric, first derived in Refs. [61,62], is a station-
ary, axisymmetric vacuum solution that is not asymptotically flat. 
It can be sourced by a pointlike object at the origin, which car-
ries both electric charge and NUT charge. The latter is associated 
with the lack of spherical symmetry and asymptotic flatness, and 
is known to correspond to a magnetic monopole-like behaviour of 
the gravitational field at spatial infinity (see e.g. [64] for a review). 
We will see in this section that the Taub–NUT solution provides an 
interesting example of a Kerr–Schild double copy, which extends 
our previous results to metrics not of the form of eq. (1).

A general formulation of the Taub–NUT–Kerr–de Sitter metric 
has been given by Plebanski [65], and has later been shown to 
exhibit a double Kerr–Schild form in Ref. [66]. That is, one may write 
the metric in the form

gμν = ḡμν + κhμν

= ḡμν + κ
(
φ kμ kν + ψ lμ lν

)
, (8)

where ḡμν is a de Sitter background metric, the vectors kμ and lμ
satisfy the conditions

k2 = l2 = k · l = 0, (k · D)kμ = 0, (l · D)lμ = 0, (9)

and all contractions and covariant derivatives can be taken with 
respect to either the background or the full metric. This form is a 
clear generalisation of the standard Kerr–Schild form of eq. (1). 
However, it is not a straightforward extension: it is no longer 
true in general that the Einstein equations are linearised. One may 
show, in fact, that the mixed components of the Ricci tensor are

Rμ
ν = R̄μ

ν + κ

[
−hμ

ρ R̄ρ
ν + 1

2
Dρ

(
Dνhμρ + Dμhρ

ν − Dρhμ
ν

)]

+ Rμ
ν,non-lin.

, (10)

where the non-linear term is

Rμ
ν,non-lin.

= −κ2

2

[
1

2
Dμh(k)

ρ
δ Dνh(l)δρ + h(l)μδ Dρ Dνh(k)

ρ
δ

+ Dρ

(
h(l)ρδ Dδh(k)

μ
ν + 2h(l)ρδ D(νh(k)

μ)
δ

− 2h(l)μδ D[ρh(k)δ]ν
)]

+ (k ↔ l), (11)

and we have defined the shorthand notation

h(k)μν = φkμkν, h(l)μν = ψlμlν . (12)
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Remarkably, in Plebanski coordinates, as argued in Ref. [66], the 
full metric can be cast in a form such that eq. (11) vanishes, and 
the Ricci tensor indeed linearises. The explicit form of the back-
ground line element is

ds̄2 = − 1

q2 − p2

[
�̄p(dτ̃ + q2dσ̃ )2 + �̄q(dτ̃ + p2dσ̃ )2

]

− 2(dτ̃ + q2dσ̃ )dp − 2(dτ̃ + p2dσ)dq, (13)

where

�̄p = γ − εp2 + λp4, �̄q = −γ + εq2 − λq4. (14)

Here ε is a constant, and γ is related to the angular momentum. 
Equation (13) is a solution to the Einstein equation with non-zero 
cosmological constant λ. The Kerr–Schild vectors are given in the 
(τ̃ , σ̃ , p, q) coordinate system (which has (2, 2) signature) by

kμ = (1,q2,0,0), lμ = (1, p2,0,0), (15)

and the accompanying scalar functions by

φ = 2Np

q2 − p2
, ψ = 2mq

q2 − p2
. (16)

The parameter m represents the mass of the solution, and N the 
NUT charge.

Let us now obtain and interpret the single copy of this solution, 
where we will focus for brevity on the case of vanishing angular 
momentum (γ = 0), which leads to a pointlike source. First, we 
note that the natural generalisation of the single copy procedure 
of eq. (4) in the double Kerr–Schild case is to construct a gauge 
field

Aa
μ = ca (

φkμ + ψlμ
)
. (17)

That is, the double copy of this solution proceeds term-by-term, 
analogously to how the BCJ double copy for amplitudes is applied 
separately to terms involving different scalar propagators. We have 
verified that the gauge field of eq. (17) satisfies the Yang–Mills 
equations (which linearise),

DμF a
μν = 0, F a

μν = Dμ Aa
ν − Dν Aa

μ. (18)

It is interesting already at this point that the Yang–Mills equations 
are satisfied even for a non-Minkowski background. We return to 
this in the following section.

For now, let us interpret the case λ = 0, for which ḡμν = ημν . 
In taking the single copy, we will make the replacements

mκ

2
→ (ca T a)gs,

Nκ

2
→ (ca T a)g̃s, (19)

to be explained shortly. Having taken the single copy in Plebanski
coordinates (where the Kerr–Schild form is manifest), we are free 
to transform to any other choice of coordinates. We will do this 
in two stages. First, following Refs. [65,66], one may transform to 
spheroidal coordinates according to

τ = t + aϕ, σ = ϕ

a
, q = r, p = a cos θ, (20)

where the coordinates τ and σ are related to the counterparts 
used throughout this paper by

dτ̃ = dτ + p2dp

�p
− q2dq

�q
, dσ̃ = dσ − dp

�p
+ dq

�q
. (21)

Next, one may take the parameter a2 ≡ γ (which is related to the 
angular momentum) to zero, so that the spheroidal radius becomes 
a spherical one. This coordinate transformation is subtle, in that 
the vector lμ becomes singular as a → 0. The prefactor ψ entering 
the gauge field, however, is O(a), such that gauge field Aa
μ itself 

is well-defined. In the spherical polar coordinate system (t, r, θ, φ), 
the field strength tensor then becomes

F = 1

2
Fμν dxμ ∧ dxν = − ca T a

8π

( gs

r2
dt ∧ dr + g̃s sin θ dθ ∧ dφ

)
,

(22)

where we have separated out the contributions from the constants 
gs and g̃s . The first term on the right-hand side of eq. (22) gives 
a pure electric field, corresponding to a Coulomb solution. Thus, 
the mass in the Taub–NUT metric single copies to a static colour 
charge, exactly as in the Schwarzschild case of Ref. [57]. This must 
in fact be the case, given that the Taub–NUT metric becomes the 
Schwarzschild metric as N → 0. This explains our choice of factors 
in eq. (19).

The NUT charge contribution to the field strength tensor is a 
pure magnetic field, and we can interpret this in more detail by 
expressing eq. (22) as

F = − ca T a

8π

(
gs

r2
dt ∧ dr + �

g̃s

r2
dt ∧ dr

)
. (23)

Here, � denotes the Hodge dual of a 2-form, say ωμν ,

�ωμν := 1

2
εμναβ ωαβ, �2 = −1. (24)

Thus, the dual tensor for the NUT-charge term contains a pure 
electric field corresponding to a point charge of strength g̃s . It fol-
lows that the magnetic field in the original field strength tensor 
corresponds to a magnetic monopole, where the NUT charge in the 
gravity theory single copies to the monopole charge in the gauge 
theory. This is perhaps to be expected, given that the NUT charge 
in the Taub–NUT metric is known to be associated with monopole-
like behaviour [64], an analogy which has now been turned into 
an exact statement under the classical double copy. We have then 
chosen the constant g̃s in eq. (19) to obey the same normalisation 
as gs in the (non-dual) field strength tensor.

Note that the transformation from the Plebanski coordinate sys-
tem to the spherical coordinate system involves a change of sig-
nature (from (2, 2) to (1, 3)), and thus a Wick rotation. In the 
Plebanski system itself, the two charges m and l appear on an 
equal footing, as is clear from eqs. (13)–(16). In other words, in 
this signature one cannot tell the difference in the gauge theory 
between an electric and a (dual) magnetic charge. For the (anti-) 
self-dual case, the gauge and gravity solutions can be interpreted 
as instantons (see also [64]).

As is well known, consistency of the monopole gauge field leads 
to the quantisation condition (in the present notation)

gs g̃s = n

2
, n ∈ Z, (25)

relating the electric and magnetic charges. This has an analogue in 
the gravity theory, as discussed in Refs. [67,68]. There, recovery of 
spherical symmetry demands a periodic time coordinate. This cor-
responds to quantisation of the energy of the dyon, or its mass 
in the non-relativistic approximation. There is then a quantisation 
condition relating the mass and NUT charge, which is the equiva-
lent of eq. (25) from a double copy perspective.

As in the standard Kerr–Schild case, we may take the zeroth 
copy, which produces a biadjoint scalar field

	aa′ = cac̃a′
(φ + ψ) . (26)

Similarly to the results of Ref. [57], this is a solution of the lin-
earised biadjoint eq. (7). In fact, both φ and ψ satisfy that equation 



A. Luna et al. / Physics Letters B 750 (2015) 272–277 275
separately. They have the interpretation of a scalar propagator in-
tegrated over the source charges, and are analogous to the scalar 
propagators that are not modified when double-copying scatter-
ing amplitudes. As has already been mentioned above, another 
property that links the generalised Kerr–Schild double copy to the 
corresponding story for amplitudes is that each Kerr–Schild term 
(involving a different scalar propagator) is copied individually, with 
no mixing between these terms on the gravity side.

The results of this section constitute an interesting generalisa-
tion of the Kerr–Schild double copies of Ref. [57], in that a double 
Kerr–Schild form is used. As remarked in Ref. [66], it is highly 
non-trivial that the particular double Kerr–Schild result for the 
Taub–NUT solution linearises the Einstein equations. One may also 
examine analogues of the Taub–NUT solution in higher dimensions. 
A family of higher-dimensional generalisations of the Plebanski 
metric was obtained in Ref. [69], and subsequently shown to have 
a multiple Kerr–Schild form [70], involving n = 
D/2� linearly in-
dependent, mutually orthogonal null vector fields kμ

i (here 
X�
denotes the integer part of X):

gμν = ḡμν +
n∑

i=1

φikiμkiν . (27)

This form relies on a generalised set of Plebanski-like coordinates, 
in (
D/2�, 
(D + 1)/2�) signature, and each function φi involves 
a parameter playing the role of a generalised NUT charge. Assum-
ing that these metrics indeed linearise the Einstein equations,2 one 
may construct a single copy gauge field term by term, as for the 
double Kerr–Schild example in D = 4:

Aμ =
n∑

i=1

φikiμ. (28)

Each term taken by itself satisfies the Maxwell equations using the 
argument of Ref. [57], given that it constitutes a time-independent 
single Kerr–Schild solution. That the complete multiple Kerr–Schild 
form satisfies the Maxwell equations then follows from linear in-
dependence of the generalised NUT charges. Note that, in the sig-
nature of the Plebanski-like metric, the NUT charges appear on an 
equal footing, as in the canonical Taub–NUT case. After analytic 
continuation to the physical (1, D − 1) signature, one parameter 
will play the role of an electric charge, obtained as a single copy 
of a mass parameter in the gravity theory.

As mentioned above, there have been previous observations 
that the Taub–NUT solution is analogous to a gauge theory 
dyon [64,68]. Such statements, however, are restricted to the weak 
gravity approximation, and are not embedded in a formal double 
copy relationship between Yang–Mills theory and gravity. Here, the 
use of the Kerr–Schild double copy makes the dyon–Taub–NUT re-
lationship perturbatively exact, and also ties it to the double copy 
for scattering amplitudes.

4. Double copy in de Sitter space

In the previous section, we saw that the Kerr–Schild double 
copy can be extended to the case of a double Kerr–Schild solution, 
representing a dyon. Another possible generalisation is to consider 
the background metric ḡμν to be non-Minkowski, and the Pleban-
ski form of the Taub–NUT–Kerr–de Sitter metric provides just such 
an example.

We have, in fact, already seen above that the gauge field of 
eq. (17), obtained as a single copy of the Plebanski metric, solves 

2 The linearisation property is not explicitly stated in Ref. [70]. However, we have 
checked its validity up to D = 7.
the (Anti-)de Sitter space Maxwell equations of eq. (18). This already 
suggests that our interpretation of the Kerr–Schild double copy can 
indeed be generalised to curved backgrounds. In the Minkowski 
case, it was important to take the zeroth copy to a biadjoint scalar 
theory. This fixes the overall scalar function that is not squared 
when taking the double copy, and also helps to tie the classical 
double copy to the similar procedure for scattering amplitudes. 
One may then also examine the zeroth copy in the (Anti-) de Sitter 
background. For the general Taub–NUT–Kerr–de Sitter metric, one 
finds that the scalar field of eq. (26) satisfies

D2	aa′ = −2λ	aa′
. (29)

This has an additional term on the RHS, and it is not immediately 
clear how to interpret this. However, it is intriguing to note that 
this term is in fact proportional to the Ricci curvature, such that 
eq. (29) is obtained from the Lagrangian:

L = 1

2
(Dμ	aa′

)(Dμ	aa′
) − y

6
f abc f̃ a′b′c′

	aa′
	bb′

	cc′

− R
12

	aa′
	aa′

, (30)

corresponding to a non-minimal coupling of the biadjoint scalar 
to the gravity background. More than this, the coefficient of the 
extra term precisely coincides with a conformally coupled scalar 
in four spacetime dimensions. This perhaps can be explained from 
the fact that classical Yang–Mills theory is conformally invariant 
in four spacetime dimensions, and that the zeroth copy somehow 
preserves this invariance in the free scalar theory.3 Whether or not 
this is the correct interpretation of this result, deserves further in-
vestigation.

It should be mentioned that it is possible to reinterpret the de 
Sitter double copy as a multiple Kerr–Schild double copy around 
Minkowski space. This is because the de Sitter metric itself can be 
written in the Kerr–Schild form [70]

gdS,μν = ημν + λ r2nμnν, nμ = (1, êr). (31)

The gauge field obtained via the Kerr–Schild single copy is

Aμ = ρ r2nμ, (32)

where we have replaced λ → ρ . We can interpret the latter param-
eter by noting that the electrostatic potential in the Kerr–Schild 
gauge satisfies

∇2 A0 = 1

r2

∂

∂r

(
r2 ∂ A0

∂r

)
= 6ρ. (33)

Thus, ρ plays the role of a uniform charge density, filling all space. 
This is exactly what one expects from the single copy of the cos-
mological constant, given that the latter is a uniform energy den-
sity. If one chooses the fiducial metric to be Minkowski rather than 
de Sitter space, the conformal coupling in the biadjoint scalar the-
ory would be absent (due to the vanishing Ricci scalar), but one 
must then include the uniform charge density explicitly.

5. Discussion

In this paper, we have extended our investigation of the double 
copy for classical solutions, which commenced in Ref. [57]. In par-
ticular, we studied the Taub–NUT metric, which goes beyond the 
results of Ref. [57] in having a double Kerr–Schild form. The single 

3 In higher dimensions, Yang–Mills theory is not conformally invariant, and the 
relevant coefficient of the R	aa′

	aa′
term does not coincide with the conformal 

coupling.
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copy of this solution a dyon whose electric and magnetic charge 
copy to mass and NUT charge respectively in the gravity theory. 
A similar story exists in higher spacetime dimensions, for the gen-
eralised Plebanski metrics of Refs. [69,70].

We also examined the Taub–NUT solution in (Anti-)de Sitter 
space, and found that the single copy also works. This is a highly 
interesting result, given that this is the first example of a double 
copy involving a non-Minkowski background. The zeroth copy also 
works, provided one adds a conformal mass term to the theory, 
which vanishes in the Minkowski case. This interpretation of the 
curved space double copy is somewhat tentative, and more inves-
tigation is necessary (e.g. involving other background geometries, 
or scattering amplitudes on curved space).

Work on extending the classical double copy further is in 
progress.
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