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Summary

Cortactin is involved in invadopodia and podosome forma-

tion [1], pathogens and endosomemotility [2], and persistent
lamellipodia protrusion [3, 4]; its overexpression enhances

cellular motility andmetastatic activity [5–8]. Several mecha-
nismshavebeenproposed to explain cortactin’s role inArp2/

3-driven actin polymerization [9, 10], yet its direct role in cell
movement remains unclear. We use a biomimetic system to

study the mechanism of cortactin-mediated regulation of
actin-driven motility [11]. We tested the role of different cor-

tactin variants that interact with Arp2/3 complex and actin
filaments distinctively. We show that wild-type cortactin

significantly enhances the bead velocity at low concentra-

tions. Single filament experiments show that cortactin has
no significant effect on actin polymerization and branch

stability, whereas it strongly affects the branching rate
driven by Wiskott-Aldrich syndrome protein (WASP)-VCA

fragment and Arp2/3 complex. These results lead us to
propose that cortactin plays a critical role in translating actin

polymerization at a bead surface into motion, by releasing
WASP-VCA from the new branching site. This enhanced

release has two major effects: it increases the turnover rate
of branching per WASP molecule, and it decreases the fric-

tion-like force caused by the binding of the moving surface
with respect to the growing actin network.

Results and Discussion

The polymerization of actin is directed to the surface of the cell
membrane or vesicles, by localizing to the surface Wiskott-
Aldrich syndrome protein (WASP), which then activates the
branching of the filaments using the Arp2/3 complex. The actin
network that forms at the surface produces an elastic pushing
force on the surface. However, the same WASP molecule
that initiates actin polymerization also inherently inhibits the
translation of the protrusive force into motion, by binding to
the same actin network. This is an inherent problem, because
in order to localize the branching process to the membrane,
the WASP molecule has to make contact with the network
during the formation of the new branch. We find that cortactin
*Correspondence: bernheim@bgu.ac.il
plays a critical role in enhancing the ability to translate actin
polymerization at a surface into motion, by releasing WASP
molecules from the new branching site.
We investigated how cortactin affects the velocity of

VCA-coated beads. Addition of wild-type (WT) GST-cortactin
affected thebeads’ velocityv(c) nonmonotonously. InFigure1A
we show the normalized velocity v(c)/v(0) versus cortactin
concentration c. Below 800 nM cortactin enhanced the bead
velocity, whereas above it, the velocity decayed as c2n with
n = 1.34 6 0.01 (inset, Figure 1A). Replacing VCA with WT cor-
tactin did not produce anymovement; the beads only polymer-
ized a thin actin layer around their surface,which never evolved
into a comet tail (see Figures S1A–S1D available online).
In order to determine whether changes in the density of the

actin gel rbead (c) were responsible for the observed changes in
the beads’ velocity, wemeasured the gray-level intensity of the
actin network behind the bead (Supplemental Experimental
Procedures). The normalized density of the actin gel, rbead
(c)/ rbead (0), versus c is depicted in Figure 1A. In contrast to
the velocity, the density of the actin gel barely changes up to
1,200 nM cortactin. Above 1,200 nM we observe a decay of
rbead (c)/ rbead (0) with c.
We used fluorescence recovery after photobleaching

(FRAP) to study the dynamics of cortactin and actin in the
vicinity of the beads and along the comet. Although cortactin
distributes in proportion to the actin density (Figure 1B),
their dynamics are distinct (Figures S1E and S1F; Supple-
mental Experimental Procedures): cortactin rapidly exchange
throughout the entire comet, whereas actin follows a treadmil-
ling behavior, in accord with in vivo results [12].
The possible effects of cortactin that modify the beads

velocity can arise from either a change in the effective protru-
sive force produced by the actin network and/or by reducing
the effective friction arising from the transient binding of
the actin network to the bead surface (via VCA molecules)
[13–15]. The effect on the protrusive forces can be either
through modification of the density of polymerizing barbed
ends near the surface, changes in filaments’ elongation rates,
and/or by affecting the force per filament. In the later case, cor-
tactin could possibly affect the stiffness of the actin filaments
and this could affect the force produced per filament [16].
We used total internal reflection fluorescence (TIRF) micros-

copy to investigate the effect of cortactin on filament elonga-
tion and branching rates. The experimental system consisted
of actin, Arp2/3 complex, VCA, and increasing amounts of
WT cortactin (0–8,000 nM) (Figure S2A; Movie S1; Movie S2;
Movie S3). The protocol for this assay followsKuhn andPollard
[17]. For each cortactin concentration, we analyzed the elon-
gation rate vp (c) of a set of 15 filaments (Figure S2B). Using
the distribution of measured elongation rates (Figure S2C),
we calculated the mean value (Figure 2A). Up to 2,000 nM cor-
tactin, the normalized elongation rate is practically indepen-
dent of c, in agreement with previous bulk measurements
[18], and has a mean value of vp (c)/ vp (0) = 0.946 0.13, where
vp (0) = 9.56 0.57 sub/sec. Only for larger concentrations, cR
4,000 nM, we observed a decay of vp (c)/ vp (0) with c (inset,
Figure 2A). At high concentrations (c R 4,000 nM), we also
observed a reduction in the proportion of filaments that
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Figure 1. Cortactin Effect on the Bead Velocity and Gel Density

(A) Normalized velocity of the bead (black circles) and density of the actin gel

(black hollow squares) as a function of the cortactin concentration. The inset

shows the normalized velocity in a log-log scale. At high concentrations, the

velocity decays as c24/3. Values correspond to mean 6 SD.

(B) Colocalization of actin and cortactin along the comet tail. Bead diameter

d = 4.78 mm. The motility medium consists of 7 mM F-actin, 1.0 mM GST-

cortactin, 0.7 mM G-actin, and 142 nM GST-cortactin labeled with Alexa

Fluor 488 and 568, respectively. Left to right: phase contrast and fluores-

cence images of actin and cortactin, respectively. The data shows that

cortactin (red) distributes over the entire actin (green) network in proportion

to the actin density. Scale bars represent 10 mm.
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attached firmly to the surface (Figure S3A; Movie S3;
and Supplemental Experimental Procedures). The reduced
affinity to the N-ethylmaleimide (NEM)-myosin molecules
infer on a possible adsorption (decoration) of cortactin along
the filaments’ backbone, thus blocking available attachment
sites.

Next, we investigated how cortactin mediated the formation
of actin branches by VCA and Arp2/3 complex. The effect
of WT cortactin on filament branching is nonmonotonic; at
low c, cortactin enhances the nucleation of branches, whereas
at high c it inhibits their formation (Figure 2B). Plotting the
normalized branching rate (per unit length) Kbranch (Supple-
mental Experimental Procedures) versus c revealed an initial
linear growth up to w50 nM (Figure 2B, upper inset), followed
by an abrupt decay of Kbranch as 1/c (Figure S3B, inset b). We
repeated the experiments at a higher frame rate (1 s instead
of 10 s between frames) and found that the branches were
completely stable, irrespective of cortactin [18]. Under these
conditions, we therefore purely measure cortactin’s effect on
the branching rate.

Our observations, together with published data, lead us to
propose that the dominant processes involving cortactin in
this system are as follows: (1) VCA is themain branch nucleator
and is dominant over cortactin-induced branching, (2) cor-
tactin has an affinity to VCA/Arp2/3 complex/F-actin and tends
to enhance the dissociation rate of VCA from such complexes
[10, 19], and (3) cortactin has an affinity to F-actin [20, 21] and
tends to decorate its backbone. These observations suggest
that WT cortactin can increase the branching rate by
releasing VCA from bound Arp2/3 complexes and increasing
its overall activity. On the other hand, at large concentrations,
cortactin decorates the actin filaments and inhibits VCA/
Arp2/3 complex from attaching to the filaments and initiating
a new branch (depletion of Arp2/3 complex from the branch-
ing cycle by binding to cortactin in solution is an alternative
process but was shown to be 20-fold less effective compared
to the binding of cortactin to bare F-actin [20, 21]). These
opposing processes may lead to the observed nonmonotonic
behavior of the bead velocity and branching rate (Figure 1;
Figure 2).
In order to explore the validity of these conclusions, we

repeated the experiments using two cortactin variants; a
NTA fragment lacking the F-actin binding domain, and a
mutant lacking the acidic DDW motif that binds the Arp2/3
complex. The effect of these variants on the branching rate
is shown in the lower inset of Figure 2B. We find that the
NTA fragment is effective in increasing the branching rate,
although less than WT cortactin, whereas the DDW mutant
only interferes with the branching process.
In Figure 3A we plot the velocity of the bead for the

different cortactin variants. We find that the velocity is
monotonously increasing with NTA concentration, as ex-
pected if this fragment cannot attach (decorate) F-actin. For
the DDW mutant, we find that it is unable to increase the
bead motility. In Figure 3B we plot the reduced actin gel
densities behind the bead for the three cortactin variants.
Compared to the WT, we find that both variants induce
a gel of lower density.
In order to study the mechanism by which cortactin func-

tions in actin-based movement, we estimated the net branch-
ing rate per unit length behind the moving bead, Kbranch, b, by
multiplying the measured bead velocity and gel density (see
Text 2, Supplemental Information). For WT cortactin we find
that Kbranch, b behaves (qualitatively) similarly (inset of Fig-
ure 3B) to Kbranch measured on individual (static) filaments
(Figure 2B). Increase in the net branching rate at low c could
result from stabilization of the newly-formed branches by
cortactin (i.e., preventing debranching), yet the fact that cor-
tactin rapidly exchange through the comet (Figures S1E and
S1F) infer on a weak binding energy associated with the
formation of an Arp2/3/F-actin/cortactin complex. Taken
together, these experimental findings strongly support our
proposed mechanism by which the dominant role of cortactin
in enhancing Arp2/3-based actin motility is to release the
VCA from the Arp2/3-F-actin complex and not to stabilize
the newly-formed branches. Finally, the lack of decay in the
branching activity (Figure 3B, inset) and motility (Figure 3A)
for the NTA fragment indicates that the observed decay for
the WT and DDW mutant is related to their ability to bind
and decorate bare F-actin.
From our proposed mechanism of cortactin activity in

Arp2/3 branching, we write a model of steady-state chemical
reactions (Figure S3A, Text 1 in Supplemental Information).
This model allows us to calculate the dependence of the
measured branching rate per unit length Kbranch (c) on WT cor-
tactin concentration (equation S8, Figure S3B). The same
formula can be used to fit the dependence of the density of
the actin gel behind the bead, rbead (c)

rbeadðcÞ=
Ac+B

Dc2 +Ec+G
(Equation 1)



Figure 2. Polymerization and Branching Rates of

Individual Actin Filaments

(A) Normalized elongation rate of actin filaments

as a function of cortactin concentration (0–

2,000 nM). Inset shows normalized elongation

rate as a function of cortactin concentration c

ranging between 0 and 8,000 nM. Up to

2,000 nM cortactin, the elongation rate is approx-

imately constant. Above this concentration, the

elongation rate decreases with c. Values corre-

spond to mean 6 SD.

(B) Normalized branching rate (per unit length)

Kbranch as a function of cortactin concentration

c. The low cortactin concentration region is char-

acterized by a linear increase in the branching

rate (upper-inset: the dash-dot line was deter-

mined by linear regression), whereas above

w50–100 nM, the branching rate decayswith cor-

tactin concentration. In the lower inset, the

branching rate (per unit length) for three different

cortactin variants is depicted: wild-type (WT),

NTA fragment (NTA), and DDW mutant (DDW),

and in the absence of cortactin (2cortactin).

Values correspond to mean 6 SD.

Current Biology Vol 21 No 24
2094
In Figure 3B we plot the measured (normalized) gel den-
sity for WT cortactin with the fit where the fitting param-
eters are given in Figure S3D. We see that at large c, rbead
(c) wc-1.

We now describe the effect of cortactin on the bead velocity.
In overdamped dynamics, the bead velocity is given by

vðcÞ=FðcÞ
gðcÞ (Equation 2)

where F(c) f Kgel (c) rVCA is the cortactin-dependent pushing
force per unit area [Kgel (c) is the gel elastic modulus, and
rVCA is the areal concentration of actin nucleators (VCA)] and
g(c) is the cortactin-dependent effective friction coefficient
per unit area (Text 2 in Supplemental Information). In [13, 14]
it was shown that Kgel (c) f rbead (c)4/3. Thus for a constant
friction coefficient g in Equation 2, v(c)f rbead (c)

4/3. This rela-
tion describes perfectly the bead velocity for the DDW mutant
(Figure 3A), as expected, because DDW does not interfere
with the VCA/Arp2/3 complex binding and therefore does not
modify the effective friction coefficient. This relation also fits
the velocity of WT cortactin for c > 1,000 nM (solid line, Fig-
ure 3A). Using the fit for rbead (c) (Equation 1) to the power
of 4/3, we recover the measured dependence of v(c) f c24/3

at large c (Figure 1A).
However, for small WT cortactin
concentrations, the bead velocity raises
much faster compared to the very slight
increase in the gel density (Figure 1A).
We can fit this part of the data very
well, by including the cortactin-induced
reduction in the effective friction coeffi-
cient g(c) (Equation S9, Supplemental
Information) with the fitting parameters
given in Figure S3E. From this fit we
find that WT cortactin reduces the
bead and the actin network by 25%. As
seen in Figure 3A, we could not fit the
whole data range using a single expres-
sion for the dependence of the effective
friction coefficient on c. Note that the expressions we are using
for the dependence of both rbead (c) and g(c) on c are based on
steady-state chemical reactions and do not treat explicitly the
effects of the velocity of the moving bead on these quantities.
A full dynamical simulation is needed for amore realistic calcu-
lation [22, 23].
Using similar scaling arguments, we can explain the

observed behavior for the velocity in the case of the NTA frag-
ment. In Figure 3B inset we see that the branching rate for NTA
is almost unchanged and roughly constant, i.e., Kbranch, b y1.
Therefore, the velocity is only modified by the reduction in the
effective friction coefficient (Text 2 in Supplemental Informa-
tion). Using the same model and fitting parameters for g(c)
as for WT cortactin (Figure S3E), we find an excellent agree-
ment to the NTA fragment velocity data (Figure 3A).
In this work we combine direct imaging of individual filament

branching and bead motility assay to study the mechanism of
cortactin-mediating actin-based movement. Overall, our data
suggest that in contrast to the prevailing hypotheses that cor-
tactin stabilizes Arp2/3-mediated branched filament junctions
[18], the increase in the branching rate is associated with cor-
tactin’s capability to enhance the release of VCA from the VCA/
Arp2/3 complex/F-actin complexes, thereby allowing it to
have a higher turnover rate (Figure 4).We find thatWT cortactin
is able to efficiently release VCA and increase the branching



Figure 3. Data Analysis and Modeling

(A) Normalized velocity of the bead as a function

of cortactin concentration for the three cortactin

variants. Experimental data are as follows: WT

cortactin, red squares; NTA fragment, blue dia-

monds; and DDW mutant, green circles. Values

correspond to mean 6 SD. The model calcula-

tions using Equation 2 are given by the lines; for

the WT cortactin, the dashed-dot line is calcu-

lated using the cortactin-dependent effective

friction (Equation S9, Supplemental Information),

whereas the solid line for a constant friction such

that v(c)f rbead (c)
4/3 (in this equation, we use the

fit for the gel density [see B below] using the func-

tional form given in Equation 1). For the DDW

mutant, the magenta circles are the prediction

for the velocity based on the data of the gel

density (green circles in B) to the power of

4/3. The NTA velocity curve is fitted by

vðcÞf1=gðcÞ3=7 (dashed line) given NTA-depen-

dent effective friction (Equations S9–S11 in

Supplemental Information).

(B) Normalized density of the actin gel near the

bead surface as a function of the cortactin

concentration for the three cortactin variants:

WT, red squares; NTA fragment, blue diamonds;

and DDW mutant, green circles. The solid line

gives the fit for the WT cortactin data using the

functional form given in Equation 1. Inset shows

the normalized branching rate behind the bead

Kbranch,b for the three cortactin variants (symbols

as in B). The dashed line in the inset denotes the

value Kbranch,b (c) w1 to show that the NTA is

to a good approximation behaving like this

(details are given in Text 2 in Supplemental

Information). Values correspond to mean 6 SD.
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rate near the moving bead, whereas the NTA fragment is not
(Figure 3B, inset). We conclude that theWT’s affinity to F-actin
enhances its efficacy, compared to NTA, in releasing the VCA
from the newly-formed junction. This added efficiency at low
concentrations has the price of an inhibitory effect at large
concentration, due to the same affinity to F-actin (Figure 4).
Our results are also in accord with biochemical studies postu-
lating that cortactin is regulating the reduced affinity of WASP
for the Arp2/3 complex [10], after actin
nucleation is initiated, which is required
for rapid motility [24].

How does this mechanism of action
explain cortactin’s function in vivo? Cor-
tactin is involved in cellular migration,
trafficking processes, and pathogens
propulsion. Overexpression of cortactin
enhances lamellipodial persistence and
cell motility, whereas its depletion leads
to instable and rapidly retracting protru-
sions [3, 4]. The effect of cortactin on en-
dosome [25, 26] and pathogen motility
was not directly tested. Yet, the impor-
tance of detachment of newly formed
actin branches from the moving surface
is demonstrated by the observation that
whereasWT Listeria propels rapidly and
persistently, mutated Listeria with
impaired detachment resulted in an
irregular slow motion [27]. This
demonstrates that the cortactin-induced release mechanism
can explain cortactin’s observed role in cellular propulsion.

Experimental Procedures

Preparation of VCA and Cortactin-Coated Beads

Polystyrene Beads (Polysciences) were incubated in solutions of 5 mM

GST-VCA or GST-cortactin variants for 30 min. The surface of the beads

was further passivated with a solution of 10% bovine serum albumin



Figure 4. Mechanism of Cortactin’s Function in Actin-Driven Polymerization

Schematic diagram showing a bead coated with VCA molecules polymer-

izing a branch actin network at its surface through the activation of Arp2/3

complex. At low concentrations, cortactin enhance the release of VCAmole-

cules from the newly-formed branches, whereas at high concentrations, it

has an inhibitory effect due to its high affinity to F-actin.
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(BSA) according to the protocol detailed in [11]. All beads were used

within 24 hr.

Beads Motility Assay

The motility medium contained 10 mM HEPES (pH 7.6), 1.7 mM Mg-ATP,

5.5 mM DTT, 0.12 mM 1,4 diazabicyclo[2.2.2]octane (Dabco), 0.05 MKCl,

2 mM MgCl2, 7 mM F-actin, 0.1 mM Arp2/3 complex, 0.04 mM capping

protein, 3.5 mM cofilin, 3 mM profilin, 0.7 mMG-actin labeled with Alexa Fluor

568, 0.75% BSA, and various concentrations (0–2,500 nM) of GST-cortactin

variants (WT, NTA fragment [residues 1–84], or DDWmutant [in-frame dele-

tion of residues (20–22) from the NTA domain]). The movement of the micro-

spheres with respect to the comet tail was followed for w1–1.5 hr. In all the

(bead motility) experiments, we used GST-cortactin. Similar results were

obtained with cleaved cortactin (lacking GST), suggesting that dimerization

is not playing an essential role in cortactin function. Measurements of the

beads’ velocity and the gel density rbead along the comets (see details in

Supplemental Information) were done using METAMORPH (Molecular

Devices). Measurements were performed on about 10 beads for each con-

centration of cortactin used. Fitting of the experimental data was performed

using Matlab (MathWorks) and Origin (Originlab).

Single Actin Filament TIRF Assays

The protocol for this assay was kindly provided by Jeff Kuhn [17]. We fol-

lowed the growth and branching of individual filaments until overlapping

between filaments was observed. Samples were excited by total internal

reflection illumination at 488 nm, and images were captured with an Andor

backilluminated DU-897 EMCCD camera controlled by Leica software

(LAS-AF-6000, 2.2.0 build 4758, LeicaMicrosystems CMSGmbH, Germany)

on a Leica DMI6000 B.

Supplemental Information

Supplemental Information Includes three figures, Supplemental Data,

Supplemental Experimental Procedures, and three movies and can be

found with this article online at doi:10.1016/j.cub.2011.11.010.
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